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Naive T cells continuously migrate between the circulatory system and lymphoid organs,
where they make dynamic contacts with rare dendritic cells (DCs) that strategically form
an extensive dendrite network. In such a scenario, T cells spend most of their time quickly
scanning the antigenic content of multiple DCs. These interactions provide the basis for
efficient adaptive responses by increasing the probability of encounters between rare
antigen-specific T cells and those DCs presenting the respective cognate antigens. In the
absence of foreign antigen, however, T cells show different degrees of functional sensi-
tivity toward TCR stimulation. Scanning of MHC/self-peptide complexes by naive T cells in
the absence of infection is not without consequences but it increases their subsequent
response toward antigenic challenge. This indicates that TCR sensitivity in naive T cells is
tuned depending on the MHC/self-peptide signals they integrate from the environment
even before T cells encounter cognate antigen. DCs have emerged as key components
in providing MHC/self-peptide complexes and increasing the sensitivity of T cells toward
subsequent TCR triggering. In the absence of cognate antigen, DCs maintain a tonic TCR
signaling and license T cells for immune synapse (IS) maturation resulting in enhanced
T cell responses toward a subsequent antigen stimulation. This review discusses recent
findings on this subject and highlights the importance of the DC pool size for optimalT cell
awareness to foreign antigen.
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INTRODUCTION
Bone marrow (BM)-derived T cell precursors seed the thymus,
where they differentiate into mature T cells. During this process,
those T cells bearing appropriate α/β T cell receptors (TCR) are
positively selected in order to ensure MHC restriction. In addition,
those harmful T cells recognizing MHC/self-peptide complexes
(referred to as self-MHC hereafter) with high affinity are mostly
purged from the repertoire by negative selection. This process of
T cell selection in the thymus warrants that peripheral T cells
are MHC restricted, so they are able to recognize infected cells,
but react only weakly to self-MHC and thus autoimmunity is
minimized (Klein et al., 2009).

Once naive T cells exit the thymus, they recirculate between sec-
ondary lymphoid organs via blood or lymph. Upon encounter of
cognate antigen presented by MHC on dendritic cells (DCs), T cells
are primed and differentiate into potent effector cells with the abil-
ity to leave the systemic circulation and infiltrate inflamed sites.
After the threat is resolved, memory CD4 and CD8 T cells remain
patrolling the body and act as sentinels for fast responses against
secondary infections. Different memory T cell populations have
been described, some of them recirculating between lymphoid
organs and others being present at peripheral tissues where the ini-
tial infection took place (Sallusto et al., 2004; Harty and Badovinac,
2008; Wakim and Bevan, 2010; Jiang et al., 2012). Therefore, naive,
effector, and memory T cells all encounter antigen-presenting cells
(APCs) such as DCs in different environments, i.e., lymphoid and
non-lymphoid organs.

Dendritic cells are BM-derived APCs that are crucial for initiat-
ing T cell responses (Steinman and Cohn, 1974; Jung et al., 2002).

One of their hallmarks is to excel in antigen presentation on MHC-
I and -II to CD8 and CD4 T cells, respectively (signal 1), provide
costimulatory signals (signal 2), and promote the differentiation
of naive T cells into specialized effector cells via the provision of
key cytokines (signal 3; Sporri and Reis e Sousa, 2005; Heath and
Carbone, 2009; Joffre et al., 2009; Segura and Villadangos, 2009;
Kurts et al., 2010). It is commonly accepted that the capacity of
DCs to provide signals 1, 2, and 3 simultaneously makes them
specially suited to promote priming of naive T cells. In addition,
DCs are located in the T cell areas of lymphoid organs, or easily
migrate into them upon activation, forming an extensive network
of dendrites thus providing a topographical context in which DCs
and T cells interact (Lindquist et al., 2004). This may be an impor-
tant differential feature of DCs, since other professional APCs such
as B cells also express high levels of costimulatory molecules and
produce a variety of T cell growth factors, but are not located in
the T cell area under normal conditions.

During the steady state, T cells frequently contact DCs in
secondary lymphoid organs. There are at least two important
consequences of these frequent contacts: (1) they increase the
likelihood for encounters between extremely low frequencies of
antigen-specific naive T cells and the few DCs presenting the
respective cognate antigen; (2) self-MHC recognition on DCs in
the absence of cognate antigen induces a basal, tonic TCR sig-
naling that augments the antigen sensitivity of T cells (Box 1).
This review focuses on recent developments by which self-MHC
recognition on DCs prior to an encounter with foreign antigen
induces tonic TCR signaling thereby increases the awareness of T
cells for subsequent encounters with their cognate antigen. Finally,
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BOX 1 | Summary of self-MHC recognition, tonicTCR signaling

and antigen sensitivity.

Antigen sensitivity is the capacity ofT cells to respond toTCR stim-
ulation via cognate MHC/antigen recognition to become activated
and undergo proliferation. The higher the sensitivity, the lower the
amount of MHC/antigen recognition required to trigger full T cell
activation.T cells can undergo different states of antigen sensitivity
depending on the cues they integrate from the environment. A key
cue is the recognition of MHC/self-peptide complexes (referred to
as self-MHC), which induces a basal level of TCR activation result-
ing in increased sensitivity toward cognate antigen (Stefanova et al.,
2003; Hochweller et al., 2010).This basal activation of theTCR com-
plex is also referred to as tonic TCR signaling and is exemplified
by low levels of CD3ξ phosphorylation. Thus, self-MHC recognition
increases the awareness ofT cells and licenses them to respond to
lower amounts of cognate antigen.

When does self-MHC recognition increase the antigen sensitivity
ofT cells?There are two stages during which self-MHC recognition
increases the T cell antigen sensitivity: prior to and concomitant to
recognition of foreign antigen:

Self-MHC recognition in the absence of cognate antigen. DCs
and T cells continuously interact in secondary lymphoid organs.
Self-MHC recognition by T cells results in tonic TCR signaling and
increased T cell responsiveness toward a subsequent encounter
with cognate antigen. The nature of the self-peptide(s) is presently
unknown.

Concomitant recognition of self- and foreign-antigen bound to
MHC. The sole recognition of MHC/foreign-peptide complexes
is inefficient to trigger naive T cell activation. Co-recognition of
self-MHC complexes dramatically increases T cell responsiveness
(Krogsgaard et al., 2005). The same self-MHC complexes that drive
positive selection in the thymus have been shown to increase
the antigen sensitivity during concomitant recognition of foreign
antigen (Ebert et al., 2009; Lo et al., 2009).

we discuss some key questions in this field that remain to be
answered.

T CELLS FREQUENTLY CONTACT DCs IN SECONDARY
LYMPHOID ORGANS IN THE STEADY STATE
The frequent contacts between T cells and DCs provide a struc-
tural basis for the uniqueness of DCs in T cell priming. Elegant in
vivo two-photon microscopy experiments have provided impor-
tant insights into the kinetics of T cell priming (for reviews, see
Bousso and Robey, 2003; von Andrian and Mempel, 2003; Caha-
lan and Parker, 2005; Cahalan and Gutman, 2006; Germain et al.,
2008; Kastenmuller et al., 2010).

In the absence of cognate antigen, T cells and DCs move along
networks of reticular fibroblasts (Bajenoff et al., 2006), with T cell
motility appearing to be otherwise random (Miller et al., 2002,
2004a; Textor et al., 2011). The average speed of naive CD4 and
CD8 T cells in the absence of antigen has been reported to vary
between about 6 μm/min (Skokos et al., 2007) and 18 μm/min
(Textor et al., 2011), with most reports showing an average speed
of about 10 μm/min (Miller et al., 2002, 2004a; Bousso and Robey,
2003; Hugues et al., 2004; Mempel et al., 2004; Shakhar et al.,
2005). These variations may likely be due to differences in the T
cell clonality, technical issues, as well as the depth of imaging in the
lymph node (LN) which has been shown to significantly impact T

cell speed (Worbs et al., 2007). In the absence of cognate antigen,
it has been estimated that the mean transit time in LNs is about
10 h for CD4 T cells and about 20 h for CD8 T cells, with con-
siderable variation depending on the particular LN. Of this time,
about one-third is spent interacting with MHC molecules on DCs
(Mandl et al., 2012), with the majority of the contacts between T
cells and DCs lasting between 3 and 5 min (Miller et al., 2004a,b;
Mandl et al., 2012). These interactions are highly dynamic, as CD4
T cells undergo 160–200 contacts with DCs during their transit
time in the LNs, whereas CD8 T cells undergo about 300 contacts
(Mandl et al., 2012). On the other side, each DC is contacted by
about 500 CD8 T cells (Bousso and Robey, 2003) or 5000 CD4
T cells (Miller et al., 2004a) per hour. Thus, T cells frequently
scan the surface of DCs during their transit through secondary
lymphoid organs in the absence of foreign antigen. It is generally
accepted that these frequent contacts serve as a “finding needle
in the haystack” function: otherwise impossible interactions can
proceed between extremely rare antigen-specific T cells and DCs
presenting that particular antigen. Regarding the kinetics of T
cell priming, different laboratories using intravital two-photon
microscopy have reached similar conclusions: following recogni-
tion of cognate antigen on DCs, T cells undergo activation in three
distinct and sequential phases (Hugues et al., 2004; Mempel et al.,
2004; Miller et al., 2004a,b). Within 8 h of access to the T cell zone,
T cells slow down their mean speed to about 4 μm/min in average
engaging serial encounters with DCs bearing cognate antigen. By
sampling the antigen dose during this initial phase, T cells become
activated and make the decision of whether they enter the next
phase of T cell activation (Henrickson et al., 2008). This phase is
characterized by taking place over a longer period of time (about
12 h) in which an arrest of T cell mobility is observed with pro-
longed interactions with DCs, which may last longer than 1 h.
Consequently, T cell speed is halved during this phase. Coincid-
ing with T cell proliferation, T cells disengage from these stable
contacts with DCs and enter the final phase of T cell activation by
resuming their motile behavior serially interacting with different
DCs. Integration of signals derived from serial encounters with
DCs bearing cognate antigen has been shown to increase the effec-
tor function of T cells (Celli et al., 2005). Following activation of
CD4 T cells, naive CD8 T cells undergo directional rather than
random migration toward DC–CD4 T cell conjugates via a CCL3
and CCL4 gradient, thereby increasing the likelihood of receiv-
ing help to increase their cytolytic and recall responses (Castellino
et al., 2006). A similar process has been observed during alterna-
tive cross-priming whereby activated NKT cells attract naive CD8
T cells to the relevant DCs via CCL17 (Semmling et al., 2010). In
summary, T cells frequently sample the surface of DCs in a highly
dynamic fashion during their transit through secondary LNs in
the absence of cognate antigen. Upon encounter with cognate
antigen, T cells change their kinetic behavior and undergo intense
interactions with antigen-bearing DCs.

Besides increasing the likelihood for T cells finding the DC
presenting the respective cognate antigen, the frequent interac-
tions between DCs and T cells in the steady state (absence of
cognate antigen) have in addition two other major consequences:
(1) recognition of self-antigen on DCs outside the thymus results
in peripheral tolerance, i.e., deletion of self-reactive T cells thereby
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minimizing autoimmunity (Kurts et al., 1997, 2001; Probst et al.,
2003), and (2) recognition of self-MHC on DCs induces a tonic
TCR signaling that promotes the sensitivity of T cells toward their
cognate antigen (Stefanova et al., 2002; Hochweller et al., 2010).
These two major functions of steady-state DCs seem at first con-
tradictory. We have proposed that the affinity of TCR/self-MHC
recognition dictates the final T cell outcome: high-affinity inter-
actions lead to T cell deletion, whereas those of weaker affinity
promote T cell antigen sensitivity (Garbi et al., 2010).

DENDRITIC CELLS ARE REQUIRED TO MAINTAIN THE
ANTIGEN SENSITIVITY OF NAIVE T CELLS
By analyzing CD5 expression as a surrogate marker of TCR trig-
gering, it has recently been shown that most of the tonic TCR
signaling of naive T cells occurs in the secondary lymphoid organs
(Mandl et al., 2012). Most contacts between T cells and DCs in
the LN take place for about 5 min. For CD4 T cells, these con-
tacts are highly dependent on MHC-II expression by the DC,
because absence of MHC-II results in shorter interactions of about
2 min (Mandl et al., 2012). Pioneering work in Germain’s labora-
tory showed that self-MHC recognition by T cells in the absence
of cognate antigen resulted in basal activation of the TCR com-
plex and increased antigen sensitivity of T cells toward subsequent
encounters with their cognate antigen (Stefanova et al., 2002). The
requirement of DCs for tonic TCR signaling and maintenance
of the antigen sensitivity in T cells was described in transgenic
CD11c.DOG mice, in which DCs express the human diphtheria
toxin receptor (DTR) and thus can be depleted by single or repet-
itive administrations of diphtheria toxin (DT; Hochweller et al.,
2008). In these mice, naive CD4 and CD8 T cells isolated after
DT application show a marked hypoproliferative response against
a variety of antigens presented by professional APCs, including
cognate peptide, superantigen (Hochweller et al., 2010), and anti-
TCRβ antibody (Figure 1A). These results indicate that DC–T cell

interactions in the steady state in the absence of cognate antigen are
required to maintain the sensitivity of naive T cells for their cog-
nate antigen. Similar results have been obtained in other transgenic
mouse strains such as CD11c.DTR (Hochweller et al., 2010), and
the recently described CD11c.LuciDTR (Figure 1B) that expresses
luciferase and DTR under the CD11c promoter (Tittel et al., 2012).
The proliferative response to anti-CD3ε antibody is, however, not
compromised in T cells from DC-depleted mice (Birnberg et al.,
2008; Figure 1C). Although at present we cannot explain why
T cells from DC-depleted mice are able to respond normally to
anti-CD3ε stimulation, but not to activation with MHC/antigen
or anti-TCRβ antibody, differences in the binding affinities or
in the ability of anti-TCRβ and anti-CD3ε antibodies to cross-
link different TCR complexes may contribute to explain this
paradox.

Tuning of the T cell antigen sensitivity is a dynamic process
that depends on fast interactions with DCs. Antigen sensitivity
is lost very quickly after disruption of cell–cell contacts (within
15 min; Stefanova et al., 2002), and it is regained also very
promptly, within 30 min of reintroduced DC–T cell contacts
(Hochweller et al., 2010). The loss of antigen sensitivity is not
associated to decreased viability of T cells following DC deple-
tion. Both the frequency and the numbers of viable T cells
is not altered in DC-depleted mice (Hochweller et al., 2010),
which is consistent with findings that mice constitutively lacking
DCs do not present reduced T cell counts (Birnberg et al., 2008;
Ohnmacht et al., 2009).

Studies using DC depletion have demonstrated that DCs are
required to maintain the sensitivity of T cells for subsequent chal-
lenges with their cognate antigen. Both splenic CD8+ and CD8−
DCs are equally suited for tuning the T cell’s antigen sensitivity
(Hochweller et al., 2010). B cells are also able to maintain T cell
responsiveness in vitro, although due to anatomical restrictions in
vivo, naive T cells will only seldomly interact with B cells at the

FIGURE 1 | CD4T cell proliferation in mice lacking DCs. 5 × 104

MACS-purified CD4 T cells from the indicated mouse strain were activated for
4 days with the specified concentration of plate-bound anti-TCRβ (clone
H57-597) or anti-CD3ε (145.2C11) antibodies. Proliferation was quantified
either by the number of T cells per well at the end of the experiment (A), or

by incorporation of 3[H]-thymidine for the last 9 h of the experiment (B,C).
Results are expressed as mean ± SEM (n = 3 mice). Shown is one
representative of three experiments. Similar results were obtained with BL6
mice treated with DT or with the respective transgenic mice treated
with PBS.
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borders between the T and B cell zones. However, not all APCs can
do it; macrophages are not able to promote T cell antigen sensitiv-
ity (Hochweller et al., 2010), and whether this is due to differences
in the expression level of self-MHC or other molecules is still an
open question. A central question was how many DCs are required
to maintain the T cell sensitivity? Using mixed BM chimeras in
which a graded percentage of DCs expressed DTR, we showed that
depletion of only half of the DC compartment already resulted
in partial loss of antigen sensitivity. The activation status of the
remaining DCs was not altered regarding expression of MHC-
I and -II, and costimulatory molecules (N. Garbi, unpublished
data), suggesting that the level of DC activation does not play a
key role in the maintenance of T cell antigen sensitivity. Thus,
minor alterations in the size of the DC compartment seem to have
an impact on the T cell responsiveness. This is particularly impor-
tant in view of the rapid turnover of DCs in the lymphoid organs
of mice. Depending on the methodology used, the half-life of
cDCs in the spleen has been estimated to be between about 2 days
(Kamath et al., 2002) and 7 days (Liu et al., 2007), the whole splenic
DC compartment is replaced about 150 or 45 times, respectively,
during the lifespan of a laboratory mouse.

DEPENDENCE ON SELF-MHC RECOGNITION AND
COSTIMULATORY MOLECULES
Seminal work by the group of Germain, demonstrated that recog-
nition of self-MHC class II by CD4 T cells promoted the sensitivity
of naive CD4 T cells against a subsequent challenge with cognate
antigen (Stefanova et al., 2002, 2003). This work demonstrated
that in the steady state, the TCR is actively integrating cues from
self-MHC recognition leading to a basal activation of proximal
TCR signaling events, specifically CD3z phosphorylation (Ste-
fanova et al., 2002). A subsequent study showed that self-MHC-II
recognition was required to promote CD4 T cell antigen sensi-
tivity also in vivo (Fischer et al., 2007). DCs were later identified
as the cells providing self-MHC recognition to CD4 and CD8 T
cells resulting in increased T cell antigen sensitivity toward sub-
sequent challenges (Garbi et al., 2010; Hochweller et al., 2010).
Therefore, the requirement of DCs to maintain T cell antigen sen-
sitivity is molecularly based on recognition of self-MHC. Indeed,
interaction of DCs and T cells resulted in a specific increase in
the basal phosphorylation of ZAP70-associated CD3ξ, although
the total levels of ZAP70 and CD3ξ were not altered (Hochweller
et al., 2010). Thus, self-MHC recognition on DCs induces tonic
TCR signaling that is critical to maintain antigen sensitivity. It
is presently unclear whether more upstream events in TCR sig-
naling are also affected by lack of DC–T cell interaction, for
instance recruitment of the NCK adaptors into the TCR com-
plex, which is known to modulate the TCR antigen sensitivity
(Roy et al., 2010).

The loss in antigen sensitivity is not accompanied by changes
in the expression of molecules known to modulate TCR signal-
ing such as TCRβ, CD3ε, CD3ξ, CD4, and CD8α (Hochweller
et al., 2010), or in global gene expression (Hochweller and Garbi,
unpublished data), suggesting specific defects in signaling events
rather than in expression patterns. This is supported by the rapid
loss of antigen sensitivity after disruption of DC–T cell con-
tacts (∼15 min; Hochweller et al., 2010) and rapid reconstitution

upon contact reintroduction (∼30 min; Stefanova et al., 2002).
In addition, T cells from DC-depleted mice proliferate nor-
mally in response to TCR-independent stimuli such as ConA or
PMA/ionomycin stimulation, indicating that they do not have a
global defect in cell cycle entry.

The requirement for self-MHC recognition on DCs to promote
T cell responsiveness toward a subsequent antigenic challenge
is reminiscent of recent data showing that self-MHC-II recog-
nition at the time of foreign antigen recognition also increases
the response of CD4 T cells to their cognate antigen (Ebert et al.,
2009; Lo et al., 2009) in what has been defined as the pseudodimer
model (Krogsgaard et al., 2005, 2007). The nature of the MHC class
I/peptide complex required to maintain CD8 T cell antigen sensi-
tivity is less clear. Our results show that CD8 T cells require prior
self-MHC recognition on DCs to maximally respond to a sub-
sequent antigenic challenge (Hochweller et al., 2010). In analogy
to the pseudodimer model for CD4 T cell activation, simultane-
ous recognition of MHC class I molecules loaded with foreign
stimulating peptide and with endogenous non-stimulating pep-
tides strongly increases the sensitivity to the former (Purbhoo
et al., 2004; Cebecauer et al., 2005; Yachi et al., 2005, 2007; Ani-
keeva et al., 2006). However, as opposed to CD4 T cells, all tested
MHC class I-binding peptides served as coagonists (Yachi et al.,
2005, 2007), suggesting that it is the interaction between CD8
coreceptor and MHC class I/endogenous peptide what is required
to amplify responses against cognate antigens and not the spe-
cific TCR-MHC/self peptide recognition observed for CD4 T cells
(Gascoigne, 2008). This hypothesis is supported by the finding that
the CD8 coreceptor, but not CD4 is required to increase sensitivity
of T cells at high density of peptide ligands (Purbhoo et al., 2004).
However, as for the maintenance of CD4 T cell antigen sensitivity,
it remains unknown whether specific MHC class I/endogenous
peptide complexes need to be recognized prior to foreign antigen
challenge for maximal responses.

Altered peptide ligands (APLs) bound to MHC have been
shown to partially activate the TCR complex (Evavold et al.,
1993). However, the outcome of these partial TCR activation
dramatically differs from the tonic TCR signaling induced by self-
MHC recognition discussed in this review. APLs often result in
(1) partial T cell activation leading to functional T cell anergy
in response to subsequent encounter with cognate antigen, or
(2) TCR antagonism when recognized simultaneously with cog-
nate antigen (Sloan-Lancaster and Allen, 1996). Although some
endogenous self-peptides have been shown to function as APL for
a given TCR clone (Evavold et al., 1995), self-MHC ligands induc-
ing tonic signaling do not induce T cell activation (as defined by
the “quiescent” state of naive T cells in vivo) but increase their
sensitivity toward subsequent encounters with cognate antigens.
Although presently unknown, the biochemical basis for the differ-
ence between self-ligands inducing T cell anergy (APLs) and those
inducing productive tonic TCR signaling may reside in the affinity
for the TCR.

Thus, self-MHC recognition tunes T cell responsiveness toward
foreign antigen in two different contexts: first, exclusive self-MHC
recognition in the absence of foreign antigen results in tonic TCR
signaling and enhanced T cell responsiveness to a subsequent chal-
lenge with cognate antigen; second, as defined in the pseudodimer
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model, concomitant recognition of MHC molecules loaded
with self- and foreign- peptides leads to increased sensitivity to
the later.

Interestingly, it is the same ligands driving positive selec-
tion in the thymus that increase the CD4 T cell responsiveness
toward cognate antigen when recognized simultaneously in the
periphery (Ebert et al., 2009; Lo et al., 2009). We proposed that
a similar mechanism is in place to promote responsiveness to
subsequent antigenic challenge, i.e., it is the recognition in the
periphery of the ligands inducing positive selection in the thy-
mus that results in tonic TCR signaling and increased T cell
antigen sensitivity (Garbi et al., 2010). Although this hypothe-
sis is not formally proven yet, Stefanova et al. (2002) demon-
strated that recognition of the same MHC class II restriction
element that drives positive selection of AND TCR transgenic
CD4 T cells is required to maintain their antigen responsive-
ness in the periphery. Whether this finding can be generalized
to other TCR specificities is still an open issue, but strongly
suggests that the selecting MHC class II haplotype is required
and that the mere interaction between MHC-II and the CD4
coreceptor is not sufficient to maintain antigen sensitivity (Ste-
fanova et al., 2002).

Presently, it is still unclear whether other molecular cues
between DCs and T cells participate in promoting antigen sen-
sitivity in addition to self-MHC recognition. MHC-deficient DCs
are able to partially maintain T cell responsiveness, albeit to
a much lower degree than their MHC-sufficient counterparts
(Hochweller et al., 2010). DCs express large amounts of costim-
ulatory molecules such as CD80 and CD86 in the steady state.
Because activation of their receptor CD28 synergizes TCR engage-
ment of cognate antigen to bolster T cell proliferation, it is
tempting to speculate that CD28 ligation may also synergize with
self-MHC recognition to promote tonic TCR signaling. In addi-
tion, other mechanisms may also be involved. In this context,
non-MHC-dependent contact of T cells to DCs induces a tran-
sient semi-activation of the former resulting in enhanced T cell
responses to subsequent cognate antigen in a process known as
“adhesion-induced T cell priming” (Revy et al., 2001). However,
this phenomenon is not specific to interaction with DCs because
adhesion to other cell types, immobilized ligands or even glass had
a similar effect (Randriamampita et al., 2003).

ARE DENDRITIC CELLS REQUIRED TO MAINTAIN THE
ANTIGEN SENSITIVITY OF OTHER T CELL POPULATIONS:
EFFECTOR, MEMORY, AND REGULATORY T CELLS?
Presently it is unknown whether effector or memory T cells in
the steady state are dependent on DC-induced tonic TCR sig-
naling to increase their sensitivity against a subsequent challenge
with cognate antigen. During infection, memory CD8 T cells
interact with DCs in lymphoid and non-lymphoid sites result-
ing in antigen-specific reactivation (Belz et al., 2007; Wakim et al.,
2008). However, further experiments are needed to determine
whether effector/memory T cells also depend on constant self-
MHC recognition on DCs in the absence of infection to increase
their sensitivity against a subsequent antigen encounter.

In the different context of simultaneous recognition of self-
and cognate-antigen, effector T cells seem to be less dependent

on self-MHC recognition than their naive counterparts for
antigen-specific responses (Yachi et al., 2007). Based on those
findings, we hypothesize that effector/memory T cells are also
less dependent on recognition of self-MHC in the steady state to
increase their sensitivity to further cognate antigenic challenge.

There is some correlative evidence that DCs regulate the size of
the Treg compartment in a positive manner. In mice depleted for
DCs or lacking DCs constitutively, a reduced frequency of Tregs
by a factor of approximately 2–3 has been reported in the spleen,
LNs, and/or blood (Darrasse-Jeze et al., 2009; Bar-On et al., 2011).
However, in other reports, no differences or very small differences
in the number of Tregs in the spleen and/or LNs were reported in
mice constitutively lacking DCs (Birnberg et al., 2008; Ohnmacht
et al., 2009). In addition, DC depletion did not result in decreased
suppressive function of splenic Treg cells (Birnberg et al., 2008).
Following depletion of DCs for 2 days in CD11c.DOG, we did
not observe any alteration in the number of Treg cells, suppressive
capacity or phenotype in the spleen (Figure 2 and unpublished
data). Our results and those by Birnberg et al. suggest that DCs
are not required to maintain the suppressive capacity of Tregs.
Therefore, further studies are required to investigate the apparently
contradictory results on the role of DCs in the maintenance of Treg
homeostasis.

DENDRITIC CELLS LICENSE T CELLS FOR IMMUNE
SYNAPSE FORMATION
Following TCR signaling in response to recognition of foreign
antigen, T cell surface molecules and scaffolding protein are
redistributed and enriched in the contact zone between T cells
and APCs, resulting in the generation and maturation of the
IS. The IS is characterized by a central enrichment of TCR and
CD3 molecules termed central supramolecular activation clus-
ter (cSMAC) that is surrounded by a further cluster formed
by LFA-1, also called peripheral SMAC (Grakoui et al., 1999).
Initial TCR triggering results in the so-called inside-out sig-
naling leading to activation of LFA-1 (Kinashi, 2005). In turn,
activated LFA-1 binds to ICAM-1 molecules on the APC pro-
moting firm T cell-APC adhesion (Lim et al., 2011) and further
TCR/CD3 signaling events (Davis and Dustin, 2004; Fooksman
et al., 2010).

Naive CD4 T cells isolated from DC-depleted mice fail at devel-
oping a mature IS following recognition of their cognate antigen
(Hochweller et al., 2010), indicating that the tonic TCR signaling
resulting from self-MHC recognition is also required for licens-
ing T cells for IS maturation. The key question here is whether
an impaired IS maturation is the consequence or the reason for
defective TCR signaling and T cell proliferation. In other words,
do hyporesponsive T cells fail to mount a mature synapse due
to defective inside-out signaling resulting in impaired TCR signal
transduction and proliferation?, or is the TCR signaling cascade
itself defective and, consequently, there is lack of LFA-1 activation
and IS formation? These questions remain to be elucidated yet.

MODEL OF LOCATION-DEPENDENT T CELL ANTIGEN
SENSITIVITY
As discussed earlier, the antigen sensitivity of naive T cells is
continuously fine-tuned depending on whether or not T cells
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FIGURE 2 |Treg numbers and function from mice lacking DCs. (A)

Absolute numbers of Treg cells in the spleen of mice with (DC+) or without
(DC−) DCs 2 days after DT administration. Tregs were identified as live
CD4+ FoxP3+ lymphocytes by flow cytometry. (B) Frequency of Tregs in
skin-draining lymph nodes of mice with (DC+) or without (DC−) DCs two
days after DT administration. (C) Standard in vitro assay for suppressive
capacity of Treg cells isolated from the spleen of mice with (DC+; gray bars)
or without (DC−; white bars) DCs 2 days after DT administration. Live
CD4+CD25high Tregs were pooled from three mice and sorted using flow
cytometry. Live CD4+CD25− responder T cells were sorted using flow
cytometry from the spleen of untreated BL6 mice. Responder T cells were
stimulated in the presence of irradiated APCs, anti-CD3ε antibody (clone
145.2C11, 2 μg/ml) and titrated amounts of Treg cells for 4 days.
Proliferation of responder cells was assayed by 3[H]-thymidine for the last
9 h of the experiment. Results are expressed as mean ± SEM. For (A,B),
n = 3 mice; For (C), n = 3 wells. Shown is one representative of three
experiments.

interact with DCs. Self-MHC recognition on DCs results in a
rapid increase in the sensitivity of the TCR for a subsequent anti-
genic challenge, whereas lack of self-MHC recognition leads to a
rapid loss of sensitivity (Stefanova et al., 2002; Hochweller et al.,
2010). Both of these processes take place within minutes follow-
ing initiation or disruption of DC–T cell interaction, thus the
loss of T cell responsiveness to cognate antigen caused by reduced
interactions is quickly reverted after reintroduction of DC–T cell
contacts. Naive T cells continuously recirculate between lymphoid
organs and the systemic circulation where they spend only about
30 min (Pabst, 1988). In the blood, where self-MHC recognition
on DCs is very unlikely, CD4 T cells show reduced tonic TCR

signaling and responsiveness to TCR stimulation (Stefanova et al.,
2002). Consequently, it has been shown recently that most of
the tonic TCR signaling in the steady state takes place within the
secondary lymphoid organs (Mandl et al., 2012). It is therefore
crucial that naive T cells recover quickly their TCR responsive-
ness upon re-entering lymphoid organs and interacting with DCs
to ensure optimal responses against foreign antigens. Indeed,
the state of T cell hyporesponsiveness is completely reverted
30 min after reintroducing DC–T cell interaction (Hochweller
et al., 2010).

Thus, T cells appear to go through several rounds of normal
and hyporesponsive states toward cognate antigen depending on
their location at a given time: they are fully responsive in the lym-
phoid organs, where they can be primed against invading antigens,
whereas they remain hyporesponsive in the blood where priming
is not supported mainly due to anatomical restrictions. Presently,
it is difficult to understand the physiological relevance of intermit-
tently loosing TCR antigen sensitivity each time that T cells enter
the systemic circulation. It may serve as a transient“metabolic rest”
facilitating T cells to increase their tonic TCR signaling and antigen
sensitivity upon re-entering lymphoid organs, where they have to
be fully aware of minute amounts of foreign antigen displayed by
DCs at the initial stages of an infection.

In addition, self-MHC recognition during the steady state also
affects other responses mediated by T cells. Recently, Hünig’s
group has shown that the proliferative response of human T cells
to the superagonist CD28 TGN1412 antibody is also dependent on
tonic TCR signaling maintained by MHC scanning (Romer et al.,
2011; Hunig, 2012). Similarly, it has been shown that naive CD8
T cells require self-MHC recognition in order to become prolifer-
ative in response to IL-2 and IL-15 (Cho et al., 2010). Therefore,
self-MHC recognition induces tonic TCR signaling that is required
not only for increasing TCR sensitivity to cognate antigen, but
also for optimizing responses against other TCR-independent
stimuli.

INHIBITING DENDRITIC CELL APOPTOSIS LEADS TO AN
INCREASE IN DENDRITIC CELL FREQUENCY AND T CELL
HYPERACTIVATION
Self-MHC recognition on DCs results in enhanced T cell anti-
gen sensitivity and optimal proliferation in response to cognate
antigen. As discussed here, a decrease in DC numbers results in
hyporesponsive T cells that fail to proliferate to a normal level.
Just a twofold decrease in the numbers of DCs already results
in partially reduced T cell proliferation (Hochweller et al., 2010).
Interestingly, the opposite also seems to apply: an increase of about
threefold in the frequency of DCs results in T cell hyperactiva-
tion and autoimmunity (Chen et al., 2006). Enforced expression of
the baculoviral antiapoptotic p35 protein by DCs, resulted in DC
accumulation and chronic T cell hyperactivation leading to mul-
tiorgan infiltration and production of autoantibodies (Chen et al.,
2006). MHC-II and CD40 expression, hallmarks of DC activation,
were unaltered in that study, suggesting that T cell hyperactiva-
tion was a result of increased DC frequency rather than activation
due to increased half-life. Thus, DC homeostasis in the absence
of foreign cognate T cell antigen is critical to ensure optimal
T cell responses to subsequent challenges with cognate antigen:
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whereas too few DCs result in reduced antigen sensitivity of T
cells, a sustained increase in the number of DCs apparently leads
to T cell hyperactivation and autoimmunity. These findings are
summarized in Figure 3 and highlight the importance in main-
taining the correct size of the DC pool to promote healthy T cell
responses.

CONCLUSIONS AND OPEN QUESTIONS
There is mounting evidence that self-MHC recognition in the
periphery is critical for several processes including: (i) mainte-
nance of tonic TCR signaling and T cell antigen sensitivity, which
are critical for optimal responses to subsequent challenge with
cognate antigen; (ii) synergism at the time of cognate antigen
recognition leading to increased T cell responses; (iii) increased
TCR-independent T cell proliferative responses to various stimuli
such as superagonist CD28 TGN1412, IL-2, and IL-15. The for-
mer two are mediated by self-MHC recognition on DCs, whereas
the role of DCs in providing self-MHC for the TCR-independent
responses is not clear yet.

Despite these advances several open questions are remain-
ing. Amongst these, the following are central to under-
stand the molecular mechanisms of DC-induced tonic TCR
signaling:

(1) Characterization of the signaling events induced by self-MHC
recognition on DCs resulting in increased T cell antigen

sensitivity. It is clear that self-MHC recognition induces tonic
TCR signaling by partial CD3ξ phosphorylation. The finding
that the maturation of the IS is compromised in DC-less T cells,
opens the possibility that beyond tonic TCR signaling, integrin
(such as LFA-1) activation is impaired following stimulation
with cognate antigen, leading to deficient IS maturation and
thus reduced T cell proliferative responses.

(2) Are there other molecular events in DC–T cell interactions
that contribute to maintenance of the T cell antigen sensi-
tivity? Hypothetically, costimulatory molecules such as CD80
and CD86 may participate in the tonic T cell signaling by
partially activating CD28 in the absence of cognate antigen.
Costimulation plays a key role in enhancing the prolifera-
tive response to TCR stimulation. Whether this also applies
to basal TCR signaling promoted by self-MHC recognition is
unclear.

(3) What is the nature of the self-MHC ligands required to induce
tonic TCR signaling? We have previously proposed that these
are the same ligands that induce positive selection in the
thymus, but it needs to be demonstrated.

(4) Do memory T cells require tonic TCR signaling for
enhanced responses to antigenic rechallenge? Different sub-
types of memory T cells reside in lymphoid and extra-
lymphoid compartments. DCs have been shown to inter-
act with memory T cells and to be required for maximal T cell

FIGURE 3 | Model illustrating the role of dendritic cell frequency on

promoting healthyT cell responses. Under normal DC homeostasis (A),
naive T cells recognize self-MHC on DCs resulting in tonic TCR cell signaling
and increased antigen sensitivity. As a result, subsequent foreign antigen
challenge leads to optimal T cell activation and proliferation. However, upon
conditions of reduced self-MHC recognition on DCs such as DC depletion (B),

T cells undergo reduced tonic TCR signaling and decreased antigen
sensitivity. These T cells become hyporesponsive and are not able to
undergo strong proliferation in response to antigenic challenge. On the
other hand, an increase in the number of DCs (C) apparently results in T cell
hyperactivation, possibly due to increased self-MHC recognition, and
autoimmunity.
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restimulation following antigenic rechallenge both in lym-
phoid organs and in extralymphoid organs (Zammit et al.,
2005; Wakim et al., 2008). However, it remains open whether
or not memory T cells also require tonic T cell signaling for
increased antigen sensitivity.
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