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Summary
Emerging and reemerging infectious diseases have a strong negative impact on public health.

However, because many of these pathogens must be handled in biosafety level, 3 or 4 contain-

ment laboratories, research and development of antivirals or vaccines against these diseases

are often impeded. Alternative approaches to address this issue have been vigorously pursued,

particularly the use of pseudoviruses in place of wild‐type viruses. As pseudoviruses have been

deprived of certain gene sequences of the virulent virus, they can be handled in biosafety level

2 laboratories. Importantly, the envelopes of these viral particles may have similar conformational

structures to those of the wild‐type viruses, making it feasible to conduct mechanistic investiga-

tion on viral entry and to evaluate potential neutralizing antibodies. However, a variety of

challenging issues remain, including the production of a sufficient pseudovirus yield and the

inability to produce an appropriate pseudotype of certain viruses. This review discusses current

progress in the development of pseudoviruses and dissects the factors that contribute to low viral

yields.
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1 | INTRODUCTION

A pseudovirus is a recombinant viral particle with its core/backbone

and envelope proteins derived from different viruses1; moreover, the

genes inside the pseudovirus are usually altered or modified so that

they are unable to produce the surface protein on their own. As such,

an additional plasmid or stable cell line expressing the surface proteins

is needed to make the pseudovirus.2

Pseudoviruses are capable of infecting susceptible cells, but they

only replicate for 1 round in the infected host cells.3 Compared with

wild‐type (WT) viruses, pseudoviruses can be safely handled in bio-

safety level (BSL)‐2 laboratories4 and are usually easier to manipulate

experimentally.5 Nevertheless, the conformational structure of

pseudoviral surface proteins bears high similarity to that of the native
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viral proteins, and these surface proteins can effectively mediate viral

entry into host cells. Therefore, pseudoviruses are widely used for

the study of cellular tropism,6 receptor recognition,7 and virus inhibi-

tion,8 as well as for developing and evaluating antibodies9 and vac-

cines.10 In addition, data from in vitro pseudovirus‐based antiviral

assays and in vivo biodistribution analyses have been found to corre-

late very well with the results generated by using live WT viruses.11,12

As pseudoviruses have usually been engineered to carry reporter

genes, it is much easier to perform quantitative analyses on these

viruses than on WT viruses,13 and the number of pseudovirus‐infected

cells has been shown to be directly proportional to reporter gene

expression. The reporter genes usually encode either an enzyme or a

fluorescent protein, with each option having its particular strengths

and weaknesses. Specifically, chemiluminescence assays usually have

lower background and are more sensitive, but the data acquisition

and analyses for these assays are time‐consuming and more expensive.

In contrast, assays using a florescence protein, such as green fluores-

cent protein, are cheaper and easier to operate in both in vitro and

in vivo systems; however, they are less sensitive and may have higher

background.14-16 In this review, we provide an update on the develop-

ment and application of pseudoviral systems and discuss some chal-

lenging technical issues.
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2 | CLASSIFICATIONS OF THE PACKAGING
SYSTEMS FOR ENVELOPE‐PSEUDOTYPED
VIRUSES

Several packaging systems to create envelope‐pseudotyped viruses

have been explored for use with emerging viruses, such as Ebola virus

(EBOV), Marburg virus (MARV), and Lassa fever virus (LASV).17,18
2.1 | Lentiviral vector packaging systems

Because of their high efficiency, lentiviral vectors are often the first

choice as packaging systems to make envelope‐pseudotyped viruses.

These vectors are mainly derived from human immunodeficiency virus

(HIV‐1), simian immunodeficiency virus (SIV), or feline immunodefi-

ciency virus (FIV). The vectors retain all of the genetic sequences

needed for viral transcription, packaging, and integration, except for

those encoding the envelope proteins.

2.1.1 | The human immunodeficiency virus packaging
system

The HIV‐1 packaging system is the most widely used pseudovirus

packaging system. To make this packaging system, HIV genes are

selectively cloned into DNA vectors. Specifically, 2 to 4 plasmids are

used as the vectors, a strategy that aims to minimize viral gene recom-

bination and thereby reduce the possibility of reversion to the WT

virus. Table 1 lists the currently used HIV‐1‐based systems.

The original 2‐plasmid system comprises 1 envelope plasmid and 1

HIV‐1 backbone plasmid, ie, pSG3Δenv and pNL4‐3 (the env gene

sequence in pSG3Δenv is destroyed).51 However, this system is not

ideal, as its viral yield is usually very low. Improvements have been

made through the addition of other sequences for better reporter gene

expression. Specifically, our research group inserted the reporting

gene, firefly luciferase (Fluc), into pSG3Δenv between env and nef to

produce pSG3Δenv.Fluc.Δnef. In addition, we also generated

pSG3Δenv.CMVFluc, which carries a functional nef and CMV promoter

to drive the reporter gene.10 By using these optimized backbone and

envelope protein expression plasmids, our group succeeded in produc-

ing several HIV pseudoviruses carrying the envelope proteins of

EBOV, MARV, LASV, Middle East respiratory syndrome‐coronavirus,

rabies virus (RV), chikungunya virus, and nipah virus (NiV). The yields

of pseudoviruses constructed with this optimized system were

improved by 100 to 1000‐folds as compared with those of

pseudoviruses constructed with pNL4‐3.Luc.R‐E.52

The HIV 3‐plasmid system is usually comprised of a packaging

plasmid, a transfer plasmid containing the reporter gene, and an enve-

lope‐expressing plasmid. Specifically, this system is made by splitting

the HIV‐1 backbone into separate packing and transfer plasmids. The

packaging plasmid expresses the gag and pol proteins, while the

transfer plasmid contains the cis‐regulatory elements needed for HIV

reverse transcription, integration, and packaging as well as multiple

cloning sites and a reporter gene under the control of a heterogeneous

promoter.48-50 The envelope‐expressing plasmid is made of a vector

carrying the envelope gene driven by a CMV promoter.

The HIV 4‐plasmid system is based on the 3‐plasmid system, with

the Rev protein being expressed by an additional, separate plasmid.
Specifically, this system comprises 1 packaging plasmid expressing

the gag and pol proteins, a second packaging plasmid encoding Rev,

1 plasmid producing the WT envelope protein, and a transfer plasmid

with cis‐regulatory elements.53

These 3 HIV‐based systems were reported by different groups,

and, as yet, no comparison has been made among the different sys-

tems in safety and efficiency. Our group is able to drastically improve

the viral yield with 2‐plasmid system, while no safety issue of this

HIV pseudoviral systems was observed in animals.52
2.1.2 | The simian immunodeficiency virus packaging
system

As HIV is the causative agent of AIDS, which could raise some safety

concerns, some investigators employed SIV vectors in the develop-

ment of similar 3‐plasmid systems and explored their potential for

use in gene therapy.

The SIV packaging system was constructed based on the viral

genome of SIVmac251. Sandrin et al cotransfected 293 T cells with

the pSIV‐12 packaging vector, pSIV‐T1+ transfer vector, and RD114/

TR expressing envelope protein. The SIV‐based pseudoviruses demon-

strated high transduction efficiency in primary blood lymphocytes and

CD34+ cells derived from either humans or macaques.54 These investi-

gators also used a pR4SA‐green fluorescent protein vector and a pSIV‐

3+ packaging vector to determine the factors that contribute to the

intracellular and cell surface formation of various target viruses and

the yield of pseudoviruses.55 Moore et al used an SIV packaging sys-

tem to construct a pseudotyped severe acute respiratory syndrome

coronavirus (SARS‐CoV) to screen anti‐SARS‐CoV compounds.56 In

theory, the SIV‐based pseudovirus may be safer than its HIV counter-

part as well as resistant to preexisting neutralizing antibodies against

the vesicular stomatitis virus (VSV), murine leukemia virus (MLV), or

gibbon ape leukemia virus; when pseudotyped with the RD114 (feline

endogenous virus) envelope glycoprotein, the SIV‐based pseudovirus

demonstrated augmented transduction efficiency in blood cells from

both humans and primates. These reports indicate that these

pseudoviruses have facilitated preclinical studies in antiviral screening

and gene therapy studies.
2.1.3 | The feline immunodeficiency virus packaging
system

Feline immunodeficiency virus‐based systems have also been found to

be promising methods of pseudovirus production. Medina et al used

the transfer vector pVC‐LacZwP and packaging plasmid

pCFIVΔorf2Δvif of FIV to construct a pseudotyped EBOV. When com-

pared with the EBOV pseudovirus packaged by the HIV system, the

EBOV pseudovirus packaged by the FIV system had a higher titer.

Apparently, the mutation of the GP proteins contributed to higher

pseudoviral titers and better safety of the resulting pseudoviruses.57

By using the FIV packaging system as a backbone, other investigators

have developed various pseudotyped viruses for SARS‐CoV, VSV,

RV, and Ross River virus. These viral particles have been found to be

valuable in studying viral receptor recognition, gene transduction,

and therapy.58,59
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2.2 | The vesicular stomatitis virus packaging system

The VSV packaging system is a versatile tool for making pseudotyped

viruses; this system is advantageous in that it has no stringent selectiv-

ity for the envelope proteins, and the resulting virus may be manipu-

lated in a BSL‐2 laboratory. Early studies jointly employed VSV and a

second virus to coinfect cells, resulting in the pseudotyped virus carry-

ing the core of VSV with envelope proteins derived from the other

virus.60 Stillman et al were the first to clone the VSV genome into a

plasmid to make stable VSV,61 which was subsequently used to gener-

ate pseudoviruses carrying heterogeneous glycoprotein.62,63 Various

reporter genes were successively inserted into this plasmid to facilitate

its easy detection.64,65 Some examples of VSV‐based pseudovirus sys-

tem are listed in Table 2.

Notably, when the VSV packaging system is used to make a

pseudovirus, there may be residual VSV virus mixed with the

pseudovirus, thereby complicating the neutralization assay in which it

is used or producing false‐positive results. Preferably, the amount of

VSV should be minimized; however, if excess VSV is believed to be

interfering with a pseudovirus‐based assay, treatment of the

pseudovirus preparation with a VSV neutralizing antibody could be

considered before its use in future assays.
2.3 | The murine leukemia virus packaging system

The MLV packaging system, also called the retroviral system, is com-

monly used to make pseudoviruses. Table 3 lists the pseudoviruses

packaged by the MLV system that have been reported in the literature.

Early work by Witte and colleagues showed that when they used VSV

to infect the cells in which MLV is packaged, they were able to harvest

pseudovirus for use in neutralization antibody assays.98 Since then, the

genome of MLV had been split into 2 parts: one encoding gag‐pol and
TABLE 2 Pseudoviruses packaged by VSV system

Virus Protein Research Area and Application

EBOV GP Cellular tropism, function of glycoprotein, inhibitor

HCV E1/E2 Function of envelope protein in viral attachment a

Hantavirus G1/G2 Neutralization antibody assay, mechanism underlyi
cellular tropism, vaccine

SFTSV G1/G2 Infection diagnosis, drug screening, mechanism of

Arenavirus GPC Receptor recognition, mechanism of virus entry

NiV G/F Receptor recognition, neutralization antibody assay

JEV PrM/E Factors affecting viral infection and reproduction

CHIKV E2/E1 Neutralization antibody assay, mechanism of virus

Measles virus H/F Neutralization antibody assay

Lyssavirus GP Neutralization antibody assay

Avian influenza viruses
HA/NA

Neutralization antibody assay, antiviral screening

CCHFV GP Mechanism of virus entry

Abbreviation: VSV indicates vesicular stomatitis virus; EBOV, Ebola virus; GFP,
protein; SFTSV, severe fever with thrombocytopenia syndrome virus; GPC, g
CHIKV, chikungunya virus; CCHFV, Crimean‐Congo hemorrhagic fever virus; H
NA, neuraminidase; HA, hemagglutinin; SEAP, secreted alkaline phosphatase.
the other containing the reporter gene. The 2 gene sets were further

cloned into plasmids to generate highly efficient MLV packaging

systems.99

To improve the stability of this system, investigators established

several cell lines that were confirmed to be stable in transfection and

expression. Murine leukemia virus may actually be a better choice than

HIV as a packaging system in some cases. For example, in studying

LASV‐mediated entry into cells, Cosset et al compared the MLV and

HIV systems and found that the former is 5‐fold more efficient than

the latter.100
2.4 | Other packaging system

The aforementioned pseudovirus packaging systems have not always

been successful in generating certain types of pseudoviruses. In those

cases, other alternatives such as reverse genetics have been reported.

For example, Hu et al prepared a pseudotyped dengue virus (DENV)

types 1 to 4 by using the HIV system, but its titer was insufficiently

high.101 However, by using reverse genetics, reporter genes were

inserted into the viral genome to construct a plasmid‐dependent,

self‐assembled, pseudotyped flavivirus. Successful examples using

reverse genetics include DENV, West Nile virus (WNV), and Japanese

encephalitis virus, all of which have been subsequently used to develop

neutralization antibody assays. Specifically, Pierson et al cotransfected

cells with 3 plasmids containing a subreplicon of a reporting gene,

capsid, and prME to generate pseudotyped WNV,102 while Sobrinho

et al developed pseudotyped DENV‐1 and WNV‐DENV‐1‐CprME

based on the method used by Pierson and colleagues.17 Moreover,

Qing et al constructed pseudotyped DENV1, Semliki Forest virus‐

DENV‐1‐CprME, and Venezuelan equine encephalitis virus‐PAC‐2A‐

DENV‐1‐CprME by 2‐step electroporation; these pseudoviruses

proved to be useful in screening antiviral compounds.103
Reporting Gene Reference

of viral entry GFP 66,67

nd entry GFP 68

ng virus entry (effect of PH, receptor), GFP/RFP,
luciferase

69-72

virus entry GFP, luciferase 73

GFP
Luciferase

73-75

GFP/RFP
Luciferase
SEAP

65,76-78

Luciferase 79

entry GFP, luciferase 80

Luciferase 81

GFP, luciferase 64

GFP, luciferase 82,83

GFP, luciferase 84

green fluorescence protein; HCV, hepatitis C virus; RFP, red fluorescence
lycoprotein precursor; NiV, nipah virus; JEV, Japanese encephalitis virus;
, hemagglutinin; F, fusion protein; prM, precursor membrane; E, envelope;



TABLE 3 Pseudoviruses packaged by MLV system

Virus Protein Research Area and Application Packaging System Reporting Gene Reference

EBOV GP Neutralization antibody assay, analysis on the
function of glycoprotein, cell receptor recognition

pHIT60 (MLV gag‐pol); pHIT111 β‐Galactosidase 85

La Crosse virus
(G1/G2)

Cellular tropism, neutralization antibody assay pcGP (MLV gag‐pol) pcnbG (MLV LTR) β‐Galactosidase 86

Hantavirus
(G1/G2)

Cellular tropism, neutralization antibody assay pcGP (MLV gag‐pol) pcnbG (MLV LTR) β‐Galactosidase 86

HIV‐1 Env Neutralization antibody assay, screening inhibitor
of viral entry

TELCeB6 cells; pTMgp140; FLY‐HIV‐
87‐GFP; GP2‐293luc cells

β‐Galactosidase,
GFP, luciferase

14,87,88

HIV‐2 Env Interaction of virus and cell Anjou65‐LacZ cells β‐Galactosidase 87

Visna virus Env Cellular tropism pCgp (MuLV gag‐pol); pMX‐GFP GFP 89

RRV GP Cellular tropism, mechanism of virus entry gpnlslacZ cells; pJ6Vpuro β‐Galactosidase 90

SIVagm Env Vector candidate for gene therapy in vivo pHIT60 (MLV gag‐pol); pMFG‐nlsLacZ;
MgEGFP‐LNGFR

β‐Galactosidase,
EGFP

91

HCV GP
(E1/E2)

Mechanism of virus entry MLV CMV‐gag‐pol; MLV‐GFP GFP 6

SARS‐CoVs
Spike

Mechanism of virus entry, neutralization antibody
assay, receptor ACE2 validation

TELCeB6 cells; GP2‐293 cell line;
pQCXIX (GFP)

β‐Galactosidase,
GFP

56,92

MERS‐CoVs spike Cellular tropism pCMV‐MLV gag‐pol; pTG‐Luc Luciferase 93

VSV GP Transgenic study, RNAi gene expression interference GP2‐293 cell line; pLNHX EGFPluciferase 94,95

Arenavirus GP Validate the receptor of new world arenavirus TfR1 MLV gag/pol; pQCXIX (EGFP) EGFP 7

Influenza virus
HA

Screening specific antibody MLV gag/pol; pkat2βgal; MLV luc
constructs

β‐Galactosidase,
luciferase

96,97

Abbreviation: MLV indicates murine leukemia virus; EBOV, Ebola virus; GP, glycoprotein; HIV, human immunodeficiency virus; GFP, green fluorescence pro-
tein; RRV, Ross River virus; SIV, simian immunodeficiency virus; EGFP, enhanced green fluorescence protein; SARS‐CoV, severe acute respiratory syndrome‐
coronavirus; MERS‐CoV, Middle East respiratory syndrome‐coronavirus; VSV, vesicular stomatitis virus; HA, hemagglutinin; G, glycoprotein.
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3 | FACTORS CONTRIBUTING TO THE
PSEUDOVIRUS YIELD

A high yield is needed for practical applications of the pseudoviruses.

There are several factors that can critically influence their yield/titer.
3.1 | Effect of envelope protein localization on
pseudovirus formation and titer

In general, the subcellular localization for viral packaging and matura-

tion may largely dictate the pseudoviral titer. Specially, if the envelope

proteins are localized on the surface of cell membrane, it is relatively

easy to generate high‐yield pseudoviruses by using either HIV or

VSV packaging systems as reported for filovirus and rhabdovirus.55,104

In contrast, if the envelope protein is localized in the membrane of

organelles (eg, endoplasmic reticulum or Golgi complex), as in

bunyavirus and yellow fever virus, it is more difficult to obtain a

pseudovirus; furthermore, when the envelope protein is localized in a

cholesterol‐rich section of the membrane, it is nearly impossible to

form a pseudovirus.105

Previous studies suggest that the localization of envelope proteins

is closely related to their structures, particularly that of the transmem-

brane portion of the envelope protein. Therefore, efforts have been

made to modify the envelope protein to improve the pseudovirus

yield. For example, by truncating the cytoplasmic region of envelope

protein, it can be possible to reduce the intracellular accumulation

of envelope protein, thereby facilitating the assembly of envelope pro-

teins with the vector core proteins.40,57,106,107 Additionally, replacing
the cytoplasmic tail of an envelope protein with the envelope tail of

HIV‐1, VSV, or MLV can also improve the pseudovirus yield. Further-

more, retargeting the envelope protein intracellularly is another

method of potentially improving the pseudoviral titer.54,56 However,

it should be noted that truncating the cytoplasmic region of an enve-

lope protein may have unwanted consequences, such as altering the

native structure of the surface domain, which could impact the

functional and antigenic phenotype of the pseudovirus.

3.2 | The effects of envelope protein expression

The expression level of envelope protein could significantly affect the

efficiency of pseudovirus assembly. Apparently, increased expression

of the envelope protein is able to substantially improve the

pseudovirus titer. Nie et al reported that the expression level of WT

S protein in 293 T cell was very low in pseudotyped SARS‐CoV; how-

ever, codon optimization of the S gene drastically improved the yield of

pseudotyped SARS‐CoV.31,36 These data indicate that the expression

of envelope protein by a highly efficient expression vector could

increase the pseudoviral titer.

3.3 | The effects of the packaging system and
corresponding cell lines

The choice of packaging system can significantly affect the viral yield

and may need to be optimized on a case‐by‐case basis. Temperton

et al compared the MLV and HIV systems and found that the

pseudovirus prepared by MLV was better than the one prepared by

HIV when these packaging systems were used in 293 T cells; they
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successfully used the MLV packaging system to generate a

pseudotyped influenza virus.108 Cosset et al reached the same conclu-

sion for pseudotyped LASV preparations.100 Moreover, in our experi-

ences, pseudotyped LASV packaged by the VSV system had a higher

titer than that produced by using the HIV system. Furthermore, the

VSV system was able to incorporate hantavirus glycoprotein that had

failed to be packaged by HIV. Nonetheless, our group developed a

modification of the HIV packaging system that could improve the

pseudoviral yield by 100‐fold; specifically, the backbone plasmid

pSG3ΔEnv.CMVFluc that was developed in our lab was superior to

pNL4‐3.Luc.R‐E‐.10
3.4 | The effect of packaging conditions

The packaging conditions can also drastically influence the pseudovirus

yield. In the HIV packaging system, the pseudovirus titer could be

increased by optimizing the packaging cells, transfection reagents,

and the ratio and absolute amounts of plasmid DNAs used for trans-

fection52; in VSV packaging system, the pseudovirus titer could be

improved by optimizing the harvesting time.63 For pseudotyped

human respiratory syncytial virus made by using the HIV packaging

system, Haid et al cotransfected 5 plasmids into 293 T cells by using

the transfection reagent PEI; they then optimized the transfection con-

ditions by adding sodium butyrate 21 hours posttransfection to induce

gene expression.46,109,110 Some pseudoviruses need special enzymes/

reagents during production to optimize titer. Scott et al optimized the

production of equine influenza‐HA‐pseudotyped viruses via the addi-

tion of exogenous neuraminidase from Clostridium perfringens to allow

the release of nascent pseudovirus particles.111 These observations

indicate that the packaging conditions should be optimized to improve

the pseudovirus yield on a case‐by‐case basis.
4 | APPLICATION OF PSEUDOVIRUS

4.1 | Mechanistic study of viral infection

Pseudoviruses have been widely used for conducting in vitro studies on

the interaction between the virus and the host cells.112 They have also

proven to be very useful for in vivo studies, particularly studies on the

mechanism of viral infection as well as on the biodistribution.113 Our

lab used a pseudotyped RV carrying reporter genes to establish an

in vivo imagingmodel in mice. This mousemodel was used to study viral

tissue tropism and its dynamic change over time.10 We also established

a pseudotyped EBOV mouse model; the EBOV pseudoviruses were

mainly detected in the thymus and spleen following viral infection,

revealing that the pseudotyped EBOV and WT EBOV have the same

tissue tropism.52 Other groups have also used pseudotyped HSV‐1

and MARV in small animal models to investigate viral infections.114
4.2 | Application of pseudoviral systems to
neutralization antibody and antibody‐dependent cell‐
mediated cytotoxicity assay

Antibody neutralization assay based on pseudoviruses has been widely

used, particularly for the analyses of some virulent viruses that would
otherwise need to be handled in BSL‐3 or BSL‐4 laboratories. Com-

pared with the traditional assays, the reported pseudovirus‐based

assays have demonstrated a good correlation with the WT virus‐based

assay; the pseudovirus‐based assays are usually high‐throughput pro-

cedures with fewer amounts of serum samples needed.1,104,115,116

Wilkinson et al compared 22 platform technologies for assaying

antibody against EBOV with neutralization assays by using the WT

virus and found that the 5 best assays included methods based on

WT and VSV pseudotype neutralization and ELISA, but the lentiviral

and other platforms were problematic.117 Notably, Duehr J et al

indicated that some anti‐EBOV glycoprotein monoclonal antibodies

could neutralize and protect against pseudotyped VSV‐EBOV but were

nonneutralizing against WT EBOV.118

Recently, pseudoviral systems have also been explored for the

analysis of antibody‐dependent cell‐mediated cytotoxicity (ADCC)

activity, which might be a better choice than the use of target

cells transfected with a DNA plasmid. The success in employing

pseudovirus in ADCC assays may be because the surface proteins

of pseudovirus largely retain their native conformation and,

following infection, a portion of these proteins remains on the

surface of the target cells. In the pseudovirus‐based ADCC assay, tar-

get cells are first infected with the pseudovirus, followed by the addi-

tion of monoclonal antibody and modified Jurkat cells (effector cells). If

the monoclonal antibody has ADCC activity, the Fab portion will bind

to the target cell, while its Fc will bind and activate the modified Jurkat

cells, which have been engineered to stably express the Fc receptor,

V158 (high affinity) variant in addition to luciferase under the control

of an NFAT response element.52
4.3 | Drug screening

Various studies have been carried out by using pseudoviruses to

screen small‐molecule compounds including those against LASV,

EBOV, MARV, SARS‐CoV, NiV, and influenza H5N1.119,120 Wang

et al used pseudotyped MARV, influenza H5N1, and LASV to screen

1200 small‐molecule compounds that have been approved by the US

Food and Drug Administration to treat other medical conditions. It

was found that some of these compounds have a broad range of anti-

viral activities against MARV, influenza H5N1, and LASV.8 By using

pseudovirus, Elshabrawy et al were able to select a small molecule

compound that had a broad spectrum of antiviral activity against

SARS‐CoV, MARV, Hendra virus, and NiV. Further investigation by

these authors revealed that 1 compound prevents viral entry into the

cells by blocking cathepsin L‐mediated enzyme digestion.121 Besides

small molecules, pseudoviruses have also been used to screen herbal

medicines for their potential antiviral activities.122,123
5 | LIMITATIONS AND CONSIDERATIONS
OF PSEUDOVIRAL SYSTEMS

While some of the technical challenges associated with pseudoviral

systems have been described above, there are several remaining issues

that are also worth mentioning. By definition, pseudoviruses only con-

tain the membrane/envelope proteins of the WT virus. While the
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membrane/envelope protein can largely mediate viral entry in a fash-

ion like that of the WT virus, these viruses can only replicate for 1

round or may not always induce pathogenesis as their WT counter-

parts do. Therefore, results from assays using pseudotyped viruses

should be compared and validated against the WT virus‐based assay,

which remains the golden standard.69,76 Additionally, the virus shape

may influence its suitability for constructing a corresponding

pseudotyping virus. For example, MLV, HIV, and SIV are spherical

viruses, whereas VSV is bullet‐shaped. Therefore, the pattern of glyco-

protein distribution/conformation/density on a pseudotyped virus

may not reflect the “natural” state of envelope proteins on the WT

viruses (eg, as in filoviruses, which are thread‐like). It is also a good

practice to compare various packaging systems. Indeed, investigators

sometimes used 2 packaging systems simultaneously to prepare

pseudoviruses or compared their resulting pseudovirus with one pack-

aged by the VSV glycoprotein.15,19,93,124,125 Notably, Bilska et al

showed that some Env‐pseudotyped virus preparations give rise to

low levels of replication‐competent virus, which highlights the need

to perform rigorous testing for replication‐competent virus before ini-

tiating work on any pseudovirus preparations at a lower BSL.126 While

the successful generation of pseudoviral particles is mainly limited to

enveloped viruses, efforts should be made to determine whether

nonenveloped viruses could also be effectively pseudotyped.
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