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Abstract
Objectives Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for 
orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of peri-
odontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress 
and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) 
was investigated.
Materials and methods hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain 
(CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhe-
sion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was 
measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow 
cytometry analysis.
Results TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression 
was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS down-
regulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface 
expression analyzed by flow cytometry was observed chiefly for VCAM-1.
Conclusions Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory 
mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and 
could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force 
magnitude.
Clinical relevance Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may 
have significant implications for future strategies of combined periodontal and orthodontic treatment.

Keywords Human periodontal ligament stromal cells · Orthodontic force · Mechanical loading · Periodontitis · 
Inflammatory cytokine

Introduction

Periodontal ligament (PDL) is a connective tissue between 
the cementum and the alveolar bone, which supports the 
teeth and is continuously subjected to and responding to 
varied types of biomechanical forces [1, 2]. During ortho-
dontic treatment, appropriate mechanical force squeezes 
or stretches the PDL, regulating a coordinated remodeling 
process which consists of bone resorption at compression 
side and bone formation at tension side of the alveolar bone, 
and culminating in the orthodontic tooth movement (OTM) 
[3]. This process highly depends on the cellular compo-
nents of PDL, which principally consist of undifferentiated 
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resident mesenchymal stromal cells (MSCs), fibroblasts and 
osteoblasts [1]. Human periodontal ligament stromal cells 
(hPDLSCs), the resident MSCs, are a heterogeneous cell 
population and have a fibroblast-like morphology [4, 5]. 
They are multipotent progenitor cells expressing specific 
MSC surface markers, displaying multi-lineage differentia-
tion potential [5, 6] and exerting immunomodulatory effects 
[7]. hPDLSCs are reported to be sensitive to mechanical 
loading and play a central role in bone remodeling during 
OTM [8].

Currently, an increasing number of adult patients pre-
disposed to mild or severe periodontal disease are seeking 
orthodontic treatment, leading to the challenges of maintain-
ing homeostasis of the periodontium which orthodontists 
have to face [9]. It is known that orthodontic malpractice or 
hyper-occlusal forces may aggravate periodontitis-induced 
destruction of periodontal tissues [10]. The periodontal tis-
sue of periodontitis patients is considered to be more sen-
sitive and less tolerant to mechanical loading than that in 
healthy individuals [11–14] but the underlying mechanisms 
for the co-destructive effect are not yet clear. Tumor necro-
sis factor-α (TNF-α) is a primary and initial inflammatory 
cytokine which is highly correlated with the pathogenesis of 
periodontitis [15, 16]. TNF-α up-regulates the expression of 
numerous inflammatory mediators in hPDLSCs, particularly 
IL-6, IL-8, vascular cell adhesion molecule 1 (VCAM-1), 
and intercellular adhesion molecule 1 (ICAM-1) [16–18]. 
IL-6 is closely related to bone destruction through its effects 
on osteoclastogenesis [19, 20]; IL-8 plays a key role in the 
recruitment and activation of neutrophils to the site of tissue 
damage or infection [21]. VCAM-1 and ICAM-1 stimulate 
leukocyte recruitment required for inflammation [18]. Fur-
thermore, ICAM-1 and VCAM-1 mediate the immunomodu-
latory function of MSCs [22].

Orthodontic treatment also stimulates various inflam-
matory mediators in response to mechanical forces. During 
orthodontic tooth movement, the ongoing remodeling pro-
cess begins with an initial aseptic inflammatory response 
[23]. This is characterized by production of numerous medi-
ators like IL-1β, IL-6, IL-8, and TNF-α [11, 24–27], which 
are also involved in the progression of periodontitis. There-
fore, interference between the biological mediators induced 
by mechanical stimulation and periodontal inflammation 
might contribute to the co-destructive effect, which is not 
always confirmed by experimental data. Qualitatively, the 
impact of orthodontic forces on the inflammatory response 
seems to depend on force magnitude [9, 28]. On the one 
hand, in vitro studies on human PDL cells reported that 
mechanical forces with the magnitude of 12–20% aggra-
vated inflammatory response induced by bacterial compo-
nents [29, 30]. Furthermore, an in vivo study reported that 
orthodontic force up-regulated the expression of IL-1β and 
TNF-α in periodontitis rats and amplified bone loss [11]. 

On the other hand, a number of studies have shown that low 
magnitude-mechanical forces with magnitude up to 10% can 
also exert anti-inflammatory effects in human PDL cells [28, 
31, 32].

Hence, the impact of mechanical load to the inflammatory 
response should be still investigated. Of particular interest 
is the question how the mechanical load might influence 
the response of hPDLSCs to the inflammatory environment. 
Although TNF-α is involved in both periodontitis and ortho-
dontic tooth movement, the combined effect of TNF-α and 
mechanical strain on the inflammatory responses was never 
investigated in hPDLSCs to date. Therefore, the aim of the 
present in vitro study was to investigate the effects of CTS 
of different magnitudes on TNF-α-induced inflammatory 
response in hPDLSCs. CTS with either 6% or 12% elonga-
tion was applied to identify the role of low and high magni-
tude orthodontic forces. Cells were stimulated for either 6 
or 24 h, because these time points reflect the initial stage of 
applied mechanical forces during orthodontic treatment [33], 
at which the inflammatory processes play the most essen-
tial role [34]. The TNF-α-induced response was evaluated 
based on the resulting expression of IL-6, IL-8, VCAM-1, 
and ICAM-1.

Materials and methods

Cell culture

All the procedures were performed in accordance with the 
Declaration of Helsinki and the “Good Scientific Prac-
tice” guidelines of the Medical University of Vienna and 
approved by the Ethics Committee of the Medical University 
of Vienna (ethical approval number: 1079/2019, extended 
in 2019). Primary hPDLSCs of 5 periodontally healthy 
patients were isolated from the third molars extracted for 
orthodontic reasons. Periodontal ligaments were dissected 
from the middle third of the root surface and cultured in Dul-
becco’s modified Eagles Medium (DMEM, Sigma-Aldrich, 
St. Louis, USA), supplemented with 10% fetal bovine serum 
(FBS, Gibco, Carlsbad, USA), 100 U/ml penicillin and 
50 µg/ml streptomycin (P/S, Gibco, Carlsbad, CA, USA). 
Outgrowing cells were kept at 37 °C under an atmosphere 
of 95% humidity and 5%  CO2. After reaching confluency, 
cells were detached with accutase (Sigma-Aldrich, St. Louis, 
USA) and passaged. Cells between passage 4–7 were used 
in all subsequent experiments. The phenotype of isolated 
hPDLSCs was verified according to our recent study [4]: 
cells were positively stained with mesenchymal cell markers 
(CD29, CD73, CD90, CD105, and CD146) and negatively 
stained with hematopoietic stem cell markers (CD31, CD34, 
and CD45), which is in agreement with the official criteria 
for MSCs from the International Society for Cell and Gene 
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Therapy (ISCT) [35, 36]. The representative FACS dot plots 
are provided in Supplementary Fig. 1.

Application of tensile strain and TNF‑α treatment

hPDLSCs were seeded onto collagen type I-coated BioFlex® 
six-well culture plates (Flexcell® International Corporation, 
Burlington, NC, USA) at the initial density of 1 ×  105 cells/
well in 3 ml of DMEM with all supplements. BioFlex® Cell 
Seeders (Flexcell® International Corporation, Burlington, 
NC, USA) were used during plating to confine cells to the 
central region of the flexible membrane. After one-day incu-
bation in supplemented DMEM cells reached 80–95% con-
fluence and were serum-starved for 24 h before the further 
treatment. The confluent cells were used for the experiments, 
undergoing inflammatory and/or mechanical stimulation. To 
mimic a pro-inflammatory microenvironment, hPDLSCs 
were treated with 10 ng/ml TNF-α (Invivogen, San Diego, 
USA) for 6- or 24 h. To simulate mechanical forces at ten-
sion sites, hPDLSCs were subjected to a cyclic tensile strain 
(CTS, 6 or 12% elongation, sinusoidal curve, 0.1 Hz, 6 or 
24 h) using a Flexcell® FX-5000™ Tension System (Flex-
cell® International Corporation, Burlington, NC, USA). The 
plates were placed on a loading station on which the vacuum 
stretched the flexible silicon membrane, causing deformation 
along the loading post-surface and thereby generating the 
dynamic equibiaxial tensile strain to attached cells (Fig. 1). 
The parameters of stretching were chosen to be within the 
physiological range based on the existing literature [28, 
37–40]. Untreated cells were maintained under the same 
conditions but without mechanical stimulation.

Reverse transcription‑quantitative polymerase 
chain reaction (RT‑qPCR)

After 6- and 24 h of incubation, hPDLSCs were lysed and 
mRNA was transcribed into cDNA using TaqMan Gene 
expression Cells-to-CT kit (Applied Biosystems, Foster 

City, USA) following the manufacturer’s instruction. 
Reverse transcription was performed using Primus 96 
advanced thermocycler (Peq/Lab/VWR, Darmstadt, Ger-
many) with the following settings: 37 °C for 1 h and 95 °C 
for 5 min followed by 4 °C. Quantitative analysis of the 
gene expression was done using a QuantStudio 3 device 
(Applied Biosystems, Foster City, USA). The following 
TaqMan Gene Expression Assays (Applied Biosystems, 
Foster City, USA) were used with following ID numbers: 
IL-6, Hs00985639_m1; IL-8, Hs00174103_m1; VCAM-
1, Hs00365486_m1; ICAM-1, Hs00164932_m1; and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 
Hs99999905_m1. The reaction was performed by heated 
at 95 °C for 10 min and then followed by 50 cycles, each 
cycle consisting of denaturation at 95 °C for 15 s and 
annealing/extension at 60 °C for 1 min. The expression 
of target genes was calculated using  2−ΔΔCt method, using 
GAPDH as the housekeeping gene and untreated cells as 
a control [41].

Enzyme‑linked immunosorbent assay

After 6- and 24 h of incubation, conditioned media were 
harvested and protein levels of IL-6 and IL-8 were meas-
ured using Human Uncoated IL-6 ELISA and Human 
Uncoated IL-8 ELISA (both from ThermoFisher Scientific, 
Waltham, USA) according to the manufacturer’s instruc-
tion. The optical density (OD) was measured at 450 nm 
and 570 nm using a Synergy HTX multi-mode reader 
(BioTek Instruments, Winooski, USA). After subtracting 
 OD570 from  OD450, final concentrations were calculated 
by plotting determined OD values against the appropriate 
standard curve using Gen5 All-In-One Microplate Reader 
Software version 2.09 (BioTek Instruments, Winooski, 
USA). The detection limit was 2 pg/ml for both IL-6 and 
IL-8. All values below the detection limit were considered 
as zero for the analysis.

Fig. 1  Schematic of mechanical force loading. (a) BioFlex® Cell 
Seeders were applied before seeding to confine the cell suspension 
in the central area of a well in the culture plates. (b) The culture 
plates were transferred onto the loading post after seeding hPDLSCs 

at a density of 1 ×  105 cells/well in the central region of the flexible 
membrane using BioFlex® Cell Seeders. (c) Cells were stretched by 
a cyclic tensile strain (equibiaxial, 6 or 12% elongation, sinusoidal 
curve, 0.1 Hz, 6 or 24 h) when the vacuum was applied
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Flow cytometry

After 6- and 24 h of incubation, the surface expression of 
VCAM-1 and ICAM-1 was measured by flow cytometry 
similarly to previously described methods [42]. Briefly, cells 
were harvested, resuspended in FACS buffer (PBS supple-
mented with 3% BSA and 0.09% of  NaN3) and fixed with 2% 
(v/v) formaldehyde (Merck KGaA, Darmstadt, Germany) 
for 30 min at room temperature. After washing and resus-
pending hPDLSCs in FACS buffer, the cells were stained 
1:50 with phycoerythrin (PE)-conjugated mouse anti-human 
CD106 (VCAM-1) antibody or CD54 (ICAM-1) antibody 
(both from eBioscience, San Diego, USA) for 30 min in 
the dark at room temperature. Following washing single-
cell suspensions were prepared in 400 μl FACS buffer. Sur-
face marker expression was analyzed using the Attune NxT 
Acoustic Focusing Cytometer (ThermoFisher Scientific, 
Waltham, USA). Unstained hPDLSCs were used as control 
to define the positive threshold and adjust the instrument 
settings. The percentage of VCAM-1 or ICAM-1 positive 
hPDLSCs and the corresponding mean fluorescence inten-
sities (MFI) were determined using Attune NxT software 
version 3.1.2 (ThermoFisher Scientific, Waltham, USA). In 
total, 10.000 cells were acquired per sample.

Statistical analysis

All measured data were analyzed using SPSS 20.0 software 
(IBM, Armonk, USA). Normal distribution was proved by 
Kolmogorov–Smirnov test. Differences between groups 

were assessed by Wilcoxon signed-rank test, and paired-
samples Student’s t-test. p values < 0.05 were considered 
significant. Data are presented as mean ± standard deviation 
of at least 5 independent repetitions with hPDLSCs isolated 
from at least 5 different individuals. Each experiment was 
performed with technical duplicates.

Results

Effects of TNF‑α on IL‑6 and IL‑8 gene and protein 
expression

Figure  2 shows the effect of TNF-α on IL-6 and IL-8 
expression in hPDLSCs. Exposure of hPDLSCs to TNF-α 
enhanced gene expression of IL-6 and IL-8 after both 6- 
and 24 h (Figs. 2a and 2b). TNF-α-induced gene expression 
of IL-6 and IL-8 was significantly increased with time. In 
the absence of TNF-α, IL-6 and IL-8 were below ELISA’s 
detection limit. After 6 h incubation in the presence of TNF-
α, IL-6 was below detection limit in some samples. TNF-α 
induced the protein production of both IL-6 and IL-8, which 
was significantly increased in a time-dependent manner 
(Figs. 2c and 2d).

Effects of CTS on IL‑6 expression in the absence 
and presence of TNF‑α

The effect of CTS on basal and TNF-α induced IL-6 expres-
sion in hPDLSCs is shown in Fig. 3. Application of CTS in 

Fig. 2  Effects of TNF-α on gene and protein expression of IL-6 and 
IL-8 on unstretched hPDLSCs. Primary hPDLSCs were treated with 
10 ng/ml TNF-α without mechanical stretching. After 6- or 24 h of 
incubation, gene expression levels of IL-6 (a), IL-8 (b) were meas-
ured using RT-qPCR. The Y-axes show the n-fold changes in mRNA 
expression compared to untreated control after 6  h (n-fold expres-

sion = 1). The corresponding protein levels of IL-6 (c) and IL-8 (d) 
in conditioned media were quantified by ELISA. The groups in the 
absence or presence of TNF-α are indicated as -TNF-α or + TNF-α, 
respectively. The data are presented as the mean ± standard deviation. 
*p < 0.05 compared to corresponding control. #p < 0.01 compared 
between groups as indicated
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the absence of TNF-α had no significant effect on the gene 
expression of IL-6 in hPDLSCs compared to the unstretched 
control groups (Fig. 3a and 3b). In contrast, TNF-α-induced 
IL-6 expression was inhibited by CTS at both magnitudes. 
A significant effect of CTS on TNF-α-induced IL-6 gene 
expression was observed after both 6- and 24 h (Figs. 3a and 
3b, respectively). After 24 h, TNF-α-induced IL-6 protein 
production was significantly decreased by CTS with both 
6% and 12% elongation (Fig. 3c). The relative IL-6 protein 
levels were not calculated for 6 h stimulation, because TNF-
α-induced IL-6 protein production was below the detection 
limit in some samples independently on the mechanical 
stimulation.

Effects of CTS on IL‑8 expression in the absence 
and presence of TNF‑α

Figure 4 shows the effect of CTS on basal and TNF-α induced 
IL-8 expression in hPDLSCs. CTS applied on hPDLSCs did 
not influence the IL-8 gene expression level in the absence of 
TNF-α after both 6- and 24 h (Figs. 4a and 4b, respectively). 
Compared to unstretched hPDLSCs, TNF-α-induced IL-8 gene 
expression was not affected by CTS after 6 h (Fig. 3a). After 
24 h incubation, CTS significantly decreased TNF-α-induced 

IL-8 expression using both, 6 and 12% elongation (Fig. 3b). In 
contrast to gene expression, TNF-α-induced IL-8 protein level 
was significantly increased by CTS in a dose-dependent man-
ner after 24 h (Fig. 4d). A similar tendency was also observed 
after 6 h but without any statistical significance (Fig. 4c).

Effects of TNF‑α on VCAM‑1 and ICAM‑1 gene 
and protein expression

Figure  5 shows the effect of TNF-α on VCAM-1 and 
ICAM-1 expression in hPDLSCs. Exposure of hPDLSCs 
to TNF-α significantly enhanced gene and protein expres-
sion of VCAM-1 and ICAM-1 after both 6- and 24 h. TNF-
α-induced protein expression of ICAM-1 was significantly 
increased with time (Fig. 5d). In the absence of TNF-α, 
hPDLSCs showed no VCAM-1 or ICAM-1 positive cell 
population.

Effects of CTS on VCAM‑1 gene expression 
and surface protein production in the absence 
and presence of TNF‑α

The effect of CTS on VCAM-1 expression in hPDLSCs 
under different experimental conditions is shown in Fig. 6. 

Fig. 3  Effects of CTS on IL-6 
expression in the absence 
/ presence of TNF-α in 
hPDLSCs. Primary hPDLSCs 
were subjected to either 6% or 
12% cyclic stretching, in the 
absence or presence of 10 ng/
ml TNF-α for 6 or 24 h. IL-6 
gene expression levels were 
measured with RT-qPCR after 
6 (a) or 24 (b) hours. TNF-
α-induced IL-6 protein levels 
after 24 h (c) were quantified 
by ELISA. Y-axes show the 
effect of CTS on IL-6 expres-
sion as % of the values observed 
in unstretched cells with or 
without TNF-α. For RT-qPCR 
(a, b), n-fold gene expression 
was calculated first using the 
 2−ΔΔCt method and then the 
data were normalized to those 
observed in unstretched cells 
(100%, dashed line). For ELISA 
(c), the values were calculated 
as % of the values measured in 
unstretched cells (100%, dashed 
line). The data are presented as 
the mean ± standard deviation. * 
and ** — significantly different 
compared to unstretched control 
with p < 0.05 and p < 0.01, 
respectively
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Application of CTS on hPDLSCs had no significant effect on 
the VCAM-1 gene expression level in the absence of TNF-α 
after 6- or 24 h (Figs. 6a and b). Compared to unstretched 
hPDLSCs, TNF-α-induced VCAM-1 gene expression was 
significantly downregulated by 12% CTS after 6 h (Fig. 6a) 
and by CTS at both magnitudes after 24 h (Fig. 6b). Quali-
tatively similar results were observed for TNF-α- induced 
VCAM-1 protein expression. The percentage of VCAM-1 
positive cells and the MFI of the positive cell population was 
decreased by 12% CTS after 6 h (Fig. 6c) and decreased by 
CTS at both magnitudes after 24 h (Fig. 6d).

Effects of CTS on ICAM‑1 gene and surface protein 
expression in the absence and presence of TNF‑α

Figure  7 shows the effect of CTS on basal and TNF-α 
induced ICAM-1 gene and protein expression in hPDLSCs. 
CTS applied on hPDLSCs did not influence the basal 
ICAM-1 gene expression level after both 6- and 24  h 
(Figs. 7a and 7b, respectively). Compared to unstretched 
hPDLSCs, TNF-α-induced ICAM-1 gene expression was 
not affected by CTS after 6 h (Fig.  7a) whereas it was 

downregulated by both 6% and 12% elongation after 24 h 
of incubation (Fig. 7b). The percentage of ICAM-1 positive 
cells induced by TNF-α was not affected by CTS (Figs. 7c 
and 7d). The MFI of the positive cell population was sig-
nificantly decreased by 12% CTS after 6 h of incubation 
(Fig. 7c).

Discussion

During orthodontic treatment, periodontal ligament (PDL) 
transmits the mechanical forces into biological cues through 
responding to immediate strain induced by extracellular 
matrix deformation [1, 43]. hPDLSCs play a central role in 
this process and participate in the adaptation of periodontal 
tissues to mechanical loading by mediating not only the self-
renewing of the ligament but also the remodeling of alveolar 
bone [44, 45]. This process is initiated by an aseptic inflam-
matory response onsetting early several days after loading. 
Several in vitro studies demonstrated that CTS activates the 
production of numerous proinflammatory mediators [25, 
46–49]. Moreover, application of CTS to human PDL cells 

Fig. 4  Effects of CTS on IL-8 
expression in the absence 
/ presence of TNF-α in 
hPDLSCs. Primary hPDLSCs 
were subjected to either 6% or 
12% cyclic stretching, in the 
absence or presence of 10 ng/
ml TNF-α. IL-8 gene expres-
sion levels were measured with 
RT-qPCR after 6 (a) or 24 (b) 
hours. TNF-α-induced IL-8 
protein levels after 6 (c) and 
24 (d) hours were quantified 
by ELISA. Y-axes show the 
effect of CTS on IL-8 expres-
sion as % of the values observed 
in unstretched cells with or 
without TNF-α. For RT-qPCR 
(a, b), n-fold gene expression 
was calculated first using the 
 2−ΔΔCt method and then the 
data were normalized to those 
observed in unstretched cells 
(dashed line). For ELISA (c, 
d), the values were calculated 
as % of the values measured in 
unstretched cells (100%, dashed 
line). The data are presented as 
the mean ± standard deviation. * 
and ** — significantly different 
compared to unstretched control 
with p < 0.05 and p < 0.01, 
respectively
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in the presence of local periodontitis-related inflammation 
might aggravate the inflammatory processes [9, 29, 30, 50]. 
Therefore, the initial inflammation induced by orthodontic 
forces maybe involved in the clinically co-destructive effect 
of the mechanical forces and periodontitis-induced tissue 
destruction [29]. However, some in vitro reports also showed 
that CTS might have either pro- or anti-inflammatory effects 
depending on the magnitude [28, 29, 31, 51, 52]. There-
fore, the underlying mechanism of the co-destructive effect 
remains unclear.

In the present study, we investigated for the first time 
the effects of CTS on the hPDLSCs response to TNF-α. 

CTS is commonly used in studies simulating orthodontic 
forces on the tension side in vitro [9, 30, 32, 39, 40, 50]. 
The physiological relevance of the cyclic strain is rather 
disputable. Some researchers considered that translation 
of the orthodontic force from an individual tooth onto the 
single-cell involves the static force [4, 33, 53, 54] Appli-
cation of superelastic nickel titanium springs displayed a 
typical force plateau [55]. Nevertheless, the cyclic force still 
plays a predominant role in the in vitro studies on ortho-
dontic treatment [30, 32, 39, 40, 56], when simulating the 
application of multibracket appliance together with occlusal 
forces [4, 57]. Moreover, the force range of CTS that is of 

Fig. 5  Effects of TNF-α on gene and protein expression of VCAM-1 
and ICAM-1 in unstretched hPDLSCs. Primary hPDLSCs were 
treated with 10  ng/ml TNF-α without mechanical stretching. The 
groups in the absence or presence of TNF-α are indicated as -TNF-α 
or + TNF-α, respectively. After 6- or 24 h of incubation, gene expres-
sion levels of VCAM-1 (a) and ICAM-1 (b) were measured using 
RT-qPCR. The Y-axes show the n-fold changes in mRNA expression 
compared to untreated control after 6 h (n-fold expression = 1). The 

corresponding protein levels of VCAM-1 (c) and ICAM-1 (d) were 
quantified by flow cytometry. The Y-axes show the percentage of pos-
itive cells and the corresponding mean fluorescence intensity (MFI) 
of the positive cell population, respectively. No positively stained 
VCAM-1 and ICAM-1 cells were observed in the absence of TNF-
α. The data are presented as the mean ± standard deviation. *p < 0.05 
compared to corresponding control. #p < 0.01 compared between 
groups as indicated
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therapeutic significance and within the physiological range 
[9, 28] is broader than that of static tensile force [53], result-
ing in easier manipulation and investigation of magnitude-
dependent effects.

A previous study showed that mechanical stress stimu-
lates the expression of endogenous TNF-α among the other 
inflammatory mediators [49]. Theoretically, such production 
can enhance the inflammatory response in hPDLSCs, but 
such contribution is rather questionable for our study. This 
statement is based on the fact that the levels of TNF-α pro-
duction by hPDLSCs are rather low. Even upon the stimu-
lation with various bacteria the levels of TNF-α produced 
by hPDLSCs does not exceed 50 pg/ml [58], which is sub-
stantially lower than the concentration of exogenous TNF-α 
used in our experiments (10 ng/ml). Moreover, our own data 
show that in FBS-free media the levels of TNF-α in the con-
ditioned media are below the detection limit of conventional 
ELISA, which is about a few pg/ml.

Of note, even though applying mechanical force directly 
on cells was widely conducted in in vitro studies, this simu-
lation of orthodontic forces has some obvious limitations. 
Firstly, native paradental cells are surrounded by oriented 
PDL fibers when strained by tooth displacement during 
orthodontic tooth movement [23]. In tensioned PDL, cells 
are deformed within a specific three-dimensional structure, 
which cannot be reproduced by two-dimensional cell cul-
ture in vitro. Secondly, besides generating direct strain on 
matrix or cells, orthodontic forces disturb the blood flow 
and nerve endings, causing acute exudative inflammation 
and leading to a complicated biological environment [23, 
59]. However, in vitro cells are cultured in an oversimpli-
fied environment, affected by the stretching alone during 
simulating orthodontal forces in vitro. Thirdly, due to the 
irreproducibility of the in vivo condition, the strain condi-
tions of tooth displacements cannot be correlated well with 
the deformation condition of in vitro cell stretching; even 

Fig. 6  Effects of CTS on VCAM-1 expression in the absence/pres-
ence of TNF-α in hPDLSCs. Primary hPDLSCs were subjected 
to either 6% or 12% cyclic stretching, in the absence or presence of 
10  ng/ml TNF-α. VCAM-1 gene expression levels were measured 
with RT-qPCR using the  2−ΔΔCt method after 6 (a) or 24 (b) hours. 
TNF-α-induced VCAM-1 protein levels after 6 (c) and 24 (d) hours 
were quantified by flow cytometry. Y-axes show the effect of CTS on 
VCAM-1 expression as % of the values observed in unstretched cells 
with or without TNF-α. For RT-qPCR (a, b), n-fold gene expression 

was calculated first using the  2−ΔΔCt method and then the data were 
normalized to those observed in unstretched cells (dashed line). For 
protein expression (c, d), Y-axes show the percentage of positive cells 
and the mean fluorescence intensity (MFI) of the positive cell popula-
tion, in % of the values measured in unstretched cells. The data are 
presented as the mean ± standard deviation. * and ** — significantly 
different compared to unstretched control with p < 0.05 and p < 0.01, 
respectively
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though some researchers applied in vitro strain values based 
on the numerical data of PDL strains on a maxillary central 
incisor model [30, 56, 60–62].

In our study, we applied up to 12% CTS with the fre-
quency of 0.1 Hz because it was the commonly used proto-
col for human PDL cells [37, 56, 62]. Magnitude is a critical 
parameter of CTS, which could bring on disparate effects 
on inflammatory responses, but the pattern of magnitude-
dependence was not reported consistently. CTS-modulated 
production of inflammatory cytokines, both under basal or 
inflammatory stimulation environment, was observed to 
increase with the force magnitude [48, 49, 52] or remain no 
increase until a certain force magnitude level. [9, 28, 31]. 
Furthermore, the tolerance of PDL cells to CTS of different 
magnitude was shown to be decreased by periodontitis [9]. 
Therefore, the role of CTS magnitude was of interest for 
this study. 6 and 12% deformation were both identified to 
be within the physiological range based on their benefits 

to bone regeneration during orthodontic treatment [37]. 
For investigating inflammation regulation, 6% was com-
monly used within the “low force level” range, which nor-
mally exerted anti- or slightly pro-inflammatory effects in a 
force gradient [28, 31]. Whereas 12% might be in a “criti-
cal range”, which performed differently in different stud-
ies, generating apparent aggravation or no aggravation of 
inflammation [28, 49]. The loading time periods of 6- and 
24 h were chosen to reflect initial stages of applied ortho-
dontic forces [33].

The modulations of pro-inflammatory cytokines by 
mechanical stress have already been described in various 
studies. Briefly, mechanical stress with specific parameters 
can exert pro-inflammatory effects in human PDL cells, 
including up-regulation of IL-6 and IL-8. For example, the 
application of CTS with 10% elongation and a frequency 
of 1 Hz yielded an increased the level of IL-6 in primary 
human PDL cells within the first 2- or 6 h of strain [48]. 

Fig. 7  Effects of CTS on ICAM-1 expression in the absence / pres-
ence of TNF-α in hPDLSCs. Primary hPDLSCs were subjected 
to either 6% or 12% cyclic stretching, in the absence or presence of 
10 ng/ml TNF-α. Unstretched hPDLSCs served as control. ICAM-1 
gene expression levels were measured with RT-qPCR after 6 (a) or 
24 (b) hours. TNF-α-induced ICAM-1 protein levels after 6 (c) and 
24 (d) hours were quantified by flow cytometry. Y-axes show the 
effect of CTS on ICAM-1 expression as % of the values observed 
in unstretched cells with or without TNF-α. For RT-qPCR (a, b), 

n-fold gene expression was calculated first using the  2−ΔΔCt method 
and then the data were normalized to those observed in unstretched 
cells (dashed line). For protein expression (c, d) the Y-axes show 
the percentage of positive cells and the mean fluorescence intensity 
(MFI) of the positive cell population, in % of the values measured 
in unstretched cells. The data are presented as the mean ± standard 
deviation. * and ** — significantly different compared to unstretched 
control with p < 0.05 and p < 0.01, respectively
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Similar observations with an increased IL-6 have been made 
with the application of static tension [57], hydrostatic pres-
sure (HP) [26], or vibration with 30 Hz [63]. Moreover, IL-8 
expression was up-regulated under the application of 3 ~ 15% 
cyclic stretching with a frequency of 0.2 Hz after 24 h [49]. 
These studies indicate that human PDL cells are involved in 
the development of local aseptic inflammation after mechan-
ical loading. However, our study demonstrated the CTS have 
no influence on the basal IL-6 and IL-8 expression. The 
contradictory data between our study and previous reports 
may be attributed to the differences in the applied strain, 
such as frequency and force types, various loading systems, 
and different culture plates.

Our data show that the expression of IL-6 in TNF-α 
treated hPDLSCs was inhibited by CTS at both, 6 and 
12% elongation. The effects of mechanical stress under an 
existing inflammatory microenvironment were frequently 
described as magnitude-dependent [9, 31, 64], emphasizing 
the force threshold of aggravating periodontitis. Although 
the parameters in these studies involved were different, 
generally, CTS with higher magnitudes caused a more pro-
nounced aggravation of inflammation whereas lower magni-
tudes exerted more slightly pro-inflammatory, no pro-inflam-
matory, or even anti-inflammatory effects in some in vitro 
studies [28, 29, 31, 51]. For example, Liu J et al. [9] reported 
that CTS with less than 8% elongation induced the minimal 
inflammatory response in periodontitis derived hPDLSCs. 
CTS with 8% elongation induced slighter enhancement of 
IL-6 than CTS with higher elongation. Similarly, CTS was 
reported to diminish IL-1β induced inflammatory response 
by some previous studies [28, 64]. Thus, low magnitude 
CTS seems to decrease IL-6 production by hPDLSCs in the 
inflammatory environment.

Some contradictory data were obtained on the effect of 
cyclic mechanical strain on IL-8 expression in hPDLSCs in 
the presence of TNF-α. On the one hand, TNF-α-induced 
gene expression of IL-8 was significantly decreased by the 
CTS. On the other hand, CTS enhanced TNF-α-induced 
IL-8 protein production. This observation suggests that the 
regulation of IL-8 gene expression by CTS may also occur 
at the post-transcriptional level. The mechanisms of such 
regulation in hPDLSCs are unclear to date but might involve 
some epigenetic factors and changes in mRNA expression. 
A study on human chondrocyte showed that the methylation 
of IL-8 promoter is decreased upon the stimulation with the 
pro-inflammatory cytokine IL-1β [65]. However, the exist-
ence of such an effect in hPDLSCs upon the stimulation with 
TNF-α should be proved. The mechanosensitive epigenetic 
factor was investigated in vascular endothelium. Epigenetic 
pathways respond to changes in blood flow and pressure 
in endothelial cells, with important consequences for regu-
lating gene expression [66]. MicroRNAs (miRNAs) were 
reported mechanosensitive in endothelial cells, on which 

epigenetic modification regulates gene expression post-tran-
scriptionally by targeting mRNA transcripts and regulating 
the mRNA lifetimes [66, 67]. However, the specific effects 
of orthodontic forces on post-transcriptional modification in 
the response of hPDLSCs to inflammatory stimulation need 
to be studied in future studies.

Our data reported that CTS upregulated the protein level 
of IL-8 induced by TNF-α after 24 h. The increase depended 
on the force magnitude. These findings suggest that, under 
pathological conditions, IL-8 is more sensitive to CTS than 
IL-6, implying the potential of IL-8 as a molecule marker for 
early monitoring orthodontic forces in periodontitis patients. 
IL-8 was reported to be elevated by mechanical forces both 
in human PDL cells in vitro and in animal OTM model 
especially in the tension area [49, 68], which is consistent 
with our findings. In short, the contribution of mechanical 
loading to periodontal inflammation cannot directly be sum-
marized as pro- or anti-inflammatory effects. The underlying 
mechanism involves complex molecular signaling networks, 
needed further exploration.

VCAM-1 and ICAM-1 are adhesion molecules, which 
are usually expressed on endothelial cells and participate 
in the transendothelial migration of immune cells into con-
nective tissue [69]. The expression of these molecules is 
upregulated by inflammatory cytokine like IL-1β and TNF-α 
[69]. Recent studies showed that VCAM-1 and ICAM-1 
are expressed in the connective tissue cells, like gingival 
fibroblasts and human PDL cells, which may be related to 
the progression of periodontitis [70, 71]. Our study is the 
first which demonstrates that CTS downregulated the TNF-
α-induced VCAM-1 and ICAM-1 on hPDLSCs. The bio-
mechanical responses of adhesion molecules were widely 
studied on endothelial cells due to the concern of heart 
valve diseases. The in vitro CTS were reported that it caused 
an up-regulation of VCAM-1 and ICAM-1 in endothelial 
cells [72, 73], but the results obtained from other studies 
were not consistent. Breen et al. reported that the upregula-
tion of ICAM-1 in human umbilical vein endothelial cells 
(HUVEC) induced by shear stress was downregulated by 
the addition of CTS between 4 and 12% [74]. The different 
effects may be attributed to the differences between applica-
tion of physiological and pathological stretch [72].

Conclusion

In conclusion, this in vitro study demonstrated that applica-
tion of CTS with 6% or 12% elongation decreased the TNF-a 
induced gene and protein expression of IL-6, VCAM-1 and 
ICAM-1. CTS decreased the TNF-α induced IL-8 gene 
expression whereas it enhanced the protein production in a 
magnitude-dependent manner. Our study shows that mechan-
ical force differentially regulates periodontitis-related 
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inflammatory cytokines at the early stage of force appli-
cation. The upregulation of IL-8 and the downregulation 
of IL-6 indicate that the effects of orthodontic force on 
inflammation could not be simply defined by pro- or anti-
inflammation effects. Further investigations are needed to 
clarify the exact downstream effects of the cytokines on cell 
functions and cell behaviors. The inhibition of cell adhesion 
molecules suggests that mechanical sensitive mediators are 
involved in regulating the inflammatory processes, which 
provides an additional potential mechanism of the interac-
tion between orthodontic forces and periodontitis.
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