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Abstract. The circadian clock is comprised of a master 
component situated in the hypothalamic suprachiasmatic 
nucleus and subordinate clock genes in almost every cell of 
the body. The circadian clock genes and their encoded proteins 
govern the organism to follow the natural signals of time, and 
adapt to external changes in the environment. The majority of 
physiological processes in mammals exhibit variable circadian 
rhythms, which are generated and coordinated by an oscillation 
in the expression of the clock genes. A number of studies have 
reported that alteration in the expression level of clock genes 
is correlated with several pathological conditions, including 
cancer. However, little is known about the role of clock genes 
in homeostasis of the oral epithelium and their disturbances 
in oral carcinogenesis. The present review summarizes the 
current state of knowledge of the implications of clock genes 
in oral cancer. It has been demonstrated that the development 
of oral squamous cell carcinoma undergoes circadian oscil-
lation in relation to tumor volume and proliferation rate. The 
circadian clock gene period (PER)1 has been associated with 
oral cancer pathogenesis and it is suggested that changes in 
the expression of PER1 may exhibit an important role in the 
development, invasion, and metastasis of oral squamous cell 
carcinoma. However, its role remains elusive and there is a 
need for further research in order to understand the underlying 
mechanisms of the clock genes in oral cancer pathogenesis.
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1. Introduction

Signals from the overhead pacemaker of the circadian clock, 
the SCN, mediate the oscillation on a cellular level through 
clock gene expression and feedback  (1). A disruption in 
these signaling pathways may have a crucial influence on 
the organism affected. Circadian genes may be involved in 
regulating cancer‑related pathways, including cell prolifera-
tion, DNA damage response, and apoptosis (2). Cancer‑related 
genes like c‑myc and p53 exhibit a circadian rhythm 
in vivo (3,4). Oncogenic activity such as excessive cell prolif-
eration, loss of DNA damage control and increased tumor 
development has been detected in mice with a loss of func-
tioning circadian genes (4). The lifestyle in the twenty‑first 
century has changed due to more industrialization of society, 
which has altered the endogenous circadian rhythm in ~50% 
of the world's population. This, among other reasons, has led 
to increased development of cancer throughout the world (5). 
There are studies showing the effect of dysfunctional circadian 
machinery in humans, for example mutations, non‑standard 
expression, and translocation of clock genes, which has led 
to different cancer types including breast, colorectal, gastric, 
kidney, lung, prostate, pancreatic, and oral cancer (6). The 
circadian clock and the cell cycle share some common features 
in molecular pathways and theoretical stages. It has been 
hypothesized that clock genes have a crucial role in the cell 
cycle and with this role they are highly involved in tumorigen-
esis (4). The underlying molecular mechanisms and the role 
of clock genes in oral carcinogenesis is elusive. The aim of 
this review is to summarize the current state of knowledge and 
to provide insight to guide future research on involvement of 
clock genes in oral cancer.

2. Circadian clock biology

Physiology of the circadian clock. The circadian clock is an 
endogenous timekeeping system shared by most organisms. 
Although there are some differences between species, the 
underlying molecular mechanisms of the circadian clock are 
very similar (7). The ability to adapt to a continuously changing 
environment is an essential key to selective advantage for 
living creatures to survive and thrive. The circadian clock 
system is one of these adapting abilities, which organisms 
have acquired in order to synchronize their daily behavior and 
internal mechanisms with the most profound environmental 
signal: The circadian light cycle of 24 h. Body temperature, 
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feeding, hormonal levels, and the sleep‑wake cycle all varies 
synchronized with light‑dark cycle (8). Another great ability of 
this system is adjustment to the 24 h cycle showing a crucial 
plastic capacity (9). There is a hypothesis called ‘escape from 
UV’, which is based on the S phase of the cell cycle, which 
is during night‑time. It suggests that ancient lifeforms have 
adapted to the environment by limiting this UV‑sensitive phase 
of the cycle to nighttime in order to avoid DNA‑damage (10).

The circadian clock system consists of almost as 
many individual clocks as there are cells. It is based on 
different levels and controls the whole rhythmicity of the 
organism (11). In mammals there is a central pacemaker in 
the suprachiasmatic nucleus (SCN) of the hypothalamus 
consisting of ~15,000 neurons (12). The input to this central 
pacemaker comes through different pathways. The primarily 
input, i.e. light, is registered in the retina by a subset of 
melanopsin‑expressing retinal ganglions and accesses the 
SCN via the retino‑hypothalamic tract (RHT). From the SCN 
there are output pathways leading to the whole body (11,13,14). 
These feeding pathways are regulated by interlocked 
transcription‑translation feedback loops (TTFLs) (15), where 
the clock gene family exerts an important role. In Drosophila 
and zebrafish, light has a direct influence on the circadian 
behavior of the peripheral cells (12,16), whereas in mammals 
the clock genes in peripheral tissues are not light sensitive. Here, 
they maintain and regulate TTFLs in almost every cell of the 
body by feeding pathways from the SCN and other molecular 
processes (11). One of these transcription/translation feedback 
loops consists of the heterodimeric transcription complex: 
CLOCK/BMAL1, which in the morning binds to the E‑boxes 
in the promoter region of genes expressing Period proteins 
(PER1, PER2, and PER3) and Cryptochrome proteins (CRY1 
and CRY2). When these proteins accumulate, and reach an acute 
concentration in cytoplasm, factors like Skp1‑Cullin‑F‑box 
protein (SCF) E3 ubiquitin ligase complexes, caseinkinase 1ε/δ 
(CK1ε/δ), and AMP kinase (AMPK) lead to the formation of 
the PER/CRY complex. These protein complexes translocate 
into the nucleus and reduce the activity of CLOCK/BMAL1 
by direct protein‑protein interaction by night, i.e., a negative 
feedback loop. The robustness of this feedback loop is ensured 
by a secondary mechanism where two subfamilies of nuclear 
hormone receptors Rev‑erb and Ror, regulate the transcription 
of Bmal1 and thereby directly regulate the core feedback 
loop (Fig.  1)  (17‑19). Further, chromatin remodeling and 
posttranslational modifications ensure the regulation required 
for maintenance of the circadian rhythm (8,20,21). A study 
based on systematic mathematical and computational analysis 
of the biological rhythms has revealed that oscillations are 
created by the negative feedback signals, whereas the frequency 
of these oscillations is adjusted by the positive feedback signals 
without altering the amplitude of the oscillation (22). Another 
study has shown that the SCN plays a more significant role 
in synchronizing the peripheral clocks than regulating their 
oscillation, which suggests a more cell‑independent model of 
the system (23,24). Accordingly, most circadian genes, except 
for clock and CKIε, have a rhythmic expression in periods of 
24 h. The clock/Bmal1 complex regulates the transcription 
of many other genes in addition to clock genes. A circadian 
oscillation is observed in the transcription of >10% of 
mammalian genes, and naturally the clock gene family exhibits 

an important role in many physiological functions such as food 
intake, body temperature, metabolism and synthesis and release 
of hormones  (25‑27). Circadian regulators, being directly 
involved in the circadian machinery, are suggested to control 
cell cycle. For example, CLOCK/BMAL1 regulates cell cycle 
gene Wee1 being important in the G2/M phase, 12c‑myc in the 
G0/G1 phase and Cyclin D1, which is important in the G1/S 
phase (3). Moreover, an interaction is detected between PER1 
and checkpoint proteins such as ATM and Chk2 and 17 (28).

Disruption in the circadian clock and its consequences. It has 
been suggested that disease caused by circadian rhythm altera-
tions is due to gene dosage changes and failure in controlling 
gene dosages in TTFLs (29). Alterations and disruption of the 
circadian clock are a more common problem nowadays due 
to the industrialization of our society where artificial lighting, 
working night shifts, and rapid long‑distance travelling 
through several time zones are common features. This is spec-
ulated to be directly linked to the increasingly higher risk of 
acquiring a number of health problems and diseases including 
cancer (30). Epidemiologic studies of circadian clock altera-
tions have suggested a link between cardiovascular, metabolic, 
gastrointestinal, and mental disorders as well as numerous 
cancer forms such as breast, ovarian, lung, pancreatic, prostate, 
colorectal, and endometrial cancers, non‑Hodgkin's lymphoma 
(NHL), osteosarcoma, acute myeloid leukemia (AML), 
head and neck squamous cell carcinoma and hepatocellular 
carcinoma (31‑45). The risk of acquiring cancer alters with 
the frequency and duration of disruption of the endogenous 
circadian clock. (40,46‑49).

The hypothesis of artificial lighting altering the circadian 
clock and leading to a higher cancer risk is further strength-
ened by the findings in visually impaired individuals that 
were not affected by light input and depended on other inputs 
for regulating their endogenous clock. Studies have shown a 
lower cancer risk for these individuals than others in the same 
environment (50‑52). In 2007, research and evidence gathered 
resulted in classifying ‘shiftwork that involves circadian 
disruption’ as a probable carcinogen by the International 
Agency for Research in Cancer (44).

The disruption of the circadian clock has not only been 
shown to increase the risk of disease, but also to affect the 
prognosis and treatment outcome of patients. Studies have 
demonstrated that variation in circadian cortisol value in 
blood and sleeping patterns of the patients with metastatic 
breast, colorectal, or lung cancer are linked to overall survival 
of these patients (53‑59). Although these findings suggest that 
the circadian clock undergoes significant changes in human 
tumorigenesis, the direct links between aberrant circadian 
clock gene expression and human malignancies, including 
oral and head and neck carcinomas, remain largely elusive. 
The present review focuses on the role of clock genes in oral 
squamous cell cancer.

3. Clock genes in cancer

Effects of clock gene expression level in cancer tissue. The 
molecular process in how clock genes expression levels prevent 
or enhance tumorigenesis is not yet fully understood; however, 
several studies have registered a correlation between different 
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expression levels of each clock gene and different cancer types. 
NPAS2 has shown a significant association with a lack of metas-
tasis and survival prognosis in breast cancer patients (60‑62). 
Similar results were presented in colorectal cancer, and 
decreased expression of NPAS2 was strongly correlated to 
tumor size, TNM stage and metastasis rate (63). In ERα‑positive 
breast cancer tissue the high expression of the clock gene was 
reduced through a knockout technique and a reduction in prolif-
eration was observed. In contrast, administration of estrogen 
resulted in increased expression of clock and the proliferation 
of breast cancer cells (64). Also, in colorectal cancer a higher 
expression of clock is registered in diseased tissue (65). These 
findings present a diagnostic value for both genes and the 
adverse effects of two different clock genes where a high level 
of NPAS2 expression is correlated to better prognosis whereas a 
high level of clock expression correlates to increased prolifera-
tion of cancerous tissue.

A lower expression level of PER1, PER2, and PER3 has 
been registered in diseased tissue compared to normal adja-
cent tissue in breast cancer, prostate cancer, colorectal cancer, 
pancreatic ductal adenocarcinoma, gastric cancer, kidney 
cancer and non‑small‑cell lung cancer (61,66‑71). PER1 and 
PER2 have shown a tumor‑suppressing effect in a number of 
studies. Higher expression of PER2 in breast cancer tissue 
correlated with a lack of metastasis (61). In a study where the 
PER2 expression was downregulated, a substantial increase in 
tumor growth rate and higher proliferation in diseased cells 
were observed both in vivo and in vitro (72). In gastric cancer 
tissue a suppressing role of PER1 and PER2 on tumor progres-
sion and metastasis was registered and a low expression of 
PER1 and PER2 was correlated with poorer prognosis (64). 
Overexpression of PER1 showed a great inhibition of growth 
and stimulated apoptosis in prostate cancer cell lines (71). A 
correlation between decreased levels of PER1 and a lower 
survival rate and liver metastasis in gastric cancer patients has 
also been detected (65,66).

A link has been discovered between CRY2 and breast 
cancer progression and prognosis where lower expression 
levels were registered in diseased tissue (73). Moreover, the 
CRY1 gene was associated with fatal prostate cancer  (74). 
Results from an animal study with Bmal1 knockout mice 
showed that circadian behavior in total darkness came to a 
complete stop (75). Research has registered lower expression 
of BMAL1 in diseased tissue compared to normal adjacent 
tissue in patients with colorectal cancer, pancreatic cancer, and 
pancreatic ductal adenocarcinoma (67,76,77). A knockdown 
of Bmal1 in pancreatic cancer cell lines led to increased cell 
proliferation and decreased apoptosis (77). In vivo and in vitro 
studies of colorectal cancer patients show that a higher level of 
BMAL1 expression correlates to less tumor cell proliferation 
and higher survival (76). Collectively, these data open avenues 
for novel diagnostic and therapeutic models for different 
cancer forms and prove the need for, and importance of, 
further research on clock genes.

4. Clock genes in oral cancer

Oral cancer. Worldwide, almost 300,000 people are annu-
ally diagnosed with oral cancer, which makes it the 10th 
most common type of cancer (78). Oral cancer incidence and 

mortality rates vary widely across the world, and the highest 
rates are generally registered in a few developing countries, 
i.e., Sri Lanka, India, Pakistan, and Bangladesh  (79). The 
etiology of oral cancer is multifactorial. The main risk factors 
are tobacco use and alcohol consumption with combined 
multiplicative effects possibly leading to DNA damage or 
mutations. Human papilloma virus infection and genetic 
polymorphism can also be mentioned as risk factors (80‑82). 
Men are overrepresented in this patient group and high age 
and lower socioeconomic status may have an impact (83).

Oral squamous cell carcinoma (OSCC), one type of oral 
cancer, is the eighth most common cancer worldwide (84,85). 
Over 90% of oral malignancies are squamous cell carcinomas 
and its variants (45,86). This cancer type usually emerges from 
the tongue, floor of the mouth, buccal mucosa, gingiva and 
hard palate. Cancer located in the tongue is associated with 
poorer prognosis (87,88).

Clock genes in healthy oral mucosa. Clock genes have been 
detected in healthy oral mucosa and their diurnal oscillations 
are mapped (89,90). Rhythmical oscillation of the genes and 
their different peaks has been shown to occur simultaneously 
with different phases of the cell‑cycle. PER1 peaked simulta-
neously as p53, which is a G1‑marker and an important gene in 
oncogenesis. BMAL1 peaked simultaneously with the M‑phase 
marker cyclinβ1 (90). Studies have confirmed that cyclinβ1 and 
p53 are targets of human clock genes where loss of BMAL1 
reduces the expression of p53 along with PER1, PER2, and 
PER3. It has also been hypothesized that p53 is involved in 
regulating PER2 expression by blocking the CLOCK/BMAL1 
complex from binding to a promotor region (77,91‑93). This 
further supports the theory that there is a connection between 
clock gene activity and the cell cycle (2).

Clock genes and oral squamous cell carcinoma. Clock genes 
have a clear role in cancer development, prognosis, and therapy. 
From the perspective of biological rhythms, focusing on 
clock genes may provide novel ideas and methods for a better 
understanding of the occurrence and development of tumors, 
and for individualized treatment of cancer. So far, the results 
suggest that the PER1 gene may be used as a marker to deter-
mine clinical staging and the metastatic risk, and as a novel 
target for the prevention and treatment of oral cancer. (94‑96) 
However, future studies are warranted in order to concentrate 
on the translational and post‑translational levels and to illus-
trate the molecular function and the regulatory effects in the 
clock gene network and the tumor‑suppression mechanisms of 
PER1, providing new and effective molecular targets for the 
treatment of oral cancer.

A few studies have investigated the role of clock genes in 
OSCCs (Table I). It has been demonstrated that OSCC in vivo 
development undergoes circadian oscillation in relation to 
tumor volume and proliferation rate (97). Hsu et al observed 
similar results in head and neck squamous cell carcinoma 
(HNSCC). Cancerous and non‑cancerous adjacent tissues 
from 40 patients diagnosed with HNSCC were obtained, and 
they detected the expression of nine core clock genes, PER1, 
PER2, PER3, CRY1, CRY2, CK1ε, TIM, CLOCK, and BMAL1. 
The results also showed a significantly decreased expression 
of PER1, PER2, PER3, BMAL1, and especially CRY2 in 
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cancerous tissue compared to healthy adjacent tissue. In 
more advanced stages, they observed lower expression levels 
of PER3, CRY2, and BMAL1. Downregulation of PER1 and 
PER3 correlated with poor survival in these patients (45).

PER1 expression was detected in 41 OSCC patients where 
diseased tissue was compared with healthy adjacent mucosa. In 
addition, the correlation with clinicopathological features was 
investigated in these patients. The results showed a significantly 
decreased level of expression in cancerous tissue compared to 
adjacent healthy tissue; also, the expression level decreased with 
the tumor progression. Patients with no lymph‑node metastasis 
expressed a higher level of PER1 than those with metastasis (94). 
It is suggested that the clock gene PER1 possesses a tumor 
suppressing quality, which may have diagnostic and therapeutic 
use. PER1 gene knockdown in OSCC cell line SCC15 led to 
immediate abnormal behavior in terms of cell growth, prolifera-
tion, apoptosis resistance, migration and invasion in vitro. Mice 
injected with these modified cells subcutaneously experienced 
enhanced tumor development  (95,96). Another interesting 
finding again is the connection between PER1 and p53, where 
knockdown of PER1 was followed by decreased expression of 
p53. Moreover, the daily oscillation of PER1 and tumor‑related 
genes such as p53, but also VEGF and c‑myc, is correlated with 
cancer development (98). Suppression of PER1 leads to distur-
bance in the cell cycle and inhibits DNA damage control, which 
again makes clock genes and PER1 a key research subject in 
the field of carcinogenesis  (99). The molecular mechanism 
behind the tumor‑suppressing quality of PER1 is the regulation 
of the Cyclin‑CDK‑cyclin‑dependent kinase inhibitor regula-
tory network (100). Tumorigenesis is highly due to disorders in 
the normal cell cycle, and maintaining a functional cell cycle is 
dependent on the Cyclin‑CDK‑cyclin‑dependent kinase inhibitor 
regulatory network (2). Studies on the OSCC cell line SCC15 
have shown decreased expression of PER1, leading to down-

stream regulation by increasing the level of CyclinD1, CyclinE, 
CyclinB1, CDK1, and WEE1 while decreasing the levels of P53, 
CyclinA2, P16, P21, and CDC25 (100). Knockdown of PER1 
led to a downregulation of the PER2, DEC1, DEC2, CRY1, 
CRY2, and NPAS2 mRNA level, while PER3, TIM, RORα, 
and REV‑ERBα mRNA were upregulated (96). This suggests 
that PER1 not only regulates the downstream genes, but it also 
plays a role in the synergy of the rest of the clock genes in the 
circadian machinery in SCC15 cell lines.

Investigation of the role of PER2 in OSCC cell line 
Tca8113 cells, showed a lower level of expression than in 
healthy tissue. The expression of PER2 was down regulated, 
and cell cycle, cell proliferation and apoptosis was analyzed 
using flow cytometry and RT‑qPCR. The down‑regulation 
of PER2 expression had a great effect on the CDK/CKI cell 
cycle network and altered the expression levels of many factors 
including decreasing p53. A significantly higher cell prolif-
eration and lower apoptosis were observed (101). Tan et al 
investigated the circadian pattern of PER2 and various cell 
cycle genes in golden hamsters. PER2 and P53 had a decreased 
level while Cyclin D1, CDK1, and Cyclin B1 levels increased 
during cancer development (102).

Reports show that PER1 has a pro‑apoptotic role in many 
cancer types, for example in human colon cancer and pros-
tate cancer (71,99). But it has also been reported that PER1 
has an anti‑apoptotic role in pancreatic and hepatocellular 
cancer cells (103). A pro‑apoptotic role of PER1 is suggested 
in OSCCs, but in contrast, in the gingival cancer cell line 
CA9‑22, PER1 had an increased level of expression in cancer 
cells compared to healthy gingival cells, while PER3 had a 
decreased level of expression in diseased cells compared to 
normal cells. An anti‑apoptotic role was observed for PER1 
and pro‑apoptotic role for PER3 (104). These results emphasize 
the importance of the variation in cancer cell properties and 

Figure 1. Transcriptional/translational feedback loops (TTFL) model of the molecular clock in mammals. The positive arm of TTFL is constructed by the core 
clock genes, BMAL1 and CLOCK, which heterodimerize and bind to the E‑box element on circadian target genes to activate transcription, including PER 1‑3, 
CRY 1‑2, ROR, Rev‑Erb α and other genes in output pathways. The complex formed by Phospho‑PER and CRY inhibits BMAL1/CLOCK‑driven transcription, 
constructing the core negative feedback loop. ROR increases and Rev‑Erb α inhibits the expression of BMAL1 and thus constructs a second feedback loop.
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indicate that the same gene may play a substantially different 
role in different parts of the body and that thorough research 
is crucial for obtaining useful results concerning cancer diag-
nosis and therapeutic methods.
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