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Abstract 

Background: Anchored covariate‑adjusted indirect comparisons inform reimbursement decisions where there are 
no head‑to‑head trials between the treatments of interest, there is a common comparator arm shared by the studies, 
and there are patient‑level data limitations. Matching‑adjusted indirect comparison (MAIC), based on propensity score 
weighting, is the most widely used covariate‑adjusted indirect comparison method in health technology assessment. 
MAIC has poor precision and is inefficient when the effective sample size after weighting is small.

Methods: A modular extension to MAIC, termed two‑stage matching‑adjusted indirect comparison (2SMAIC), is 
proposed. This uses two parametric models. One estimates the treatment assignment mechanism in the study with 
individual patient data (IPD), the other estimates the trial assignment mechanism. The first model produces inverse 
probability weights that are combined with the odds weights produced by the second model. The resulting weights 
seek to balance covariates between treatment arms and across studies. A simulation study provides proof‑of‑principle 
in an indirect comparison performed across two randomized trials. Nevertheless, 2SMAIC can be applied in situations 
where the IPD trial is observational, by including potential confounders in the treatment assignment model. The simu‑
lation study also explores the use of weight truncation in combination with MAIC for the first time.

Results: Despite enforcing randomization and knowing the true treatment assignment mechanism in the IPD trial, 
2SMAIC yields improved precision and efficiency with respect to MAIC in all scenarios, while maintaining similarly low 
levels of bias. The two‑stage approach is effective when sample sizes in the IPD trial are low, as it controls for chance 
imbalances in prognostic baseline covariates between study arms. It is not as effective when overlap between the 
trials’ target populations is poor and the extremity of the weights is high. In these scenarios, truncation leads to sub‑
stantial precision and efficiency gains but induces considerable bias. The combination of a two‑stage approach with 
truncation produces the highest precision and efficiency improvements.

Conclusions: Two‑stage approaches to MAIC can increase precision and efficiency with respect to the standard 
approach by adjusting for empirical imbalances in prognostic covariates in the IPD trial. Further modules could be 
incorporated for additional variance reduction or to account for missingness and non‑compliance in the IPD trial.

Keywords: Health technology assessment, Indirect treatment comparison, Matching‑adjusted indirect comparison, 
Covariate adjustment, Covariate balance, Inverse probability of treatment weighting, Evidence synthesis
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Background
In many countries, health technology assessment (HTA) 
addresses whether new treatments should be reimbursed 
by public health care systems [1]. This often requires esti-
mating relative effects for interventions that have not 
been directly compared in a head-to-head trial [2]. Con-
sider that there are two active treatments of interest, say 
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A and B, that have not been evaluated in the same study, 
but have been contrasted against a comparator C in dif-
ferent studies. In this situation, an indirect comparison of 
relative treatment effect estimates is required. The analy-
sis is said to be anchored by the common comparator C.

A typical situation in HTA is that where a pharmaceu-
tical company has individual patient data (IPD) from its 
own study comparing A versus C, which we shall denote 
the index trial, but only published aggregate-level data 
(ALD) from another study comparing B versus C, which 
we call the competitor trial. In this two-study scenario, 
cross-trial imbalances in effect measure modifiers, effect 
modifiers for short, make the standard indirect treat-
ment comparisons [3] vulnerable to bias [4]. Novel covar-
iate-adjusted indirect comparison methods have been 
introduced to account for these imbalances and provide 
equipoise to the comparison [5–9].

The most popular methodology [10] in peer-reviewed 
publications and submissions for reimbursement is 
matching-adjusted indirect comparison (MAIC) [11–13]. 
MAIC weights the subjects in the index trial to create a 
“pseudo-sample” with balanced moments with respect to 
the competitor trial. The standard formulation of MAIC 
proposed by Signorovitch et  al. [11] uses a method of 
moments to estimate a logistic regression, which models 
the trial assignment mechanism. The weights are derived 
from the fitted model and represent the odds of assign-
ment to the competitor trial for the subjects in the IPD, 
conditional on selected baseline covariates.

Under no failures of assumptions, MAIC has produced 
unbiased treatment effect estimation in simulation stud-
ies [7, 14–20]. Nevertheless, there are some concerns 
about its inefficiency and instability, particularly where 
covariate overlap is poor and effective sample sizes (ESSs) 
after weighting are small [21]. These scenarios are perva-
sive in health technology appraisals [10]. In these cases, 
weighting methods are sensitive to inordinate influence 
by a few subjects with extreme weights and are vulner-
able to poor precision. A related concern is that feasible 
numerical solutions may not exist where there is no com-
mon covariate support [21, 22]. Where overlap is weak, 
methods based on modeling the outcome expectation 
exhibit greater precision and efficiency than MAIC [21, 
23–25] but are prone to extrapolation, which may lead to 
severe bias under model misspecification [26, 27].

Consequently, modifications of MAIC that seek to 
maximize precision have been presented. An alter-
native implementation estimates the weights using 
entropy balancing [17, 28]. The proposal is similar 
to the standard method of moments, with the addi-
tional constraint that the weights are as close as pos-
sible to unit weights, potentially penalizing extreme 
weighting schemes. While the approach has appealing 

computational properties, Phillippo et  al. have proved 
that it is mathematically equivalent to the standard 
method of moments [29].

More recently, Jackson et al. have developed a distinct 
weight estimation procedure that satisfies the conven-
tional method of moments while explicitly maximizing 
the ESS [22]. This translates into minimizing the disper-
sion of the weights, with more stable weights improving 
precision at the expense of inducing bias.

Other approaches to limit the undue impact of extreme 
weights involve truncating or capping the weights. These 
are common in survey sampling [30] and in many pro-
pensity score settings [31, 32] but are yet to be inves-
tigated specifically alongside MAIC. Again, a clear 
trade-off is involved from a bias-variance standpoint. 
Lower variance comes at the cost of sacrificing balance 
and accepting bias [33, 34]. Limitations of weight trunca-
tion are that it shifts the target population or estimand 
definition, and that it requires arbitrary ad hoc decisions 
on cutoff thresholds.

In order to gain efficiency, I propose a modular exten-
sion to MAIC which uses two parametric models. One 
estimates the treatment assignment mechanism in the 
index study, the other estimates the trial assignment 
mechanism. The first model produces inverse probability 
of treatment weights that are combined with the weights 
produced by the second model. I term this approach two-
stage matching-adjusted indirect comparison (2SMAIC).

In the anchored scenario, the conventional version of 
MAIC relies on randomization in the index trial. In this 
setting, the treatment assignment mechanism (the true 
conditional probability of treatment among the subjects) 
is typically known. In addition, randomization ensures 
that there is no confounding on expectation. Therefore, 
it may seem counter-intuitive to model the treatment 
assignment mechanism in this study. Nevertheless, this 
additional step is beneficial to control for finite-sample 
imbalances in prognostic baseline covariates. These 
imbalances often arise due to chance and correcting for 
them leads to efficiency gains.

An advantage of 2SMAIC is that, due to incorporating 
a treatment assignment model, it is also applicable where 
the index study is observational. In this case, within-
study randomization is not leveraged and concerns about 
internal validity must be addressed by including poten-
tial confounders of the treatment-outcome association in 
the treatment assignment model. The estimation proce-
dure for the trial assignment weights does not necessarily 
need to be that of Signorovitch et al. [11] and alternative 
methods could be used [16, 22]. Further modules could 
be incorporated to account for missingness [35] and non-
compliance [36], e.g. dropout or treatment switching, in 
the index trial.
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I conduct a proof-of-concept simulation study to 
examine the finite-sample performance of 2SMAIC with 
respect to the standard MAIC when the index study is an 
RCT. The two-stage approach improves the precision and 
efficiency of MAIC without introducing bias. The results 
are consistent with previous research on the efficiency of 
propensity score estimators [37, 38]. Finally, the use of 
weight truncation in combination with MAIC is explored 
for the first time. Example code to implement the meth-
odologies in R is provided in Additional file 1.

Methods
Context and data structure
We focus on the following setting, which is common in 
submissions to HTA agencies. Let S and T denote indi-
cators for the assigned study and the assigned treatment, 
respectively. There are two separate studies that enrolled 
distinct sets of participants and have now been com-
pleted. The index study (S=1) compares active treatment 
A (T=1) versus C (T=0), e.g. standard of care or placebo. 
The competitor study (S=2) evaluates active treatment B 
(T=2) versus C (T=0). Covariate-adjusted indirect com-
parisons such as MAIC perform a treatment comparison 
in the S=2 sample, implicitly assumed to be of policy 
interest. We ask ourselves the question: what would be 
the marginal treatment effect for A versus B had these 
treatments been compared in an RCT conducted in S=2?

The marginal treatment effect for A vs. B is estimated 
on the linear predictor (e.g. mean difference, log-odds 
ratio or log hazard ratio) scale as:

where �̂(2)
10  is an estimate of the hypothetical marginal 

treatment effect for A vs. C in the competitor study sam-
ple, and �̂(2)

20  is an estimate of the marginal treatment 
effect of B vs. C in the competitor study sample. MAIC 
uses weighting to transport inferences for the marginal A 
vs. C treatment effect from S=1 to S=2. The estimate �̂(2)

10  
is produced, which is then input into Eq. 1. Because the 
within-trial relative effect estimates are assumed statis-
tically independent, their variances are summed to esti-
mate the variance of the marginal treatment effect for A 
vs. B.

The manufacturer submitting evidence for reimburse-
ment has access to individual-level data DAC = (x, t , y) 
on covariates, treatment and outcomes for the partici-
pants in its trial. Here, x is a matrix of pre-treatment 
baseline covariates (e.g. comorbidities, age, gender), of 
size n×k, where n is the total number of subjects in the 
study sample and k is the number of covariates. A row 
vector xi=(xi,1,xi,2,…,x1,k) of k covariates is recorded for 
each participant i=1,…n. We let y=(y1,y2,…,yn) denote a 

(1)�̂
(2)
12 = �̂

(2)
10 − �̂

(2)
20 ,

vector of the clinical outcome of interest and t=(t1,t2,…
,tn) denote a binary treatment indicator vector. We shall 
assume that there is no loss to follow-up or missing data 
on covariates, treatment and outcome in DAC.

We consider all baseline covariates to be prognostic of 
the clinical outcome and select a subset of these, z⊆x, as 
marginal effect modifiers for A with respect to C on the 
linear predictor scale, with a row vector zi recorded for 
each patient i. In the absence of randomization, the vari-
ables in x would induce confounding between the treat-
ment arms in the index study (internal validity bias). On 
the other hand, cross-trial imbalances in the variables in 
z induce external validity bias with respect to the com-
petitor study sample.

Neither the manufacturer submitting the evidence nor 
the HTA agency evaluating it have access to IPD for the 
competitor trial. We let DBC = [θx , �̂(2)

20 , V̂ (�̂
(2)
20 )] rep-

resent the published ALD that is available for this study. 
No patient-level covariates, treatment or outcomes are 
available. Here, θx denotes a vector of means or propor-
tions for the covariates; although higher-order moments 
such as variances may also be available. An assumption is 
that a sufficiently rich set of baseline covariates has been 
measured for the competitor study. Namely, that summa-
ries for the subset θz⊆θx of covariates that are marginal 
effect modifiers are described in the table of baseline 
characteristics in the study publication.

Also available is an internally valid estimate �̂(2)
20  of the 

marginal treatment effect for B vs. C in the competitor 
study sample, and an estimate V̂ (�̂

(2)
20 ) of its variance. 

These are either directly reported in the publication or, 
assuming that the competitor study is a well-conducted 
RCT, derived from crude aggregate outcomes in the 
literature.

Matching‑adjusted indirect comparison
In MAIC, IPD from the index study are weighted so that 
the moments of selected covariates are balanced with 
respect to the published moments of the competitor 
study. The weight wi for each participant i in the index 
trial is estimated using a logistic regression:

where α0 is the model intercept and α1 is a vector of 
model coefficients. While most applications of weight-
ing, e.g. to control for confounding in observational 
studies, construct “inverse probability” weights for treat-
ment assignment, MAIC uses “odds weighting” [39, 40] 
to model trial assignment. The weight wi represents the 
conditional odds that an individual i with covariates zi, 
selected as marginal effect modifiers, is enrolled in the 

(2)

ln(wi) = ln[w(zi)] = ln
Pr(S = 2 | zi)

1− Pr(S = 2 | zi)
= α0 + ziα1,
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competitor study. Alternatively, the weight represents the 
inverse conditional odds that the individual is enrolled in 
the index study.

The logistic regression parameters in Eq.  2 cannot 
be derived using conventional methods such as maxi-
mum-likelihood estimation, due to unavailable IPD for 
the competitor trial. Signorovitch et  al. propose using 
a method of moments instead to enforce covariate bal-
ance across studies [11]. Prior to balancing, the IPD 
covariates are centered on the means or proportions 
published for the competitor trial. The centered covari-
ates for subject i in the IPD are defined as z∗i = zi − θz.

Weight estimation involves minimizing the objective 
function:

The function Q(α1) is convex [11] and can be mini-
mized using standard convex optimization algo-
rithms [41]. Provided that there is adequate overlap, 
minimization yields the unique finite solution: 
α̂1 = argmin[Q(α1)] . Feasible solutions do not exist if 
all the values observed for a covariate in z are greater or 
lesser than its corresponding element in θz [22].

After minimizing the objective function in Eq. 3, the 
weight estimated for the i-th participant in the IPD is:

The estimated weights are relative, in the sense that 
any weights that are proportional are equally valid 
[22]. Weighting reduces the ESS of the index trial. The 
approximate ESS after weighting is typically estimated 
as 

(
∑n

i ŵi

)2
/
∑n

i ŵ
2
i  [5, 42]. Low values of the ESS sug-

gest that a few influential participants with dispropor-
tionate weights dominate the reweighted sample.

Consequently, marginal mean outcomes for treat-
ments A and C in the competitor study sample (S=2) 
are estimated as the weighted average:

where nt denotes the number of participants assigned 
to treatment t∈{0,1} of the index trial, yi,t represents 
the observed clinical outcome for subject i in arm t, 
and ŵi,t is the weight assigned to patient i under treat-
ment t. For binary outcomes, µ̂t would estimate the 
expected marginal outcome probability under treat-
ment t. Absolute outcome estimates may be desirable 
as inputs to health economic models [25] or in unan-
chored comparisons made in the absence of a com-
mon control group.

(3)Q(α1) =

n
∑

i=1

exp
(

z
∗

i α1

)

.

(4)ŵi = exp(z∗i α̂1).

(5)µ̂
(2)
t =

∑nt
i=1 yi,t ŵi,t
∑nt

i=1 ŵi,t
,

In anchored comparisons, the objective is to estimate 
a relative effect for A vs. C, as opposed to absolute out-
comes. Indirect treatment comparisons are typically 
conducted on the linear predictor scale [3, 4, 6]. Conse-
quently, this scale is also used to define effect modifica-
tion, which is scale specific [5].

One can convert the mean absolute outcome predic-
tions produced by Eq.  5 from the natural scale to the 
linear predictor scale, and compute the marginal treat-
ment effect for A vs. C in S=2 as the difference between 
the average linear predictions:

Here, g(·) is an appropriate link function, e.g. the iden-
tity link produces a mean difference for continuous-val-
ued outcomes, and the logit

(

µ̂
(2)
t

)

= ln
[

µ̂
(2)
t /

(

1− µ̂
(2)
t

)]

 
generates a log-odds ratio for binary outcomes. Different, 
potentially more interpretable, choices such as relative 
risks and risk differences are possible for the marginal 
contrast. One can map to these scales by manipulating 
µ̂
(2)
1  and µ̂(2)

0  differently.
Alternatively, the weights generated by Eq.  4 can be 

used to fit a simple regression of outcome on treatment 
to the IPD [43]. The model can be fitted using maximum-
likelihood estimation, weighting the contribution of each 
individual i to the likelihood by ŵi . In this approach, the 
treatment coefficient of the fitted weighted model is the 
estimated marginal treatment effect �̂(2)

10  for A vs. C in S=2.
The original approach to MAIC uses a robust sand-

wich-type variance estimator [44] to compute the stand-
ard error of �̂(2)

10  . This relies on large-sample properties 
and has understated variability with small ESSs in a previ-
ous simulation study investigating MAIC [7] and in other 
settings [45–48]. In addition, most implementations of 
the sandwich estimator, e.g. when fitting the weighted 
regression [49], ignore the estimation of the trial assign-
ment model, assuming the weights to be fixed quantities. 
While analytic expressions that incorporate the estima-
tion of the weights could be derived, a practical alter-
native is to resample via the ordinary non-parametric 
bootstrap [23, 50, 51], re-estimating the weights and the 
marginal treatment effect for A vs. C in each bootstrap 
iteration. Point estimates, standard errors and interval 
estimates can be directly calculated from the bootstrap 
replicates.

We briefly describe the assumptions required by MAIC 
and their implications:

1 Internal validity of the effect estimates derived from 
the index and competitor studies. This is certainly 
feasible where the studies are RCTs because rand-

(6)�̂
(2)
10 = g

(

µ̂
(2)
1

)

− g
(

µ̂
(2)
0

)

.
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omization ensures exchangeability over treatment 
assignment on expectation. While internal validity 
may hold in RCTs, it is a more stringent condition 
for observational studies. The absence of informative 
measurement error, missing data, non-adherence, 
etc. is assumed.

2 Consistency under parallel studies [52]. There is 
only one well-defined version of each treatment [53] 
or any variations in the versions of treatment are 
irrelevant [54, 55]. This applies to the common com-
parator C in particular.

3 Conditional transportability (exchangeability) of the 
marginal treatment effect for A vs. C from the index 
to the competitor study [39]. Namely, trial assign-
ment does not affect this measure, conditional on z. 
Prior research has referred to this assumption as the 
conditional constancy of relative effects [5, 6, 9]. It is 
plausible if z comprises all of the covariates that are 
considered to modify the marginal treatment effect 
for A vs. C (i.e., there are no unmeasured effect mod-
ifiers) [56–58]1.

4 Sufficient overlap. The ranges of the selected covari-
ates in S=1 should cover their respective moments 
in S=2. Overlap violations can be deterministic or 
random. The former arise structurally, due to non-
overlapping trial target populations (eligibility crite-
ria). The latter arise empirically due to chance, par-
ticularly where sample sizes are small [60]. Therefore, 
overlap can be assessed based on absolute sample 
sizes. The ESS is a convenient one-number diagnos-
tic.

5 Correct specification of theS=2 covariate distribu‑
tion. Analysts can only approximate the joint distri-
bution because IPD are unavailable for the competi-
tor study. Covariate correlations are rarely published 
for S=2 and therefore cannot be balanced by MAIC. 
In that case, they are assumed equal to those in the 
pseudo-sample formed by weighting the IPD [5].

I make a brief remark on the specification of the para-
metric trial assignment model in Eq.  2. This does not 
necessarily need to be correct as long as it balances all 
the covariates, and potential transformations of these 
covariates, e.g. polynomial transformations and product 
terms, that modify the marginal treatment effect for A 

vs. C [9, 23]. Squared terms are often included to balance 
variances for continuous covariates [11] but initial simu-
lation studies do not report performance benefits [14, 
17]. This is probably due to greater reductions in ESS and 
precision [25].

The identification of effect modifiers will likely require 
prior background knowledge and substantive domain 
expertise. Bias-variance trade-offs are also important. 
Failing to include an influential effect modifier in z, 
whether in imbalance or not, leads to bias in S=2 [5, 40, 
61]. On the other hand, the inclusion of covariates that 
are not effect modifiers reduces overlap, thereby increas-
ing the chance of extreme weights. This decreases preci-
sion without improving the potential for bias reduction 
[6, 62], even if the covariates are strongly imbalanced 
across studies. That is, even if they predict or are associ-
ated to trial assignment.

Put simply, as is the case for other weighting-based 
methods [63, 64], MAIC is potentially unbiased if either 
the trial assignment mechanism or the outcome-generat-
ing mechanism is known, with the latter leading to bet-
ter performance due to reduced variance and increased 
efficiency.

Two‑stage matching‑adjusted indirect comparison
While the standard MAIC models the trial assignment 
mechanism, two-stage MAIC (2SMAIC) additionally 
models the treatment assignment mechanism in the 
index trial. The treatment assignment model is estimated 
to produce inverse probability of treatment weights. 
Then, these are combined with the odds weights gener-
ated by the standard MAIC. The resulting weights seek to 
balance covariate moments between the studies and the 
treatment arms of the index trial.

For the treatment assignment mechanism, a propensity 
score logistic regression of treatment on the covariates is 
fitted to the IPD:

where β0 and β1 parametrize the logistic regression. The 
propensity score ei is defined as the conditional probabil-
ity that participant i is assigned treatment A versus treat-
ment C given measured covariates xi [65].

Having fitted the model in Eq. 7, e.g. using maximum-
likelihood estimation, propensity scores for the subjects 
in the index trial are predicted using:

where expit(·) = exp(·)/[1+ exp(·)], β̂0 and β̂1 are point 
estimates of the logistic regression parameters, and êi is 
an estimate of ei. Inverse probability of treatment weights 
are constructed by taking the reciprocal of the estimated 

(7)
logit[ei] = logit[e(xi)] = logit[Pr(T = 1 | xi)] = β0 + xiβ1,

(8)êi = expit[β̂0 + xiβ̂1],1 This assumption is strong and untestable. Nevertheless, it is weaker than 
that required by unanchored comparisons. Unanchored comparisons com-
pare absolute outcome means as opposed to relative effect estimates. There-
fore, these rely on the conditional exchangeability of the absolute outcome 
mean under active treatment (conditional constancy of absolute effects) [5, 
6, 40, 59]. This requires capturing all factors that are prognostic of outcome 
given active treatment.
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conditional probability of the treatment assigned in the 
index study [37]. That would be 1/êi for units under treat-
ment A and 1/(1− êi) for units under treatment C.

Consequently, the weights produced by the standard 
MAIC (Eq. 4) are rescaled by the estimated inverse prob-
ability of treatment weights. The contribution of each 
subject i in the IPD is weighted by:

The weights {ŵi, i = 1, . . . , n} estimated by the stand-
ard MAIC are odds, constrained to be positive. These 
balance the index and competitor study studies in terms 
of the selected effect modifier moments. The estimated 
propensity scores {êi, i = 1, . . . , n} are probabilities 
bounded away from zero and one. Therefore, the weights 
{ω̂i, i = 1, . . . , n} produced by 2SMAIC in Eq. 9 are con-
strained to be positive. These weights achieve balance 
in effect modifier moments across studies, but also seek 
to balance covariate moments between the index trial’s 
treatment groups.

Marginal mean outcomes for treatments A and C in the 
competitor study sample are estimated as the weighted 
average of observed outcomes:

where ω̂i,t is the weight assigned to patient i under treat-
ment t. One can convert the mean absolute outcome pre-
dictions generated by Eq. 10 to the linear predictor scale, 
and compute the marginal treatment effect for A vs. C in 
S=2 as the difference between the average linear predic-
tions, as per Eq. 6. Alternatively, a weighted regression of 
outcome on treatment alone can be fitted to the IPD, in 
which case the treatment coefficient of the fitted model 
represents the estimated marginal treatment effect �̂(2)

10  
for A vs. C in S=2.

Inference can be based on a robust sandwich-type 
variance estimator or on resampling approaches such as 
the non-parametric bootstrap. As noted previously, the 
sandwich variance estimator is biased downwards when 
the ESS after weighting is small, leading to overprecision. 
In practice, the non-parametric bootstrap is a preferred 
option, re-estimating both the trial assignment model 
and the treatment assignment model in each iteration. 
This approach explicitly accounts for the estimation of 
the weights and is expected to perform better where the 
ESS is small.

It may seem counter-intuitive to estimate the treatment 
assignment mechanism when the index trial is an RCT. The 
randomized design implies that the true propensity scores 
{ei, i=1,…,n} are fixed and known. For instance, consider a 

(9)ω̂i =
tiŵi

êi
+ (1− ti)ŵi

(1− êi)
.

(10)µ̂
(2)
t =

∑nt
i=1 yi,t ω̂i,t
∑nt

i=1 ω̂i,t
,

marginally randomized two-arm trial with a 1:1 treatment 
allocation ratio. The trial investigators have determined 
in advance that the probability of being assigned to active 
treatment versus control is ei=0.5 for all i.

The rationale for estimating the propensity scores is 
the following. Randomization guarantees that there is no 
confounding on expectation [66]. Nevertheless, covari-
ate balance is a large-sample property, and one may still 
observe residual covariate imbalances between treatment 
groups due to chance, especially when the trial sample 
size is small [67]. As formulated by Senn [66], “over all 
randomizations the groups are balanced; for a particu-
lar randomization they are unbalanced.” The use of esti-
mated propensity scores allows to correct for random 
finite-sample imbalances in prognostic baseline covari-
ates. In the RCT literature, inverse probability of treat-
ment weighting is an established approach for covariate 
adjustment [68], and has increased precision, efficiency 
and power with respect to unadjusted analyses in the 
estimation of marginal treatment effects [48, 69].

Insofar, the use of anchored MAIC has been limited to 
situations where the index trial is an RCT. 2SMAIC can 
be used when the index study is observational, provided 
that the baseline covariates in x offer sufficient control 
for confounding. In non-randomized studies, the true 
propensity score for each participant in the index study 
is unknown, and additional conditions are needed to pro-
duce internally valid estimates of the marginal treatment 
effect for A vs. C. These are: (1) conditional exchange-
ability over treatment assignment [70]; and (2) positivity 
of treatment assignment [60]. Randomized trials tend to 
meet these assumptions by design. The assumptions have 
conceptual parallels with the conditional transportability 
and overlap conditions previously described for MAIC.

The first assumption indicates that the potential out-
comes of subjects in each treatment group are inde-
pendent of the treatment assigned after conditioning 
on the selected covariates. It relies on all confounders 
of the effect of treatment on outcome being measured 
and accounted for [71]. The second assumption indi-
cates that, for every participant in the index study, the 
probability of being assigned to either treatment is pos-
itive, conditional on the covariates selected to ensure 
exchangeability [60]. This requires overlap between 
the joint covariate distributions of the subjects under 
treatment A and under treatment C. This assumption is 
threatened if there are few or no individuals from either 
treatment group in certain covariate subgroups/strata.

Simulation study
Aims
The objectives of the simulation study are to provide 
proof-of-principle for 2SMAIC and to benchmark its 
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statistical performance against that of MAIC in an 
anchored setting where the index study is an RCT. We 
also investigate whether weight truncation can improve 
the performance of MAIC and 2SMAIC by reducing the 
variance caused by extreme weights.

Each method is assessed using the following frequen-
tist characteristics [72]: (1) unbiasedness; (2) precision; 
(3) efficiency (accuracy); and (4) randomization valid-
ity (valid confidence interval estimates). The selected 
performance metrics specifically evaluate these criteria. 
The ADEMP (Aims, Data-generating mechanisms, Esti-
mands, Methods, Performance measures) framework 
[72] is used to describe the simulation study design. 
Example R code implementing the methodologies is pro-
vided in Additional file  1. All simulations and analyses 
have been conducted in R software version 4.1.1 [73]2.

Data‑generating mechanisms
We consider continuous outcomes using the mean differ-
ence as the measure of effect. For the index and competi-
tor studies, outcome yi for participant i is generated as:

 using the notation of the index study data. Each xi con-
tains the values of three correlated continuous covariates, 
which have been simulated from a multivariate normal 
distribution with pre-specified means and covariance 
matrix. There is some positive correlation between the 
three covariates, with pairwise Pearson correlation lev-
els set to 0.2. The covariates have main effects and are 
prognostic of individual-level outcomes independently of 
treatment. They also have first-order covariate-treatment 
product terms, thereby modifying the conditional (and 
marginal) effects of both A and B versus C on the mean 
difference scale, i.e., z is equivalent to x. The term εi is an 
error term for subject i generated from a standard (zero-
mean, unit-variance) normal distribution.

The main “prognostic” coefficient β1,k=2 for each 
covariate k. This is considered a strong covariate-out-
come association. The interaction coefficient β2,k=1 for 
each covariate k, indicating notable effect modification. 
We set the intercept β0=5. Active treatments A and B 
are assumed to have the same set of effect modifiers with 
respect to the common comparator, and identical inter-
action coefficients for each effect modifier. Consequently, 
the shared (conditional) effect modifier assumption holds 
[5]. The main treatment coefficient βt=−2 is considered a 
strong conditional treatment effect versus the control at 
baseline (when the covariate values are zero).

yi = β0 + xiβ1 +
(

βt + xiβ2

)

�(ti = 1)+ ǫi,

The continuous outcome may represent a biomarker 
indicating disease severity. The covariates are comorbidi-
ties associated with higher values of the biomarker and 
which interact with the active treatments to hinder their 
effect versus the control.

It is assumed that the index and competitor studies 
are simple, marginally randomized, RCTs. The number 
of participants in the competitor RCT is 300, with a 1:1 
allocation ratio for active treatment vs. control. For this 
study, individual-level covariates are summarized as 
means. These would be available to the analyst in a table 
of baseline characteristics in the study publication. Indi-
vidual-level outcomes are aggregated by fitting a simple 
linear regression of outcome on treatment to produce an 
unadjusted estimate of the marginal mean difference for 
B vs. C, with its corresponding nominal standard error. 
This information would also be available in the published 
study.

We adopt a factorial arrangement using two index trial 
sample sizes times three overlap settings. This results in a 
total of six simulation scenarios. The following parameter 
values are varied:

• Sample sizes of n∈{140,200} are considered for the 
index trial, with an allocation ratio of 1:1 for inter-
vention A vs. C. The sample sizes are small but not 
unusual in applications of MAIC in HTA submis-
sions [10]. It is anticipated that smaller trials are sub-
ject to a greater chance of covariate imbalance than 
larger trials [74].

• The level of (deterministic) covariate overlap. 
Covariates follow normal marginal distributions in 
both studies. For the competitor trial, the marginal 
distribution means are fixed at 0.6. For the index 
trial, the mean μk∈{0.5,0.4,0.3} for each covariate k. 
These settings yield strong, moderate and poor over-
lap, respectively. The standard deviations in both 
studies are fixed at 0.4, i.e., a one standard devia-
tion increase in each covariate is associated with a 
0.8 unit increase in the outcome. Greater covariate 
imbalances across studies lead to poorer overlap 
between the trials’ target populations, which trans-
lates into more variable weights and a lower ESS. 
Unless otherwise stated, when describing the results 
of the simulation study, “covariate overlap” relates to 
deterministic overlap between the trials’ target pop-
ulations and not to random violations arising due to 
small sample sizes.

Estimands
The target estimand is the marginal mean difference for 
A vs. B in S=2. The treatment coefficient βt=−2 is the 

2 The files required to run the simulations are available at http:// github. com/ 
remir oazoc ar/ Maic2 stage.

http://github.com/remiroazocar/Maic2stage
http://github.com/remiroazocar/Maic2stage
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same for both A vs. C and B vs. C, and the shared (con-
ditional) effect modifier assumption holds. Therefore, 
the true conditional treatment effects for A vs. C and 
B vs. C in S=2 are the same (−2+3×(0.6×1)=−0.2). 
Because mean differences are collapsible, the true mar-
ginal treatment effects for A vs. C and B vs. C coincide 
with the corresponding conditional estimands. The true 
marginal effect for A vs. B in S=2 is a composite of that 
for A vs. C and B vs. C, which cancel out. Consequently, 
the true marginal mean difference for A vs. B in S=2 is 
zero.

Note that all the methods being compared conduct the 
same unadjusted analysis to estimate the marginal treat-
ment effect of B vs. C. Because the competitor study is a 
randomized trial, this estimate should be unbiased with 
respect to the corresponding marginal estimand in S=2. 
Therefore, differences in performance between the meth-
ods will arise from the comparison between A and C, for 
which marginal and conditional estimands are non-null.

Methods
Each simulated dataset is analyzed using the following 
methods:

• Matching-adjusted indirect comparison (MAIC). The 
trial assignment model in Eq. 2 contains main effect 
terms for all three effect modifiers — only covariate 
means are balanced. The objective function in Eq. 3 
is minimized using BFGS [41]. The weights estimated 
by Eq.  4 are used to fit a weighted simple linear 
regression of outcome on treatment to the index trial 
IPD.

• Two-stage matching-adjusted indirect compari-
son (2SMAIC). We follow the same steps as for the 
standard MAIC. In addition, the treatment assign-
ment model in Eq. 7 is fitted to the index study IPD, 
including main effect terms for all three baseline 
covariates. Propensity score estimates are generated 
by Eq. 8 and combined with the weights generated by 
Eq. 4 as per Eq. 9. The resulting weights are used to 
fit a weighted simple linear regression of outcome on 
treatment to the index trial IPD.

• Truncated matching-adjusted indirect comparison 
(T-MAIC). This approach is identical to MAIC but 
the highest estimated weights (Eq.  4) are truncated 
using a 95th percentile cutpoint, following Susukida 
et al. [75, 76], Webster-Clark et al. [77], and Lee et al. 
[31]. Specifically, all weights above the 95th percen-
tile are replaced by the value of the 95th percentile.

• Truncated two-stage matching-adjusted indirect 
comparison (T-2SMAIC). This approach is identi-
cal to 2SMAIC but all the estimated weights (Eq. 9) 

larger than the 95th percentile are set equal to the 
95th percentile.

All approaches use the ordinary non-parametric boot-
strap to estimate the variance of the A vs. C marginal 
treatment effect. 2,000 resamples of each simulated data-
set are drawn with replacement [50, 78]. Due to patient-
level data limitations for the competitor study, only the 
IPD of the index trial are resampled in the implementa-
tion of the bootstrap. The average marginal mean differ-
ence for A vs. C in S=2 is computed as the average across 
the bootstrap resamples. Its standard error is the stand-
ard deviation across these resamples. For the “one-stage” 
MAIC approaches, each bootstrap iteration re-estimates 
the trial assignment model. For the “two-stage” MAIC 
approaches, both the trial assignment and the treatment 
assignment model are re-estimated in each iteration.

All methods perform the indirect treatment compari-
son in a final stage, where the results of the study-specific 
analyses are combined. The marginal mean difference for 
A vs. B is obtained by directly substituting the point esti-
mates �̂(2)

10  and �̂(2)
20  in Eq. 1. Its variance is estimated by 

adding the point estimates of the variance for the within-
study treatment effect estimates. Wald-type 95% confi-
dence interval estimates are constructed using normal 
distributions.

Performance measures
We generate 5,000 simulated datasets per simulation 
scenario. For each scenario and analysis method, the fol-
lowing performance metrics are computed over the 5,000 
replicates: (1) bias in the estimated treatment effect; (2) 
empirical standard error (ESE); (3) mean square error 
(MSE); and (4) empirical coverage rate of the 95% con-
fidence interval estimates. These metrics are defined 
explicitly in prior work [7, 72].

The bias evaluates aim 1 of the simulation study. It is 
equal to the average treatment effect estimate across the 
simulations because the true estimand is zero ( �(2)

12 = 0 ). 
The ESE targets aim 2 and is the standard deviation of the 
treatment effect estimates over the 5,000 runs. The MSE 
represents the average squared bias plus the variance 
across the simulated replicates. It measures overall effi-
ciency (aim 3), accounting for both bias (aim 1) and pre-
cision (aim 2). Coverage assesses aim 4, and is computed 
as the percentage of estimated 95% confidence intervals 
that contain the true value of the estimand.

We have used 5,000 replicates per scenario based 
on the analysis method and scenario with the larg-
est long-run variability (standard MAIC with n=140 
and poor overlap). Assuming SD(Δ̂

(2)

12
) ≤ 0.53 , the 

Monte Carlo standard error (MCSE) of the bias is 
at most 

�

Var(Δ̂
(2)

12
)∕Nsim =

√

0.28∕5000 = 0.007 under 5,000 



Page 9 of 16Remiro‑Azócar  BMC Medical Research Methodology          (2022) 22:217  

simulations per scenario, and the MCSE of the cov-
erage, based on an empirical coverage rate of 95% is 
(√

(95× 5)/5000
)

% = 0.31% , with the worst-case being 
0.71% under 50% coverage. These are considered ade-
quate levels of simulation uncertainty.

Results
Performance measures for all methods and simulation 
scenarios are reported in Fig.  1. The strong overlap set-
tings are at the top (in ascending order of index trial sam-
ple size), followed by the moderate overlap settings and 
the poor overlap settings at the bottom. For each data-
generating mechanism, there is a ridgeline plot visualiz-
ing the spread of point estimates for the marginal A vs. 
B treatment effect over the 5,000 simulation replicates. 
Below each plot, a table summarizing the performance 
metrics of each method is displayed. MCSEs for each 
metric, used to quantify the simulation uncertainty, have 
been computed and are presented in parentheses along-
side the average of each performance measure. These are 
considered negligible due to the large number of simu-
lated datasets per scenario. In Fig.  1, Cov denotes the 
empirical coverage rate of the 95% confidence interval 
estimates.

In the most extreme scenario (n=140 and poor covari-
ate overlap), weights could not be estimated for 1 of the 
5,000 simulated datasets. This was due to total separa-
tion: empirically, all the values observed in the index 
trial for one of the baseline covariates were below the 
competitor study mean. Therefore, there were no feasi-
ble solutions minimizing the objective function in Eq. 3. 
The affected replicate was discarded, and 4,999 simulated 
datasets were analyzed in the corresponding scenario. 
With respect to the treatment assignment model, empiri-
cal overlap between treatment arms was always excellent 
due to randomization in the index trial.

Bias
Even with the small index trial sample sizes, bias is simi-
larly low for MAIC and 2SMAIC without truncation 
in all simulation scenarios. There is a slight increase in 
bias as the ESS after weighting decreases, with the bias 
of highest magnitude occurring with n=140 and poor 
covariate overlap (the scenario with the lowest ESS after 
weighting) for MAIC (-0.041) and 2SMAIC (-0.031). In 
absolute terms, the bias of 2SMAIC is smaller than that 
of MAIC in all simulation scenarios. For 2SMAIC, it is 
within Monte Carlo error of zero in all scenarios except 
in the most extreme setting, mentioned earlier, and in the 
setting with n=200 and moderate overlap (-0.008). Of all 
methods, 2SMAIC produces the lowest bias in every sim-
ulation scenario.

Weight truncation increases absolute bias in all scenar-
ios. T-MAIC and T-2SMAIC consistently exhibit greater 
bias than MAIC and 2SMAIC. When overlap is strong, 
truncation only induces bias very slightly. As overlap is 
reduced, the bias induced by truncation is more notice-
able, particularly in the n=140 settings. For instance, the 
bias for T-MAIC and T-2SMAIC in the scenarios with 
poor overlap is substantial (for n=140: 0.157 and 0.160, 
respectively; for n=200, 0.149 and 0.153). For the trun-
cated methods, the magnitude of the bias also appears to 
increase as the ESS after weighting decreases.

Precision
As expected, all methods incur precision losses as the 
number of subjects in the index trial and covariate over-
lap decrease. Despite enforcing randomization in the 
index trial, 2SMAIC increases precision, as measured by 
the ESE, with respect to MAIC in every simulation sce-
nario. Reductions in ESE are more dramatic in the n=140 
settings than in the n=200 settings. This is attributed to 
a greater chance of empirical covariate imbalances with 
smaller sample sizes. Interestingly, reduced covariate 
overlap seems to minimize the effect of incorporating the 
second (treatment assignment) stage. This is likely due to 
precision gains being offset by the presence of extreme 
weights, which lead to large reductions in ESS and inflate 
the ESE. The same trends are revealed for T-2SMAIC 
with respect to T-MAIC across the simulation scenarios. 
Both “two-stage” versions have reduced ESEs compared 
to their “one-stage” counterparts in all scenarios.

Weight truncation decreases the ESE across all simula-
tion scenarios for one-stage and two-stage MAIC. This 
is to be expected as the influence of outlying weights is 
reduced. When overlap is strong, truncation offers only a 
small improvement in precision. This has little impact in 
comparison to the inclusion of a second stage in MAIC. 
For instance, under strong overlap and n=140, the ESE 
for MAIC and 2SMAIC is 0.516 and 0.386, respectively; 
compared to ESEs of 0.489 and 0.371 for the correspond-
ing truncated versions.

The precision gains of weight truncation become more 
considerable as overlap weakens and the extremity of 
the weights increases. When overlap is poor, truncation 
reduces the ESE more sharply than the incorporation of 
a second stage in MAIC. For example, under poor over-
lap and n=140, the ESE of MAIC and 2SMAIC is 0.767 
and 0.703, respectively, and that of the truncated ver-
sions is 0.563 and 0.519. Unsurprisingly, the combina-
tion of incorporating the second stage and truncating 
the weights is most effective at variance reduction. As n 
decreases, precision seems to be more markedly reduced 
for the one-stage approaches than for the two-stage 
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Fig. 1 Simulation study results. Point estimates of the treatment effect and performance metrics for all methods and simulation scenarios
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approaches, and for the untruncated approaches than for 
the truncated ones.

Where covariate overlap is strong, T-2SMAIC has 
the highest precision, followed by 2SMAIC, T-MAIC 
and MAIC. Where covariate overlap is moderate or 
poor, T-2SMAIC has the highest precision, followed by 
T-MAIC, 2SMAIC and MAIC.

Efficiency
As per the ESE, MSE values decrease for all methods 
as the index trial sample size and covariate overlap 
increase. In agreement with the trends for precision, 
the two-stage versions of MAIC increase efficiency with 
respect to the corresponding one-stage methods in all 
scenarios, particularly in the n=140 settings. Efficiency 
gains for the two-stage approaches are stronger where 
covariate overlap is strong and become less noticeable 
as covariate overlap weakens, due to extreme weights. 
For instance, with strong overlap and n=200, MSEs for 
MAIC and 2SMAIC are 0.205 and 0.127, respectively. 
With poor overlap and n=200, these are 0.459 and 
0.393, respectively.

Differences in MSE between methods are driven more 
by comparative precision than bias. This is expected 
in the strong overlap scenarios, where the bias for all 
methods is negligible, but also occurs in the poor over-
lap scenarios. The precision gains of truncation more 
than counterbalance the increase in bias when the vari-
ability of the weights is high. As overlap decreases, the 
relative efficiency of the truncated versus the untrun-
cated approaches is markedly improved. For example, 
with poor overlap and n=200, the MSE of T-MAIC and 
T-2SMAIC is 0.263 and 0.233, respectively (compared to 
MSEs of 0.459 and 0.393 for MAIC and 2SMAIC).

T-2SMAIC is the most efficient method and MAIC 
is the least efficient method across all simulation sce-
narios in terms of MSE. Where covariate overlap is 
strong, T-2SMAIC yields the highest efficiency, followed 
by 2SMAIC, T-MAIC and MAIC. Where overlap is 
poor, T-2SMAIC has the highest efficiency, followed by 
T-MAIC, 2SMAIC and MAIC. Where overlap is moder-
ate, 2SMAIC and T-MAIC have comparable efficiency.

Coverage
From a frequentist perspective, 95% confidence inter-
val estimates should include the true estimand 95% of 
the time. Namely, empirical coverage rates should equal 
the nominal coverage rates to ensure appropriate type I 
error rates for testing a “no effect” null hypothesis. Theo-
retically, due to our use of 5,000 Monte Carlo simulations 
per scenario, empirical coverage rates are statistically sig-
nificantly different to the desired 0.95 if they are under 
0.944 or over 0.956.

Empirical coverage rates for MAIC are statistically sig-
nificantly different to the nominal coverage rate in all but 
one scenario: that with strong overlap and n=200. Where 
covariate overlap is strong or moderate, all other meth-
ods exhibit empirical coverage rates that are very close 
to the advertised nominal values (all differences are not 
significantly different, except for T-MAIC in the scenario 
with strong overlap and n=140).

There is discernible undercoverage for all methods 
when overlap is poor. This is particularly the case for 
the approaches without truncation. For instance, for 
the smallest sample size (n=140) with poor overlap, the 
empirical coverage rate is 0.900 for MAIC and 0.917 for 
2SMAIC. These anti-conservative inferences could arise 
from the use of normal distribution-based confidence 
intervals when the ESS after weighting is small. While 
the large-sample normal approximation produces asymp-
totically valid inferences, a reasonable alternative in small 
ESS scenarios could be the use of a t-distribution. An 
open question is how to choose the degrees of freedom of 
the t-distribution.

Interestingly, coverage drops are larger for the untrun-
cated approaches than for the truncated approaches as 
overlap weakens. This is surprising because the trun-
cated methods induce sizeable bias in the poor overlap 
settings, and one would have expected coverage rates to 
be degraded further by this bias. Weight truncation has 
improved coverage rates in another simulation study in a 
different context [31]. This warrants further investigation. 
Overcoverage is not a problem for any of the methods as 
the empirical coverage rates never rise above 0.956.

Discussion
Limitations of simulation study
In all simulation scenarios, two-stage methods offer 
enhanced precision and efficiency with respect to one-
stage methods. These gains are likely linked to the prog-
nostic strength of the baseline covariates included in 
the treatment assignment model. We have assumed, as 
is typically the case in practice, that the baseline covari-
ates are prognostic of outcome. Less notable increases 
in precision and efficiency are expected when covariate-
outcome associations are lower.

All approaches depend on the critical assumption of 
conditional transportability over trials. Given the some-
what arbitrary and unclear process driving selection 
into different studies in our context (in reality, there is 
not a formal assignment process determining whether 
subjects are in study sample S=1 or S=2), I have not 
specified a true trial assignment mechanism in the simu-
lation study. Nevertheless, the true outcome-generating 
mechanism imposes linearity and additivity assump-
tions in the covariate-outcome associations and the 
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treatment-by-covariate interactions. Conditional trans-
portability holds because the trial assignment model 
balances means for all the covariates that modify the 
marginal treatment effect of A vs. C.

In real-life scenarios, it is entirely possible that more 
complex relationships underlie the outcome-generat-
ing process. These would potentially require balancing 
higher-order moments, covariate-by-covariate interac-
tions and non-linear transformations of the covariates. In 
practice, sensitivity analyses will be required to explore 
whether there are discrepancies in the results produced 
by different model specifications.

The methods evaluated in this article focus on correct-
ing for imbalances in baseline covariates, i.e., the ‘P’ in 
the PICO (Population, Intervention, Comparator, Out-
come) framework [79]. Nevertheless, there are other 
kinds of differences which may bias indirect treatment 
comparisons, e.g. in comparator or endpoint definitions. 
The methodologies that have been evaluated in this arti-
cle cannot adjust for these types of differences.

Contributions in light of recent simulation studies
Prior simulation studies in the context of anchored 
indirect treatment comparisons have concluded that 
outcome regression is more precise and efficient than 
weighting when the conditional outcome-generating 
mechanism is known [23, 24]. This is likely to remain the 
case despite the performance gains of 2SMAIC and the 
truncated approaches with respect to MAIC.

Nevertheless, there is one caveat. In these studies, the 
(one-stage) MAIC trial assignment model only accounts 
for covariates that are marginal effect modifiers. The rea-
son for this is that including prognostic covariates that 
are not effect modifiers deteriorates precision without 
improving the potential for bias reduction. Conversely, 
the outcome regression approaches have included all 
prognostic covariates in the outcome model, making use 
of this prognostic information to increase precision and 
efficiency. Therefore, the equipoise or fairness in previous 
comparisons between weighting and outcome regression 
is debatable.

With 2SMAIC, weighting approaches can now make 
use of this prognostic information by including the rel-
evant covariates in the treatment assignment model. 
Future simulation studies comparing weighting and out-
come regression should involve 2SMAIC as opposed to 
its one-stage counterpart, particularly in these “perfect 
information” scenarios.

Extension to observational studies
Almost invariably, anchored MAIC has been applied in 
a setting where the index trial is randomized. In this set-
ting, the inclusion of the treatment assignment model 

leads to efficiency gains by increasing precision. Any 
reduction in bias will be, at most, modest due to the 
internal validity of the index trial. Nevertheless, in  situ-
ations where the index study is observational, the treat-
ment assignment model can be useful to reduce internal 
validity bias due to confounding.

Transporting the results of a non-randomized study 
from S=1 to S=2 requires further untestable assump-
tions. Additional barriers are: (1) susceptibility to 
unmeasured confounding; and (2) positivity issues. Due 
to randomization, there is typically excellent overlap 
between treatment arms in RCTs. However, theoreti-
cal (deterministic) violations of positivity may occur in 
observational study designs [34, 60, 80], e.g. subjects with 
certain covariate values may have a contraindication for 
receiving one of the treatments, resulting in a null prob-
ability of treatment assignment.

In addition to these conceptual problems, “chance” vio-
lations of positivity may occur with small sample sizes 
or high-dimensional data due to sampling variability, in 
both randomized and non-randomized studies. These 
have not been observed in this simulation study. Near-
violations of positivity between treatment arms may lead 
to extreme inverse probability of treatment weights [81], 
further inflating variance in 2SMAIC.

Finally, it is worth noting that observational study 
designs have traditionally been more prone than RCTs 
to additional causes of internal validity bias, e.g. miss-
ing outcome data, measurement error or protocol 
deviations [82].

Approaches for variance reduction
Weight truncation is a relatively informal but easily 
implemented method to improve precision by restricting 
the contribution of extreme weights. The choice of a 95th 
percentile cutoff is based on prior literature and is some-
what arbitrary, but worked well in this simulation study. 
Alternative threshold values could be considered.

Lower thresholds will further reduce variance at the 
cost of introducing more bias and shifting the target pop-
ulation or estimand definition further [32, 83]. The ideal 
truncation level will vary on a case-by-case basis and can 
be set empirically, e.g. by progressively truncating the 
weights [32, 84]. Density plots are likely helpful to assess 
the dispersion of the weights and identify an optimal 
cutoff point. Weight truncation is likely of little utility 
where there is sufficient overlap and the weights are well-
behaved. Efficiency gains are expected to decrease with 
larger sample sizes, as the induced bias could potentially 
offset the reduction of variance.

We have only explored two strategies to improve effi-
ciency: (1) modeling the trial assignment mechanism; 
and (2) truncating the weights that are above a certain 
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level. Nevertheless, there are other approaches that could 
be used in practical applications, either on their own or 
combined with the procedures explored in this article. 
Weight trimming [85] is closely related to weight trun-
cation. It involves excluding the subjects with outlying 
weights, thereby sharing many of the limitations of trun-
cation: setting arbitrary cutoff points, and changing the 
target population even further. Trimming is unappealing 
because it directly throws away information, discarding 
data from some individuals, and likely losing precision 
with respect to truncation.

The use of stabilized weights is often recommended to 
gain precision and efficiency [32, 86], particularly when 
the weights are highly variable. In the implementations 
of MAIC in this article, the fitted weighted outcome 
model is considered to be “saturated” (i.e., cannot be mis-
specified) because it is a marginal model of outcome on 
a time-fixed binary treatment [87]. For saturated models, 
stabilized and unstabilized weights give identical results 
[87]. Nevertheless, weight stabilization is encouraged 
when the weighted outcome model is unsaturated, e.g. 
with dynamic (time-varying) or continuous-valued treat-
ment regimens [44, 88].

Another approach that has been used to gain efficiency 
is overlap weighting [89, 90]. It also changes the target 
estimand, estimating treatment effects in a subsample 
with good overlap. While the approach is worth con-
sideration, it is challenging to implement in our context 
because IPD are unavailable for the competitor study.

In the Background section, I referred to the weight 
estimation procedure by Jackson et al. [22], which satis-
fies the method of moments while maximizing the ESS, 
thereby reducing the dispersion of the weights. 2SMAIC 
is a modular framework and this approach could be used 
instead of the standard method of moments to estimate 
the trial assignment odds weights. Different weighting 
modules could be incorporated to account for missing 
outcomes [35], treatment switching [91, 92] and other 
forms of non-adherence to the protocol [36] in the index 
trial.

Conclusions
I have introduced 2SMAIC, an extension of MAIC 
that combines a model for the treatment assignment 
mechanism in the index trial with a model for the trial 
assignment mechanism. The first model accounts for 
covariate differences between treatment arms, produc-
ing inverse probability weights that can balance the 
treatment groups of the index study. The second model 
accounts for effect modifier differences between stud-
ies, generating odds weights that achieve balance across 
trials and allow us to transport the marginal effect for 
A vs. C from S=1 to S=2. In 2SMAIC, both weights 

are combined to attain balance between the treatment 
arms of the index trial and across the studies.

The statistical performance of 2SMAIC has been 
investigated in scenarios where the index study is an 
RCT. We find that the addition of a second (treatment 
assignment) stage increases precision and efficiency 
with respect to the standard one-stage MAIC. It does 
so without inducing bias and being less prone to under-
coverage. Efficiency and precision gains are prominent 
when the index trial has a small sample size, in which 
case it is subject to empirical imbalances in prognos-
tic baseline covariates. Two-stage MAIC accounts for 
these chance imbalances through the treatment assign-
ment model, mitigating the precision loss coming with 
decreasing sample sizes. Precision and efficiency gains 
are attenuated when there is poor overlap between 
the target populations of the studies, due to the high 
extremity of the estimated weights.

The inclusion of weight truncation approaches has 
been evaluated for the first time in the context of MAIC. 
The one-stage and two-stage approaches produced very 
little bias before truncation was applied. Where covariate 
overlap was strong and the variability of the weights tol-
erable, truncation only improved precision and efficiency 
slightly, while inducing bias. The benefits of truncation 
become more apparent in  situations with weakening 
overlap, where it diminishes the influence of extreme 
weights, substantially improving precision and even cov-
erage with respect to the untruncated approaches.

Due to bias-variance trade-offs, precision improve-
ments always come at the cost of bias. In this simulation 
study, the trade-off favors variance reduction over the 
induced bias, with truncation improving efficiency in 
all scenarios. Nevertheless, truncation is likely unneces-
sary when the weights are well-behaved and the ESS after 
weighting is sizeable. The combination of a second stage 
and weight truncation is most effective in improving pre-
cision and efficiency in all simulation scenarios.

When covariate overlap is poor, undercoverage is an 
issue for all methods, particularly for the untruncated 
approaches. Novel outcome regression-based techniques 
[21, 23–25, 93] may be preferable in these situations. The 
development of doubly robust approaches that combine 
outcome modeling with a model for the trial assignment 
weights is also attractive, as these would give researchers 
two chances for correct model specification.

In the absence of a common comparator group, 
unanchored comparisons contrast the outcomes of 
single treatment arms between studies. Because one 
of the stages relies on estimating the treatment assign-
ment mechanism in the index study, the two-stage 
approaches are not applicable in the unanchored 
case. This is a limitation, as many applications of 
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covariate-adjusted indirect comparisons are in this set-
ting [10], both in published studies and in health tech-
nology appraisals.

Finally, I address a misconception that has arisen recently 
in the literature [25, 94]. It is believed that MAIC repli-
cates the unadjusted analysis that would be performed in a 
hypothetical “ideal RCT” because it targets a marginal esti-
mand, and that MAIC cannot make use of information on 
prognostic covariates. While all approaches to MAIC tar-
get marginal estimands, these produce covariate-adjusted 
estimates of the marginal effect. The standard one-stage 
approach to MAIC accounts for covariate differences across 
studies. The two-stage approaches introduced in this article 
generate covariate-adjusted estimates that also account for 
imbalances between treatment arms in the index trial, as is 
the case in covariate-adjusted analyses of RCTs.
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