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Introduction
Worldwide, over 130 million babies are born each year. 3.6 million will die due to perina-
tal complication and 1 million of these will be intrapartum still births [1]. In the USA, 
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Background:  Visual inspection of cardiotocography traces by obstetricians and mid‑
wives is the gold standard for monitoring the wellbeing of the foetus during antenatal 
care. However, inter- and intra-observer variability is high with only a 30% positive 
predictive value for the classification of pathological outcomes. This has a significant 
negative impact on the perinatal foetus and often results in cardio-pulmonary arrest, 
brain and vital organ damage, cerebral palsy, hearing, visual and cognitive defects and 
in severe cases, death. This paper shows that using machine learning and foetal heart 
rate signals provides direct information about the foetal state and helps to filter the 
subjective opinions of medical practitioners when used as a decision support tool. The 
primary aim is to provide a proof-of-concept that demonstrates how machine learning 
can be used to objectively determine when medical intervention, such as caesarean 
section, is required and help avoid preventable perinatal deaths.

Methods:  This is evidenced using an open dataset that comprises 506 controls (nor‑
mal virginal deliveries) and 46 cases (caesarean due to pH ≤ 7.20—acidosis, n = 18; 
pH > 7.20 and pH < 7.25—foetal deterioration, n = 4; or clinical decision without 
evidence of pathological outcome measures, n = 24). Several machine-learning algo‑
rithms are trained, and validated, using binary classifier performance measures.

Results:  The findings show that deep learning classification achieves sensitiv‑
ity = 94%, specificity = 91%, Area under the curve = 99%, F-score = 100%, and mean 
square error = 1%.

Conclusions:  The results demonstrate that machine learning significantly improves 
the efficiency for the detection of caesarean section and normal vaginal deliveries 
using foetal heart rate signals compared with obstetrician and midwife predictions and 
systems reported in previous studies.
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the number of deliveries in 2012 was 3952,841; one in every 164 of these resulted in still-
birth.1 In the UK, in the same year, there were 671,255 with one in every 200 being still-
birth2 and 300 that died in the first four weeks of life [2].

Cardiotocography (CTG) is the most common method used to monitor the foetus 
during the early stages of delivery [3] and clinical decisions are made using the visual 
inspection of CTG traces. However, the main weakness with this approach is poor 
human interpretation which leads to high inter- and intra-observer variability [4]. While 
significant pathological outcomes like hypoxia are uncommon, false alarms are not, 
which can lead to serious abnormalities, such as cardio-pulmonary arrest, brain and 
vital organ damage, cerebral palsy, hearing, visual and cognitive defects and in severe 
cases, death, being overlooked [5]. Conversely, over interpretation of CTG is common 
and the direct cause of unnecessary caesarean sections (CS). In such cases, between 40 
and 60% of babies are born without any evidence to support pathological outcomes, 
such as hypoxia and metabolic acidosis [6].

This paper aims to address this problem by incorporating a proof-of-concept system 
alongside existing gold standard methods in antenatal care. Using foetal heart rate sig-
nals and machine learning an objective measure of foetal state is used to detect the onset 
of pathological cases. This will provide obstetricians and midwives with an additional 
level of foetal state interpretation and help decide if and when surgical intervention is 
required. The results show that the approach has superior predictive capacity when 
compared with the 30% positive predictive value produced by obstetricians and mid-
wives when classifying normal vaginal and caesarean section deliveries [7].

The remainder of this paper is organized as follows: “Background” provides a brief 
description of CTG as a screening tool for foetal hypoxia and its causes, and the find-
ings of related work. “Methods” describes the dataset adopted in this paper and various 
steps involved. “Results” presents the classification outcomes for both control and case 
records, and the findings are discussed in “Discussion”. The paper is concluded in “Con-
clusions and future work”.

Background
CTG was initially developed as a screening tool to predict foetal hypoxia [7]. However, 
there is no evidence to suggest that there has been any improvement in perinatal deaths 
since the introduction of CTG into clinical practice 45 years ago. It is generally agreed 
that 50% of birth-related brain injuries are preventable, with incorrect CTG interpreta-
tion leading the list of causes [8]. Equally, over interpretation of CTG is common and the 
direct cause of unnecessary caesarean sections, which costs the NHS £1700 for each cae-
sarean performed compared with £750 for a normal vaginal delivery. It is therefore gen-
erally agreed that predicting adverse pathological outcomes and diagnosing pathological 
outcomes earlier clearly have important consequences, for both health and the economy. 
One interesting approach is machine learning.

Warrick et al. [9] developed a system for the classification of normal and hypoxic foetuses 
by modelling the FHR and uterine contraction (UC) signal pairs as an input–output system 

1  http://www.cdc.gov/.
2  http://www.hscic.gov.uk.

http://www.cdc.gov/
http://www.hscic.gov.uk
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to estimate their dynamic relation in terms of an impulse response function [10]. The authors 
report that their system can detect almost half of the pathological cases 1 h and 40 min prior 
to delivery with a 7.5% false positive rate. Kessler et al. [11] on the other hand, using 6010 
high risk deliveries, combined CTG with ST waveform to apply timely intervention for cae-
sarean or vaginal delivery, which they report, reduced foetal morbidity and mortality [12].

In comparative studies, Huang et al. [13] compared three different classifiers; a decision 
tree (DT), an artificial neural network (ANN), and discriminant analysis (DA). Using the 
ANN classifier, it was possible to obtain a 97.78% overall accuracy. This was followed by 
the DT and DA with 86.36 and 82.1% accuracy respectively. The sensitivity and specific-
ity values were not provided making accuracy alone an insufficient performance measure 
for binary classifiers. This is particularly true in evaluations where datasets are skewed in 
favour of one class with significant differences between prior probabilities.

In a similar study, Ocak et al. [14] evaluated an SVM and genetic algorithm (GA) clas-
sifier and reported 99.3 and 100% accuracies for normal and pathological cases respec-
tively. Similar results were reported in [15, 16]. Again, Sensitivity and Specificity values 
where not provided in these studies. Meanwhile Menai et al. [17] carried out a study to 
classify foetal state using a naive bayes (NB) classifier with four different feature selec-
tion (FS) techniques: Mutual information, correlation-based, ReliefF, and information 
gain. The study found that the NB classifier in conjunction with features produced using 
the ReliefF technique produce the best results when classifying foetal state with 93.97, 
91.58, and 95.79% for accuracy, sensitivity and specificity, respectively. While the results 
are high, the dataset is multivariate and highly imbalanced. Alternative model evaluation 
metrics for multi-class data, such as micro- and macro-averaging, and micro and macro-
F-measure, would provide a more informed account of model performance. Further-
more, an appropriate account of how the class skew problem was addressed is missing.

The adaptive boosting (AdaBoost) classifier was adopted in a study by Karabulut et al. 
[18] who report an accuracy of 95.01%—again no sensivity or specificity values were pro-
vided. While Spilka et al. who are the current forerunners of pioneering work in machine 
learning and CTG classification [6], used a random forest (RF) classifier in conjunction 
with latent class analysis (LCA) [19] and reported sensitivity and specificity values of 72 
and 78% respectively using the CTG-UHB dataset [3]. Producing slightly better results 
in [20] using the same dataset, Spilka et  al. attempted to detect hypoxia using a C4.5 
decision tree, naive bayes, and SVM. The SVM produced the best results using a tenfold 
cross validation method achieving 73.4% for sensitivity and 76.3% of specificity.

Methods
This section describes the dataset adopted in this study and discusses the steps taken to 
pre-process the data and extract the features from raw FHR signals. The section is then con-
cluded with a discussion on the feature selection technique and dimensionality reduction.

CTG data collection

Chudacek et al. [3] conducted a comprehensive study that captured intrapartum record-
ings between April 2010 and August 2012. The recordings were collected from the Uni-
versity Hospital in Brno (UHB), in the Czech Republic by obstetricians with the support 
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of the Czech Technical University (CTU) in Prague. These records are publically avail-
able from the CTU-UHB database, in Physionet [3].

The CTU-UHB database contains 552 CTG recordings for singleton pregnancies with 
a gestational age less than 36 weeks that were selected from 9164 recordings. The STAN 
S21/S31 and Avalon FM 40/50 foetal monitors were used to acquire the CTG records. 
The dataset contains no prior known development factors (i.e. they are ordinary clean 
obstetrics cases); the duration of stage two labour is less than or equal to 30 min; foetal 
heart rate signal quality is greater than 50% in each 30 min’ window; and the pH umbili-
cal arterial blood sample is available. In the dataset, 46 caesarean section deliveries are 
included and the rest are ordinary clean vaginal deliveries. Figure  1 shows a scatter 
plot of the dataset with eclipses defining the separation between both case and control 
groups. Note that in this study 46 cases are classified as a caesarean delivery due to pH 
≤7.20—acidosis, n = 18; pH >7.20 and pH ≤7.25—foetal deterioration, n = 4; or clinical 
decision without evidence of pathological outcome measures, n = 24 as defined in [14]. 
Table 1 provides details of the outcome measures used in the CTU-UHB database.

The ID column in Table 1 maps to the file number in the CTU-UHB database, while 
the second column provides details about the mothers age. The pH column describes 
the umbilical artery pH value for each case and BDef provides information on the base 
deficit in extracellular fluid. The PCO2 describes the partial pressure of carbon dioxide. 
BE gives values for the base excess and finally Apgar scores are a subjective evaluation 

Fig. 1  Separation of caesarean section and normal vaginal delivery points
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Table 1  Caesarean section outcome measures

ID Age pH BDecf pCO2 BE Apgar1 Apgar5 Dev type

2001 30 7.03 22.52 2.8 −23.7 10 10 2

2002 39 7.27 3.75 6.5 −4.5 7 4 2

2003 25 6.96 16.96 7.2 −19 6 8 2

2004 34 6.95 11.44 11.6 −15.3 6 8 2

2005 31 7.25 3.47 7 −5.5 10 10 2

2006 32 7.29 NaN NaN NaN 10 10 2

2007 27 7.04 20.42 3.8 −21.8 10 10 2

2008 26 6.98 13.43 9.3 −16.7 5 7 2

2009 21 6.96 20.34 5.4 −23 10 10 2

2010 19 7.3 −0.48 7.2 −1.5 10 10 2

2011 37 7.01 12.1 9.2 −14.8 3 7 2

2012 26 7.29 −0.44 7.4 −1.4 9 9 2

2013 27 6.85 22.63 6.4 −25.3 8 8 2

2014 34 7.32 2.28 6 −3.2 10 10 2

2015 29 7.33 4.15 5.3 −5.1 9 10 2

2016 38 7.27 1.88 7.1 −3.8 9 10 2

2017 34 7.32 −0.16 6.7 −2 10 10 2

2018 30 7.31 3.93 5.7 −5 10 10 2

2019 31 7.29 4.13 6 −5.6 9 9 2

2020 28 7.15 3.09 9.6 −5.8 4 7 2

2021 28 7.3 0.19 7 −2.2 9 10 2

2022 31 7.28 −0.38 7.6 −1.6 9 10 2

2023 28 6.98 14.49 8.7 −17.4 6 8 2

2024 39 7.01 7.14 12.1 −10.9 2 4 2

2025 29 6.99 12.61 9.5 −16 8 8 2

2026 32 7.23 −0.13 8.7 −2.1 10 10 2

2027 26 7.31 1.88 6.3 −3.2 9 10 2

2028 36 7.18 4.82 8.1 −7.2 8 9 2

2029 34 7.28 1.22 7.1 −3.4 10 10 2

2030 42 7.04 26.11 0.7 −26.8 10 10 2

2031 26 7.29 1.52 6.8 −2.9 9 9 2

2032 35 7.26 3.14 6.9 −4.7 9 10 2

2033 26 7.39 0.86 5.2 −1.5 9 9 2

2034 34 7.34 NaN NaN NaN 9 9 2

2035 27 7.26 2.23 7.2 −4.3 8 9 2

2036 34 7.29 2.5 6.5 −3.7 5 7 2

2037 29 7.25 1.09 7.8 −3 9 10 2

2038 27 7.36 3.5 5 −4 5 8 2

2039 29 7.32 −0.51 6.8 −0.5 9 10 2

2040 23 7.23 5.27 6.8 −7 2 6 2

2041 32 7.37 3.69 4.8 −3.1 9 9 2

2042 27 7.33 −0.5 6.6 −0.8 9 10 2

2043 26 7.08 10.92 7.9 −13.3 8 9 2

2044 27 7.02 9.13 10.6 −12.3 8 8 2

2045 32 7.03 8.91 10.4 −12.2 7 9 2

2046 19 7.01 NaN NaN NaN 5 7 2
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of the outcome of the delivery. For a more in-depth discussion of the dataset and these 
parameters please refer to [3].

Each recording begins no more than 90 min before delivery. Each CTG record con-
tains the FHR time series (measured in beats per minute) and uterine contraction (UC) 
signal—each sampled at 4  Hz. The FHR was obtained from an ultrasound transducer 
attached to the abdominal wall. In this study only the FHR signal is only considered in 
this study since it provides direct information about the foetal state.

Pre‑processing

Each of the 552 FHR signal recordings were filtered using a 6th order low-pass butter-
worth filter with fc = 4 Hz and a cut-off frequency of 0.034 Hz. To correct the phase dis-
tortion introduced by a one-pass filter, a two-pass filter (forwards and reverse) was used 
to filter each of the signals. Noise, and missing values were removed using cubic Hermite 
spline interpolation [21].

FHR features

This section describes the statistical, higher-order statistical and higher-order spectral 
features extracted from the FHR signals.

Morphological features

The initial set of features considered are those defined by the international federation of 
gynecology and obstetrics3 (FIGO) and the National Institute for Health and Care Excel-
lence4 (NICE). Consider a raw FHR time series signal X with length N, where X = {xn, 
n = 1, 2…, N}, in which the virtual baseline mean (VBM), x is defined as:

Such that x can be used to remove accelerations and decelerations 
(if xn > 10+ x then: xn = x̄+ 10; if xn < −10+ x then: xn = x̄+−10 from the FHR 
signal so that the real baseline FHR (RBL) can be derived [22]:

where H and L are the upper and lower limits of the time series signal respectively, X is 
the signal and N is the length of the signal.

Using the RBL, FIGO accelerations and decelerations can be extracted. These are fea-
tures commonly used by obstetricians to monitor the interplay between the sympathetic 
and parasympathetic systems. Accelerations and decelerations within X represent the 
transient increases and decreases (±15 bpm) that last for 15 s or more [23]. In the case 
of accelerations, this typically indicates adequate blood delivery and is reassuring for the 
obstetrician. Calculating accelerations in the signal is defined by:

3  http://www.figo.org/.
4  https://www.nice.org.uk/.

(1)x̄ =

∑N
n=1 xn

N

(2)RBL =

∫ H
L X

N

(3)Acctotal = ∃xi ∈ X , xi ≥ RBL+ 15 & D ≥ 15

http://www.figo.org/
https://www.nice.org.uk/
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where X is the signal, xi is the ith element of X, RBL is the real baseline defined in (2), 
and D is the duration of time in which xi remains above RBL +15.

In contrast decelerations represent temporary decreases (−15 bpm) in FHR below the 
RBL that last for 15 s or more, which can indicate the presence of possible pathological 
outcomes such as, umbilical cord compression, hypoxia or acidosis [18]. The decelera-
tions in the signal are calculated as:

where xi is the ith element of signal X, RBL is the real baseline, and D is the time dura-
tion in which xi remains below RBL-15.

Short and long-term variability (STV and LTV respectively) are further indicators 
used by obstetricians. The presence of both suggests an intact neuromodulation of the 
FHR and normal cardiac function and is one of the most reassuring measures in neona-
tal care [24]. When STV or LTV decreases or is absent, it can be a significant indicator 
for the presence of hypoxia or acidosis. Therefore, they are both considered to be impor-
tant predictors. STV is calculated according to the following equation:

where M is the number of minutes contained in the X signal and Rt is defined as:

where H is the number of subintervals in 60 s (in this case H = 60/K), K is the sample 
frequency (4 Hz) multiplied by 2.5 s and Sj is the average value of 2.5 s for a subinterval 
j = {1, 2,…,H}.

In contrast, LTV is defined as the difference between the minimum and maximum 
value in a 60-s block and is averaged to the duration of the signal if it is more than 1 min 
long. LTV is defined as:

where N is the length of the X signal, b is 240 samples (60-s blocks for a 4 Hz sample 
frequency).

Collectively, RBL, accelerations, decelerations, STV and LTV define the five main 
FIGO/NICE features used by obstetricians and midwives and are subsequently consider 
as predictors for separating caesarean section and normal vaginal deliveries in this study.

Time series features

FIGO feature sets are often extended in automated CTG analysis to include patterns 
in the signal that are not easily identifiable through visual inspection. Two useful time-
series features that have been heavily utilized in medical signal processing are root mean 

(4)Dectotal = ∃xi ∈ X , xi ≤ RBL− 15 & D ≥ 15

(5)STV =
1

M

M∑

t=1

Rt

(6)Rt =
1

H − 1

H−1∑

j

∣∣Sj − Sj+1

∣∣

(7)LTV =
1

N/60

N∑

i=1

[
max
i∈N

(X(i + b))−min
i∈M

(X(i + b))

]
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squares (RMS) and sample entropy (SampEn). RMS is a useful feature for estimating 
short term variability between accelerations and deceleration [25] and is commonly 
described for a signal X with length N as:

This feature is particularly good at estimating sympathetic/parasympathetic domi-
nance where the later, in a similar way to decelerations, can indicate the presence of pos-
sible pathological incidences, such as hypoxia and acidosis.

Whereas, sample entropy, quantifies the nonlinear dynamics of the FHR and the 
loss of complexity in the FHR signal. Previous studies have reported that it is a worth-
while feature for determining if the foetus is deprived of oxygen [26]. Sample entropy 
is the negative natural logarithm of the conditional probability that a dataset of 
length N, having repeated itself for m samples within a tolerance of r, will also repeat 
itself for m +  1 samples. Based on the calculation in [27] the time series X that con-
tains N points, xi, x2 . . . , xN subsequences can be defined by length m, and given by: 
yi = (xi, xi+1, . . . ., xi+m−1) where i = 1, 2, …, N – m + 1. This allows the following quan-
tity to be defined: Bm

i (r) as (N −m− 1)−1 times the number of vectors Vm
j  within r of 

Vm
i , where j ranges from 1 to N−m, and j �= i, to exclude self-matches, followed by:

Similarly, Am
i (r) is defined as (N −m− 1)−1 times the number of vectors Vm+1

j  within 
r of Vm+1

i , where j ranges from 1 to N−m, and j �= i, and set:

The parameter SampEn(m, r) is then defined as:

Which can be estimated by the statistic:

where N is the length of the X signal, m is the length of sequences to be compared, and r 
is the tolerance for accepted matches.

Frequency domain features

To overcome signal quality variations in the FHR signal, due to electrode placement and 
the physical characteristics of subjects [28], frequency domain features have been stud-
ied using power spectral density (PSD) computed using fast fourier transform (FFT):

(8)RMS =

√√√√ 1

N

N−1∑

i=0

x2i

(9)Bm(r) =
1

n−m

N−m∑

i=1

Bm
i (r)

(10)Am(r) =
1

n−m

N−m∑

i=1

Am
i (r)

(11)lim
N→∞

{
− ln

[
Am(r)

Bm(r)

]}

(12)SampEn(m, r,N ) =

{
− ln

[
Am(r)

Bm(r)

]}
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where X(f) contains the information for the signal and x(t) is obtained from X(f) using 
the inverse of the fourier transformation:

The most notable feature is the peak frequency (FPeak) within the PSD, which has been 
used extensively in heart rate variability studies [29]. It is regarded as a useful measure of 
variability and normal sympathetic and parasympathetic function. It describes the domi-
nant frequency in the PSD that has the maximum spectral power. In this study, peak 
frequency is derived using Welch’s method [30]:

where si(i) is the power of the spectrum at bin i. As shown later in the paper, this feature 
has good discriminative capacity as a confounding coefficient.

Non‑linear features

Poincare plots are a geometrical representation of a time series that is also used exten-
sively to measure heart rate variability [20]. This paper shows that it has excellent dis-
criminatory capacity in CTG analysis. Unlike HRV where it is commonly used, in FHR 
the difference between two beats is given as NN rather than the RR interval. A line of 
identity is used as a 45° imaginary diagonal line on the plot and the points falling on the 
line have the property NNn = NNn+1 [31]. Three coefficients of the Poincare plot, SD1 
(the standard deviation of points perpendicular to the axis of line-of-identity), SD2 (the 
standard deviation of points along the axis of line-of-identity) and SDRatio are used as 
features to describe the cloud of points in the plot. Fundamentally, SD1 and SD2 are 
directly related to the standard deviation of NN interval (SDNN) and the standard devi-
ation of the successive difference of the NN interval (SDSD) that is given by:

where YNN (0) and YNN (1) describe the autocorrelation function for lag-0 and lag-1 of the 
NN interval, respectively. The mean of NN intervals is NN . Equation 16 shows that SD1 
and SD2 measures are derived from the correlation and mean of the NN intervals time 
series with lag-0 and lag-1.

The SD1 feature is an index of instantaneous recording of the beat-to-beat short-term 
variability (the parasympathetic action) and SD2 describes the long-term variability 
(the sympathetic action). SD1 and SD2 are combined to form the ratio of SD1/SD2 that 
shows the relation between short and long-term variations of NN intervals:

(13)
X(f) =

∫ +∞

−∞

x(t)e−j2π ftdt and −∞ < f < +∞

(14)x(t) =

∫ +∞

−∞

X(f)e−j2π ftdt with −∞ < f < +∞

(15)
FPeak = max

(
N∑

i=1

si(i)

)

(16)
SD1

2 =
1

2
SDSD

2 = YNN(0)− YNN(1)

SD2
2 = 2SDNN

2 −
1

2
SDSD

2 = YNN(0)+ YNN (1)− 2NN 2
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It is also possible to detect the existence of chaos in the FHR signal since the foetal 
heartbeat fluctuates on different time scales and has the property of being self-similar. In 
this study, the box-counting dimension is used to estimate the dynamics of the FHR [32]. 
It is a quantitative measure of the morphological properties of a signal and its capac-
ity that is determined by covering the signal with N boxes of side length r. The mini-
mal number of optimally sized boxes required to cover the complete signal describes the 
box-counting dimension coefficient such that:

where D is the box counting fractal dimension of the object, r is the side length of the 
box, and N(r) is the smallest number of boxes of side r to cover the time series signal.

Long-term time-correlations or self-affinity measures of the FHR signal have also 
proven in previous studies to be useful for separating normal and pathological cases 
[33]. In this study, detrend fluctuation analysis (DFA) is performed where the returned 
exponent value indicates the presence or absence of fractal properties, i.e. self-similarity. 
The DFA probes the signal at different time scales and provides a fractal scaling expo-
nent x. First the times series is integrated as follows:

where y(k) is the cumulative sum of the ith sample and Xavg is the mean value of the 
entire signal. Windows are derived from y(k) of equal length n and linear approximations 
yn are found using least squares fit (this represents a trend in a given window). The aver-
age fluctuation F(n) of the signal around the trend is given by:

The calculations are repeated for all values of n. In this instance the primary focus is 
the relation between F(n) and the size of the window n. In general F(n) increases with 
the size of window n.

Feature selection

Feature selection is performed using the recursive feature eliminator algorithm (RFE) 
[34]. In this study a feature set was derived from the raw FHR signals based on the fea-
ture definitions described and a model fit generated using the RFE algorithm (refer to 
Algorithm 1) [34].

(17)SDRatio = π × SD1 × SD2

(18)D = lim
r→0

logN(r)

log(1/r)

(19)y(k)=

k∑

i=1

X(i)− Xavg

(20)F(n) =

√√√√ 1

N

N∑

k=1

(
y(k)− yn(k)

)2
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Each feature within this set is ranked using its importance to the model where S is a 
sequence of ordered numbers, which are candidate values for the number of features to 
retain (S1 > S2,...). This process is repeated and the Si top ranked features are retained. 
The model is refit and the performance is reassessed. The top Si features are used to fit 
the final model.

Synthetic minority oversampling technique

In a two class balanced dataset the prior probabilities will be equal for each. This is not 
the case for the CTU-UHB dataset given there are 506 controls (majority class) and 46 
cases (minority class). Classifiers are more sensitive to detecting the majority class and 
less sensitive to the minority class and this leads to biased classification [35]. Therefore, 
given a random sample taken from the dataset, the probability of a classifier classifying a 
foetus observation as a control will be much higher (91.6%–506/552) than the probabil-
ity of it classifying a foetus observation as a case (8.3%–46/552). This imposes a higher 
cost for misclassifying the minority (predicting that a foetus is normal and the outcome 
being pathological) than the majority class, (predicting a foetus is pathological and the 
outcome being normal).

In order to address this problem, it is necessary to resample the dataset [36]. Various 
resampling techniques are available, and these include under sampling and over sam-
pling. Under sampling reduces the number of records from the majority class to make it 
equal to the minority class—in this instance it would mean removing 460 records leav-
ing us with a very small dataset. In contrast, data in the minority class can be increased 
using oversampling. In this study, the synthetic minority over-sampling technique 
(SMOTE) as defined in Algorithm 2 is used rather than reducing the dataset further [37].

Algorithm 1: Recursive Feature Eliminator

1 Train the model on the training set using all features. 

2 Calculate model performance

3 Calculate feature importance

4 For each subset size 

5 Keep the most important features

6 Train the model on the training set using predictors

7 Calculate model performance 

8 Recalculate feature importance

9 End For

10 Calculate the performance profile over 

11 Determine the appropriate number of features

12 Use the model based on the optimal 
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Several studies have shown that the SMOTE technique effectively solves the class skew 
problem [35, 38–42]. Using SMOTE the minority class (cases) is oversampled using each 
minority class record, in order to generate new synthetic records along line segments 
joining the k minority class nearest neighbours. This forces the decision region of the 
minority class to become more general and ensures that the classifier creates larger and 
less specific decision regions, rather than smaller specific ones. In  [37] the authors indi-
cated that this approach is an accepted technique for solving problems related to unbal-
anced datasets.

Machine learning classifiers

Deep learning classifier

Deep learning neural network architectures have recently proven to be very powerful 
classifiers [43]. To the best of our knowledge, this algorithm has not been used in CTG 
studies, and this paper is thus the first to consider its use in automated CTG analysis. A 
multi-layer feedforward neural network architecture is used based on theoretical proofs 
in [44]. The supervised training phase is based on uniform adaptive optimized initializa-
tion that is determined by the size of the network. A Tansigmoid nonlinear activation 
function f is utilized and defined as:
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where xi and wi represent the firing neuron’s input values and their weights, respectively; 
and α denotes the weighted combination.

The multinomial distribution is adopted with the cross-entropy loss function, which is 
typically used for classification in deep learning. For each training example j, the objec-
tive is to minimize a loss function:

where W is the collection {Wi}1:N−1, Wi denotes the weight matrix connecting layers 
i and i +  1 for a network of N layers. Similarly B is the collection {bi}1:N−1, where bi 
denotes the column vector of biases for layer i + 1. In the case of cross entropy, the loss 
function can be calculated by:

where t(j) and O(j) are the predicted and actual outputs, respectively, training example j, y 
represents the output units, and O the output layer.

The process used in this study to minimize the loss function defined in (22) is stochas-
tic gradient descent (SGD) (refer to Algorithm 3) [45].

(21)

f (α) =
eα − e−α

eα + e−α

where f (·) ∈ [−1, 1]

and α =
∑

i

wixi + b

(22)L(W ,B|j)

(23)L
(
W ,B|j

)
= −

∑

y∈O

ln
(
O
(j)
y

)
· t

j
y + ln (1− O

j
y) · (1− t

j
y)

To address the problem of overfitting the dropout regularization technique proposed 
in [45] is used. This ensures that during forward propagation, when a given train-
ing example is used, the activation of each neuron in the network is suppressed within 
probability P. This coefficient is typically <0.2 for input neurons and <=0.5 for hidden 
neurons. Dropout allows an exponentially large number of models to be averaged as an 
ensemble, which helps prevent overfitting and improve generalization.



Page 14 of 26Fergus et al. BioMed Eng OnLine  (2017) 16:89 

Momentum and learning rate annealing are used to modify back-propagation to allow 
prior iterations to influence the current version. In particular a velocity vector, v, is 
defined to modify the updates:

where θ describes the parameters W and B, µ the momentum coefficient, and α the 
learning rate. Using the momentum parameter helps to avoid local minima and any 
associated instability [46]. Learning rate annealing is used to gradually reduce the learn-
ing rate αt to “freeze” into a local minima in the optimized landscape and is based on the 
principles described in [47].

Fishers linear discriminant analysis classifier

Before the more advanced random forest classification model is considered this section 
discusses the fishers linear discriminant analysis (FLDA) classifier as a baseline classifi-
cation model. FLDA finds a linear combination of features that determines the direction 
along which the two classes are best separated. In this study the criterion proposed by 
Fisher is used which is the ratio of between-class to within-class variances. The data is 
projected onto a line, and the classification is performed in this one-dimensional space. 
The projection maximizes the distance between the means of the two classes while mini-
mizing the variance within each class:

where α is the bias, W is calculated using Fishers LDA, and X is the training data without 
class labels such that f

(
y
)
≥ 0 for normal records and <0 for pathological records. W is 

derived from X such that the within class scatter matrix SW  is minimized by:

where C is the number of classes, Xi is the set of all points that belong to class i, µi is the 
mean of class i, and Xk is the kth point of Xi. The between class scatter matrix SB is maxi-
mized by:

where C is the number of classes, Ni is the total number of points that belong to class 
i, µi is the mean of class i, and µ is the overall mean, i.e. the mean of the data when all 
classes are considered together.

Random forest classifier

Random forest (RF) classifiers have featured widely in biomedical research [11, 48–50]. 
They are based on an ensemble of many randomized decision-trees that are used to vote 
on the classification outcome. Many studies have shown that they give classification 

(24)
υt+1 = µυt − α∇L(θt)

θt + 1 = θt + υt+1

(25)f
(
y
)
= WTX + α

(26)SW =

C∑

i=1

∑

xk∈Xi

(xk − µi)(xk − µi)
t

(27)SB =

C∑

i=1

Ni(µi − µ)(µi − µ)t
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accuracies comparable with the best current classifiers on many datasets. They are able 
to handle data with a large number of features. Those features that are important for 
classification are determined through the calculation of an importance score for each 
feature. Each decision-tree is randomized using a bootstrap statistical resampling tech-
nique, with random feature selection [51].

Given an M feature set, trees are constructed using m features randomly selected from 
the feature set at each node of the tree. The best split is calculated using these m fea-
tures, which continues until the tree is fully grown without pruning. The procedure is 
repeated for all trees in the forest using different bootstrap samples of the data. Clas-
sifying new samples can then be achieved using a majority vote. The approach combines 
bagging with decision tree classifiers to achieve this (refer to Algorithm 4).

Performance measures

k-fold cross validation is used as a prediction metric with fivefolds and 1 and 30 repeti-
tions, respectively. The average performance obtained from 30 simulations is utilized. 
This number is considered, by statisticians, to be an adequate number of iterations to 
obtain an acceptable average. Let Ck denote the indices of the observations in part k, and 
nk the number of observations in k: if n is a multiple of K, then nk = n/K . Compute:

(28)CVk =

k∑

k−1

nkMSEk
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where

and x̂i is the fit for observation i, obtained from the data with part k removed.
Sensitivity (true positives) and specificity (true negatives) measure the predictive 

capabilities of classifiers in binary classification tests. Sensitivities refer to the true posi-
tive rate or recall rate (pathological cases). Specificities measure the proportion of true 
negatives (normal cases). Sensitivities are considered higher priority than specificities, 
in this study. It is important to predict a pathological case rather than miss-classify a 
normal case. To evaluate the performance of classifiers fitted to imbalanced datasets the 
F-Measure is a useful metric that combines precision and recall into a single value with 
equal weighting on both measures [52].

The area under the curve (AUC) is an accepted performance metric that provides a 
value equal to the probability that a classifier will rank a randomly chosen positive 
instance higher than a randomly chosen negative one (this obviously assumes that 
positive ranges higher than negative). This has been chosen, as it is a suitable evalua-
tion method for binary classification. Consider a classifier that gives estimates accord-
ing to p(Ci|x), it is possible to obtain values {a1, . . . , an1; ai = p(C1|x), xi ∈ C1} and 
{b1, . . . , bn2; bi = p(C2|x), xi ∈ C2} and use them to measure how well separated the dis-
tributions of p̂(x) for class C1 and C2 patterns are [53].

Using the estimates, {a1, . . . , an1, b1, . . . , bn1} they can be ranked in increasing order. 
The class C1 test points can be summed to see that the number of pairs of points, one 
from class C1 and one from C2 with p̂(x) smaller for class C2 than the p̂(x) value for class 
C1, is:

where ri is the ranked estimate, So is the sum of the ranks of the class C1 test patterns. 
Since there are n1n2 pairs, the estimate of the probability that a randomly chosen class 
C2 pattern has a lower estimated probability of belonging to class C1 than a randomly 
chosen class C1 is:

This is equivalent to the area under the ROC which provides an estimate obtained 
using the rankings alone and not threshold values to calculate it [51].

Results
This section presents the classification results for control and case records using the 
CTU-UHB dataset. The features extracted from the FHR signals are used to model 
each of the classifiers. The performance is measured using sensitivity, specificity, AUC, 
F-Measure and MSE values.

(29)
MSEk =

∑

i∈Ck

(xi − x̂i)
2/nk

(30)

n1∑

i=1

(ri − i) =

n1∑

i=1

ri −

n1∑

i=1

i = S0 −
1

2
n1 (n1 + 1)

(31)Â =
1

n1n2

{
S0 −

1

2
n1(n1 + 1)

}
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Using all features from original data

In the first evaluation, all the features in the feature set are used to train the FLDA, RF 
and DL classifiers.

Classifier performance

The results in Table 2 show that the sensitivities for all classifiers are very low, while corre-
sponding specificities are high. This is expected given that there are a limited number of case 
records from which the classifiers can learn a suitable fit. The F-Measure is a good metric 
when using imbalanced datasets and provides a better indication of classifier performance 
than sensitivity, specificity and AUC. As can be seen the F-Measure for the FLDA and RF are 
low with slightly better results produced by the DL (only slight better than chance).

It is clear that the models are capable of classifying control records but not case 
records. This is because there are 506 controls and only 46 cases from which the clas-
sifiers can learn, which is significantly lower. The AUC values are relatively low for the 
FLDA with slightly higher values for the RF and higher values again for the DL. Yet, the 
Sensitivities, which are considered more important in this study, are all low. Table  3 
shows the error estimate for fivefold cross-validation using both 1 and 30 repetitions.

The errors are consistent with the expected MSE base-rate of 8.3% (46 pathologi-
cal/552 FHR records) with the exception of the DL which produced an MSE = 3%.

Model selection

The receiver operator characteristic (ROC) curve is a useful graphic that shows the cut-
off values for the false and true positive rates. It is particularly useful in binary classifi-
cation to illustrate classifier performance. In the current evaluation, Fig.  2 shows that 
the FLDA performed poorly. The RF and DL classifiers produced slightly better results, 
which reflect the sensitivity, specificity and AUC values in Table 2.

The primary reason for the low sensitivities (despite the AUC for the RF and DL 
being relatively high) is that there are insufficient case records to model the class. This 
is in contrast to the classification of control records that are skewed in its favour. This 
causes significant problems in machine learning. As such, re-sampling the classes in the 
absence of real pathological cases is a conventional way of addressing this problem [54].

Table 2  Using all features from original data

Classifier Sensitivity Specificity AUC F-Meas.

FLDA 0.0230 0.9931 0.6763 0.3245

RF 0.0223 0.9921 0.7725 0.3154

DL 0.0008 0.9990 0.8711 0.5220

Table 3  Cross-validation results using original data

Classifier Cross-validation  
fivefold 1 repetition

Cross-validation  
fivefold 30 repetitions

Error Error

FLDA 0.0954 0.0900

RF 0.0848 0.0830

DL 0.0803 0.0327
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Using all features from synthetic minority over‑sampling technique data

The 46 case records are re-sampled using the SMOTE algorithm. The SMOTE 
algorithm generates a new dataset containing extra cases derived from the minor-
ity class while reducing the majority class samples accordingly. Figure 3 shows the 
separation of classes following oversampling. Compared with Fig. 1 it is clear that 
both case and control data are now evenly distributed between the two groups. 
There is significant overlap between case and controls and no two feature combina-
tions were able to increase this decision boundary any further than that presented 
in Fig. 3.

Classifier performance

Using the new SMOTEd feature set (300 cases and 300 controls—empirically this dis-
tribution produced the best Sensitivity, Specificity, AUC, F-Measure and MSE results), 
Table 4 indicates that the Sensitivities for all models improved (90% in most cases). This 
is however at the expense of lower specificities (10% decreases). The results are encour-
aging given that accurately predicting cases is more important than predicting controls. 
The F-Measure acts as a support metric in this evaluation and produces encouraging 
results in the RF and DL classifiers.

Table 5 shows a marked improvement in error rates in all classifiers except the FLDA, 
which has increased by 12%. In the case of the DL classifier, the results indicate a 1.7% 
error rate, which is significantly less than the expected MSE base-rate of 50% (300 
cases/600 FHR records).

Model selection

The ROC curve in Fig. 4 illustrates that all the models have significantly improved with 
the exception of the FLDA where the overall performance remained more or less the 
same.

Fig. 2  ROC curve for original data using all features
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The results show that adopting the SMOTE oversampling technique improves clas-
sifier performance. While oversampling data is not ideal, it is an accepted technique 
within many clinical studies when skewed datasets need to be normally distributed 
[54–56].

The remaining evaluations build on these results with a particular focus on dimension-
ality reduction.

Fig. 3  Oversampled separation of caesarean section and normal vaginal delivery points

Table 4  Using all features from SMOTE data

Classifier Sensitivity Specificity AUC F-Meas.

FLDA 0.6973 0.7875 0.7875 0.8128

RF 0.9291 0.9185 0.9812 0.9548

DL 0.9378 0.9099 0.9997 1.0000

Table 5  Cross-validation results using SMOTE data

Classifier Cross-validation  
fivefold 1 repetition

Cross-validation 
fivefold 30 repetitions

Error Error

FLDA 0.2170 0.2315

RF 0.0940 0.1079

DL 0.0740 0.0168



Page 20 of 26Fergus et al. BioMed Eng OnLine  (2017) 16:89 

Using RFE selected features from SMOTE data

Recursive feature extraction (RFE)

Using the RFE algorithm, each feature is assessed to determine their discriminatory 
capacity. Figure 5 shows the cross-validation results using various feature combinations.

The results indicate that the optimal number of features is eight as can been seen in Table 6.

Fig. 4  ROC curve for SMOTE oversampled data using all features

Fig. 5  RFE feature ranking
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The eight ranked features are DFA, RMS, FPeak, Acc, SD2, SDRatio, SAMPEN, and 
Dec. The following evaluation determines whether this reduced feature set can improve 
on or maintain the previous set of results.

Classifier performance

Looking at Table 7 it can be seen that most of the classifiers perform slightly worse using 
the eight features in terms of sensitivity. This is with exception to the RF classifier, which 
can maintain similar results using the reduced feature set.

The MSE values, reported in Table 8, for all but the RF classifier (whose error more or 
less stayed the same) were slightly worse than in the previous evaluation.

Model selection

In this final evaluation, the ROC curve in Fig. 6 illustrates that there are no real improve-
ments on the previous evaluation for the FLDA and DL, but that the RF performs very 
well with a reduced set of features.

Discussion
Obstetricians and midwives visually inspect CTG traces to monitor the wellbeing of the 
foetus during antenatal care. However, inter- and intra-observer variability and low posi-
tive prediction is accountable for the 3.6 million babies that die each year. This paper, 
presented a proof-of-concept using machine learning and FHR signals as an ambulatory 

Table 6  RFE feature ranking

Variables Sensitivity Specificity ROC

1 0.6644 0.6040 0.6724

2 0.7615 0.7422 0.8253

3 0.8119 0.8175 0.9047

4 0.8341 0.8817 0.9353

5 0.8393 0.9263 0.9603

6 0.8652 0.9409 0.9758

7 0.8644 0.9605 0.9839

8 0.8778 0.9675 0.9870

Table 7  Using RFE features from SMOTE data

Classifier Sensitivity Specificity AUC F-Meas.

FLDA 0.6169 0.7512 0.7564 0.7812

RF 0.9079 0.9135 0.9764 0.9138

DL 0.8314 0.8880 0.9980 1.0000

Table 8  Cross-validation results using SMOTE data with RFE

Classifier Cross-validation fivefold 1 repetition Cross-validation fivefold 30 repetitions
Error Error

FLDA 0.2666 0.2719

RF 0.1068 0.1063

DL 0.0142 0.0343
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decision support to antenatal care. The results indicate that it is possible to provide high 
predictive capacity when separating normal vaginal deliveries and caesarean section 
deliveries and in many cases produce much better results than those reported in previ-
ous studies (see Table 9).

Using the original unbalanced dataset the best classifier (DL classifier) achieves 
SE = 0%, SP = 99%, AUC = 87%, and F-Measure = 52%. While the specificity values 
are high, all sensitivity values are below 3%. The low Sensitivity is attributed to the dis-
proportionate number of normal records compared with pathological records and the 
fact that unbalanced datasets in general cause bias in favour of the majority class. The 
minimum error rate MSE = 3% was achieved by the DL using 30 repetitions. This rela-
tively small MSE appeared to be a good error rate. However, the classifiers were simply 
classifying by minimizing the probability of error, in the absence of sufficient evidence to 
help them to classify otherwise.

The SMOTE algorithm using all 13 features significantly improved the Sensitivity  
values for all classifiers. While oversampling is not ideal, it is a way to solve the class skew 

Fig. 6  ROC curve for the SMOTE data using RFE features

Table 9  Comparison of previous works

Paper Year Classifier Sensitivity Specificity

[17] 2013 Naïve bayes 0.91 0.95

[6] 2014 RF and LCA 0.72 0.78

[57] 2013 LCR 0.66 0.89

[58] 2013 ANN 0.60 0.67

[20] 2012 SVM 0.73 0.76

[59] 2012 WFSS 0.92 0.88

[8] 2009 SI 0.90 0.75

[60] 2010 SVM 0.70 0.78
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problem that is widely used in medical data analysis [40, 61–64]. The best classification 
algorithm is again the DL classifier, which achieves SE = 94%, SP = 91%, AUC = 100%, 
F-Measure = 100% and MSE = 2%. The reason for this is that the algorithm has the abil-
ity to extract complex non-linear patterns generally observed in physiological data like 
FHR signals. Through the extraction of these patterns, the DL algorithm uses relatively 
simpler linear models for data analysis tasks, such as classification. The DL generalizes, 
and finds the global minima, which allows it to generate learning patterns and relation-
ships beyond immediate neighbours in data. It is able to provide much more complex 
representations of data by extracting representations directly from unsupervised data 
without domain knowledge or inference.

Using the RFE algorithm as a feature selection technique the algorithm eliminated 
five features from the original 13 that were considered to have very low discriminatory 
capacity. The remaining eight features were used to fit the models and the results show 
that the RF achieved the best overall results with SE =  91%, SP =  91%, AUC =  98%, 
F-Measure = 91% and MSE = 11%. The primary reason for these good results is that the 
RF algorithm is based on an ensemble of many randomized decision-trees that are used 
to vote on the classification outcome. They are able to handle data with a very large num-
ber of features (although the feature set in this study is not particularly large) and those 
features that are important for classification can be determined through the calculation 
of an importance score for each feature. The score metric based on voting is similar to 
the approach adopted in k-nearest neighbour classification and the voting mechanism 
to classify new data points based on the majority surrounding data points of a particular 
class. The DL classifier performed worse on the reduced dataset but still produces better 
results than several studies discussed in this paper [6, 20, 57, 60].

Conclusions and future work
The primary aim in this paper was to evaluate a proof-of-concept approach to separating 
caesarean section and normal vaginal deliveries using FHR signals and machine learn-
ing. The results show that using a deep learning classifier it is possible to achieve 94% for 
Sensitivity, 91% for Specificity, 99% for AUC, 100% for F-score, and 1% for Mean Square 
Error. This shows significant improvements over the 30% positive predictive value 
achieved by obstetricians and midwives and warrants further investigation as a potential 
decision support tool for use alongside the current CTG gold standard.

Nonetheless, despite the encouraging results reported, the study needs further evalu-
ation using truly independent data to fully assess its value. In future work this will be 
made possible by soliciting support for clinical trials and utilising other open datasets 
that have adopted a similar study design. Other important work will include regression 
analysis, using a larger number of classes to predict the expected pathological event, in 
terms of the number of hours or days to delivery, not just whether the outcome is likely 
to be a caesarean section or a normal vaginal delivery. We also need to integrate and use 
the clinical data provided with this study in future analysis tasks.

It will also be important to evaluate different parameter adjustment settings, particu-
larly in the case of the DL algorithm to determine if the results can be further improved. 
Automatic feature detection will also be explored using the DL to extract features from 
the raw FHR signals.
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It is less than ideal to use oversampled data. Therefore, another direction for future 
work will explore opportunities to obtain data through funded clinical trials. This will 
also help provide a much more in-depth account of the value of machine learning and its 
perceived benefits on predicting caesarean section and normal vaginal deliveries.

While only the FHR signal is considered in this paper, since it provides direct informa-
tion about the foetus’s state, it would be useful to combine this signal with the UC signal, 
which has been studied in previous work [64].

Overall, the proposed methodology is robust, contributes to the biomedical data ana-
lytics field, and provides new insights into the use of deep learning algorithms when ana-
lysing FHR traces that warrants further investigation.
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