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A Discontinuous Galerkin 
Model for Fluorescence Loss in 
Photobleaching
Christian V. Hansen1, Hans J. Schroll1 & Daniel Wüstner   2

Fluorescence loss in photobleaching (FLIP) is a modern microscopy method for visualization of transport 
processes in living cells. This paper presents the simulation of FLIP sequences based on a calibrated 
reaction–diffusion system defined on segmented cell images. By the use of a discontinuous Galerkin 
method, the computational complexity is drastically reduced compared to continuous Galerkin 
methods. Using this approach on green fluorescent protein (GFP), we can determine its intracellular 
diffusion constant, the strength of localized hindrance to diffusion as well as the permeability of the 
nuclear membrane for GFP passage, directly from the FLIP image series. Thus, we present for the first 
time, to our knowledge, a quantitative computational FLIP method for inferring several molecular 
transport parameters in parallel from FLIP image data acquired at commercial microscope systems.

Analysis of protein mobilities within living cells heavily relies on quantitative fluorescence microscopy. The pro-
tein of interest is either tagged with a green fluorescent protein (GFP) or its color variants. Alternatively, linkage 
tags are introduced genetically (as HaLo or SNAP tags) for subsequent labeling with suitable organic dyes1–3. The 
intracellular dynamics of such tagged proteins can be followed and quantified by three principal approaches (a) 
measurement of fluorescence fluctuations in the steady state, as in fluorescence correlation spectroscopy and its 
imaging variants4,5, (b) single molecule tracking (SMT) to gather an ensemble of trajectories of individual mole-
cules6,7 and (c) local disturbance of the steady state by photobleaching followed by measurement of establishing 
a new steady state2,8. Here, we are concerned with the last approach only. The disturbance by localized pho-
tobleaching can be singular in time, as in fluorescence recovery after photobleaching (FRAP), continuous, as in 
continuous photobleaching (CP) or repeatedly pulsed, as in fluorescence loss in photobleaching (FLIP). In FRAP 
and CP, the fluorescence dynamics is typically only monitored at the site of bleaching8,9. Accordingly, only one 
temporal profile of fluorescence change is gathered in conventional FRAP and CP and can be used for subsequent 
modeling of binding and diffusion processes. This comes at the risk of parameter uncertainty and overfitting8, 
which is why more recent FRAP studies include the whole spatiotemporal profile involved in the bleach and 
recovery10–14. In FLIP, the whole cell is automatically monitored, i.e., inside and outside the bleached domain, 
thereby naturally providing a temporal fluorescence profile (i.e., fluorescence loss) at each pixel position. Thus, 
FLIP provides comprehensive quantitative data on fluorescence dynamics for the whole cell as a precondition for 
reliable data modeling. However, only a few attempts have been made so far, to infer transport parameters from 
FLIP image data15–17. Luedeke et al. used a compartment model in their FLIP data modeling, in which a Heaviside 
function was used to describe the FLIP cycle of bleaching and scanning16. This lead to a non-linear ordinary 
algebraic-differential equation system, which was solved numerically. Diffusion was not explicitly included in this 
model. Gruebele and colleagues (2014) performed numerical simulations of the underlying reaction-diffusion 
model, in which the reaction term described the localized bleaching process15. They discretized the whole cel-
lular domain into a few subdomains and fitted the experimental fluorescence loss in each subdomain to several 
diffusion models. To include the complete spatiotemporal fluorescence loss profile, we presented previously a 
quantitative FLIP model using a pixel-by-pixel analysis with an empirical fitting function available as a plugin to 
the popular image analysis program ImageJ17,18. This analysis method allowed for detecting local heterogeneities 
in fluorescence loss kinetics, but the underlying causes could not be inferred from the empirical model used.

In19 we presented a reaction–diffusion compartment model for intracellular transport observed in FLIP 
images, which can describe both diffusion, nucleo-cytoplasmic transport, and local binding mechanistically. We 
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focused on GFP, as many reference measurements by a variety of techniques are available, and because GFP 
is known to interact minimally, i.e., only non-specifically with intracellular structures20–23. Transport of GFP 
across the nuclear membrane is assumed to be passive, as the GFP sequence lacks nuclear import or export 
signals21,24,25. We modeled that process as a passive exchange of GFP between nucleus and cytoplasm by a stiff 
reaction. Resolving the rate coefficients and the strong gradient in intensity across the membrane by a continuous 
Galerkin method required fine meshes near and inside the membrane. Also, our previous model19 did not allow 
for parameter estimation, i.e., iterative refinement of the model parameter values given the data. This, however, 
is most wanted in using FLIP modeling as a quantitative tool for analysis of experimental image data. In contrast 
to19, in the present paper, we have improved upon previous work in the following respects: 1) the jump in inten-
sity across the membrane is treated as discontinuity. A semipermeable membrane separates the nucleus from the 
cytoplasm, and transport across the membrane is established by an interface condition. The spatial resolution 
of the membrane is avoided by a discontinuous Galerkin (DG) method working on essentially smaller meshes. 
The DG–mesh for a typical FLIP image consists of 1500 triangles only in comparison to 221000 triangles in the 
continuous Galerkin simulation presented in19. Even though the DG method is about 5–20 times more compu-
tationally expensive than continuous Finite Elements26, one may expect up to 29 times faster execution for the 
DG simulation. 2) we have implemented a parameter estimation method, which allows us to directly determine 
diffusion constant, spatially varying binding constants and the nuclear membrane permeability. For that, we 
compare various optimization routines for iterative minimization of the error between FLIP image data and the 
DG model of the postulated underlying reaction–diffusion process. This is, to our knowledge, the first attempt of 
direct parameter inference from FLIP image data.

The outline of the paper is as follows: The next section presents a schematic description of the FLIP protocol. 
A reaction–diffusion PDE model is developed in Section 2. Incorporation of the membrane interface condition 
(Subsection 2.2) into the DG method is described in Section 3 while Section 4 comments on aspects of the 
implementation in the FEniCS project27. Calibrated simulations of FLIP sequences are presented in Section 5. 
A discussion including FLIP simulation of differently sized inert permeation probes combined with concluding 
remarks is provided in Section 6.

Fluorescence Loss in Photobleaching
In FLIP a selected cell–area is repeatedly bleached using the intense laser beam of a confocal microscope. In 
between the bleaches, an image scan is made to observe the transport process, see Fig. 1 for illustration. The 
bleaching induces a decrease in fluorescence, not only in the bleaching area but in the whole cell due to the trans-
port processes towards the repeatedly bleached area. This in principle allows evaluating the transport in the cell 
and between the intracellular compartments.

Thus, any delayed fluorescence loss in a particular cellular region outside the bleach spot indicates hindrance 
to molecular transport, either due to steric barriers to diffusion (for example the nuclear membrane separating 
cytosol from the nucleus), due to binding or because of crowding. The latter has been shown to cause excluded 
volume effects and, in the case of the nucleus, fractal diffusion as a consequence of the complex DNA folding and 
topology17,20,28.

Figure 1.  Schematic illustration of a FLIP experiment, for a cell containing green fluorescent molecules. (a) The 
cell at steady sate. (b–f) A small region is repeatedly bleached by laser light (orange flash). Fluorescence begins 
to fall in the cytoplasm and in some organelles (ellipses). This demonstrates diffusive transport of molecules 
towards the bleached region with recruitment from some of the organelles.
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A reaction-diffusion model in segmented FLIP images
The PDE model of the FLIP process is a reduced version of the system in19 defined on two compartments, namely 
nucleus and cytoplasm. To obtain a realistic simulation, the compartment boundaries are found via segmentation 
of the FLIP images. For this and later references, we will use Ω as a notation for the whole cell domain, and ∂Ω 
denotes the boundaries. Furthermore, we let ΓM represent the nuclear membrane, ΩN and ΩC represent nucleus 
and cytoplasm respectively. In this paper we let the bleaching area be located within the cytoplasm ΩB ⊂ ΩC, see 
Fig. 2.

The segmentation of the FLIP images is produced by the Chan-Vese active contours algorithm29. The algo-
rithm is based on level set functions where the goal is to minimize the Chan-Vese energy functional by activating 
the level set function through an artificial time-like parameter. By minimizing the energy functional one mini-
mizes the total deviation from the average gray-levels in for- and background, respectively. The energy functional 
also takes the length and thereby the smoothness of the curve into account. The implementation and further 
description of the Chan-Vese algorithm can be found in19,30. In this paper, the algorithm is applied to localize 
boundaries of the cell, nucleus and bleaching area in our FLIP images. Here the cell and bleaching area are seg-
mented from the first FLIP image, while the nucleus is segmented from frame number 45, where the nucleus 
geometry is clearest.

A reaction–diffusion model with hindrance.  Inspecting the FLIP images, one of the most conspicu-
ous things would be the architecture of especially the nucleus. There is currently put a lot of research effort on 
characterizing spatial heterogeneities in intracellular diffusion and transport processes. Especially within the 
nucleus, it is observed that molecular crowding hinder GFP’s diffusion in dense nuclear compartments20,28. GFP 
is considered as minimally interacting protein, such that specific binding to intracellular structures can likely be 
ignored. However, the spatial heterogeneity of GFP distribution, which we observed especially in the nucleus, 
indicates that the mesoscopic cellular organization together with non-specific interactions of eGFP can cause 
local enrichment or depletion of this protein. Such locally varying heterogeneous distribution of eGFP can be the 
consequence of protein partitioning into aqueous nuclear phases with differing properties31. Alternatively, it is the 
result of the fractal organization of diffusion barriers, for example stemming from the nuclear DNA content20,28. 
Such barriers to diffusion have been detected in the nucleus by pair correlation analysis of intensity fluctuations 
of eGFP19. Similarly, the heterochromatin-euchromatin border has been shown to form a barrier for protein dif-
fusion32. In17 the pixel-wise FLIP analysis shows a negative correlation between DNA content and the fluorescence 
intensity and fluorescence loss kinetics of GFP in the nucleus. The computational FLIP model therefore needs to 
account for the uneven distributions of nuclear proteins.

We model the spatially varying eGFP distribution using rate constants and classical mass-action kinetics. It 
should be emphasized that this is a significant simplification, as diffusion of eGFP in the bounded state is ignored, 
and the underlying causes of local protein enrichment are not explicitly considered. However, as they are only 
partly understood, and we find good agreement of our simulation results with the experimental FLIP data, we use 
this pragmatic modeling approach here. More complicated modeling approaches including confined or anoma-
lous diffusion will be discussed in section 6, below.

Thus the model consists of both hindered and free fluorescence proteins and we define the observed fluores-
cence intensity as:

= +c u u , (1)b

where u and ub is the intensities of the free and hindered molecules, respectively. The high-intensity areas are the 
areas in which we find that GFP is hindered in its motion. Thus, in these areas, u has been transformed into ub, in 
contrast to areas of low intensity. This is described by the reversible, first order reaction mechanism:

−

+

u u , (2)b
k

k

where k+ and k− are spatially resolved positive reaction constants; i.e. we account for the above mentioned diffu-
sion barriers by a mean field approach using reaction rate constants k+ and k−.

Figure 2.  Schematic illustration of cell domains. The full cell domain is denoted Ω with boundary ∂Ω. Here 
∪Ω = Ω ΩN C, where ΩN and ΩC represent the nucleus and cytoplasm, respectively. ΩB is the bleaching domain 

located in the cytoplasm, such that Ω ⊂ ΩB C. ΓM is the boundary between ΩN and ΩC, which represent the 
nuclear membrane.
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Assuming diffusive transport of the free (but not the hindered) GFP–tagged molecules according to Fick’s law, 
the time-dependent PDE model reads:

α χ θ

χ θ

= ∇ ⋅ ∇ + − −
+

= − −
+

∈ Ω >

− +
Ω

+ −
Ω

u u k u k u b q
q

u

u k u k u b q
q

u tx

( )
1

,

( )
1

, , 0,

t b

b t b b

B

B

where α is the diffusion coefficient for free GFP molecules, b is the intrinsic bleaching rate constant, q is the equi-
librium constant for the reaction between the ground and excited state for a fluorophore33, thus 

+
b q

q1
 is the total 

rate at which the fluorophores are bleached inside the bleaching area ΩB. Further, θ and χΩB
 are both characteristic 

functions, θ is time-dependent and simulates when the high-intensity laser bleaches, χΩB
 is space dependent and 

ensures that bleaching only occurs in the bleaching area:

{ x1 if ,
0 else

B
B

χ = ∈ Ω
.Ω

At the initial time, before bleaching, the system is in equilibrium and the free molecules are uniformly distrib-
uted u0 = const. Any higher fluorescence intensity is due to accumulation of hindered molecules 

= + ≥c u u ux x( ) ( )b
0 0 0 0. Thus, the initial intensity of free molecules is the uniform background of the observed 

initial intensity

= .
∈Ω

u c xmin ( ) (3)x

0 0

The equilibrium state for (2) is given by = = −+ − −u k k u k c ux x( ) ( ( ) )b
0 0 0 0 . It is reasonable to model 

k+ = k+ (x) to be positive where increased fluorescence intensity indicates the presence of hindered molecules

γ γ= = −+k u c ux x x( ) ( ) ( ( ) ), (4)b
0 0 0

and γ is a proportionality constant. Consequently, k− is constant

γ= = .−
+

k k
u

u ux
x

( )
( ) (5)b

0
0 0

Compartment model with semipermeable membrane.  To obtain a realistic FLIP simulation at least 
two compartments are needed, i.e., the cytoplasm and nucleus. These compartments are separated by the nuclear 
membrane. According to Fick’s first law the diffusive flux is anti-proportional to the gradient α= − ∇uJ . To 
model diffusive transport across a semipermeable membrane interface where u may jump, we integrate Fick’s law 
across the membrane to obtain = − −+ − −p u uJ n( ) . Here, p denotes the solute permeability of the membrane 
measured in μm/s. The membrane separates the domain into two compartments labeled by ± superscripts. In our 
cell model see Fig. 2 for example, the nucleus ΩN is the minus-compartment and the cytoplasm ΩC is the 
plus-compartment. The outward unit normal vectors n± along the common interface point into the opposite 
compartment. If the concentration outside is greater than inside u+ > u−, then the flux points back into the 
minus-compartment resulting in a damping effect in agreement with Fick’s law. As the outward normals along a 
common interface are opposite, the flux may be written as a jump bracket

= − = .− + − � �p u u p uJ n( ) (6)

Despite the fact that biological transport across a membrane may be complex, it is common practice to 
approximate the permeability experimentally by dividing the measured flux by the jump in concentration34,35. At 
this point, we are ready to summarize the mathematical model.

The complete PDE model.  The fluorescence intensities of both free and hindered molecules are governed 
by the reaction diffusion system
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The reaction rates are taken from (4) and (5). Along the membrane, the diffusive flux (6) is expressed as inter-
face condition

α⋅ = −
∂
∂

= ⋅ ∈ Γ .−
−

−
−� �u p uJ n

n
n x (8)M

Focusing on the intracellular architecture and diffusive transport of GFP, we may assume there is no transport 
of GFP across the cell membrane ∂Ω
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⋅ ∇ = ⋅ ∇ = ∈ ∂Ω.u un n x0, (9)b

The normalised initial intensity 0 ≤ c(0, x) ≤ 1 is extracted from the first FLIP image and

= = = − ∈ Ω.
∈Ω

u u c u c ux x x x x(0, ) min (0, ), (0, ) (0, ) , (10)b
x

0 0

A discontinous Galerkin method with internal interface condition
To effectively simulate the abrupt change in fluorescence intensity as seen in FLIP images, it is desirable that 
the numerical method can represent discontinuous functions. The Discontinuous Galerkin (DG) method was 
first introduced by Reed and Hill36 in 1973 to resolve shocks in hyperbolic conservation laws. Independently, 
Babuska37, Wheeler38 and Arnold39 developed interior penalty discontinuous Galerkin (IPDG) methods for ellip-
tic and parabolic problems. Since then the interest and the development of DG methods have been growing. The 
interested reader is referred to40 where the history of their development until 1999 can be found.

In this paper, the interface condition along the nuclear membrane (8) is implemented into the IPDG method 
based on39,41.

To describe the method, we introduce some notation. Let h denote the discretization of Ω into disjoint open 
elements K T∈ h. In connection, let Γ denote the union of the boundaries of all . Note that the mesh should be 
constructed such that Γ ⊂ ΓM . Further we decompose Γ into three disjoint subsets ∪ ∪Γ = ∂Ω Γ ΓMint , where 
Γint holds all internal edges ∪Γ = Γ ∂Ω Γ: \( )Mint . Further, let u+ and u− denote a single valued function on two 
adjacent elements +  and −. As usual, n± denote the outward unit vectors on along ∂ ±. Then average and 
jump term are defined as {u} = (u+ + u−)/2, = ++ + − −� �u u un n . For piecewise defined vector valued functions 
q let {q} = (q+ + q−)/2, = ⋅ + ⋅+ + − −� �q q n q n . Note that the jump of a scalar gives a vector, while the jump of a 
vector is a scalar, moreover

= + ⋅ .� � � � � �u u uq q q{ } { } (11)

Consider the div–grad operator α∇ ⋅ ∇u( ) on two adjacent elements ±. By partial integration (Green’s first 
identity)

  ∫ ∫ ∫α α α∇ ⋅ ∇ = − ∇ ⋅ ∇ + ∇ ⋅
∂

±
± ± ±

u v x u v x u v sn( ) d d d ,

where v denotes a suitable test function. Along the common edge ∩= ∂ ∂+ −e   , normal derivatives sum up 
to a jump

∫ ∫α α α∇ − ∇ = ∇ .+ + + − − − + � �u v u v s uv sn( ) d d
e e

Summing up over all elements ∈ hK T  we thus find

∫ ∫ ∫ ∫α α α∇ ⋅ ∇ = − ∇ ⋅ ∇ + ∇ − ⋅
Ω Ω Γ Γ

� � � � � �u v x u v x uv s p u v s( ) d d d d ,
Mint

where both the membrane flux condition (6) and the zero flux boundary condition (9) have been used. The IPDG 
method enforces continuity across internal edges by a penalty term37,39,41. Using (11) the formula

∫ ∫ ∫ ∫
σ

= ⋅ + ⋅ − ⋅
Γ Γ Γ Γ
� � � � � � � � � �u v s u v s v u s

h
u v sJ J J( ) d { ( )} d { ( )} d d

int int int int

is symmetric and consistent for continuous solutions = =� � � �u uJ( ) 0. Here h denotes the average diameter of 
two adjacent elements, and σ is the Nitsche parameter42.

The bilinear form for the div–grad operator based on the IPDG method reads

∫ ∫ ∫ ∫α α α α σ
= ∇ ⋅ ∇ − ∇ ⋅ − ∇ ⋅ + ⋅ .

Ω Γ Γ Γ
� � � � � � � �D u v u v x v u s u v s

h
u v s( , , ): d { } d { } d d

(12)int int int

The last integral in (12) is the internal penalty; a large enough Nitsche parameter enforces continuity across inter-
nal edges37,39,41,42. Let v and w be discontinuous, piecewise bilinear test-functions for u and ub respectively. The 
semi–discrete PDE with boundary condition and interface conditions (8) and (9) reads

∫ ∫

∫

α+ = − − ⋅

= − −

Ω Γ

Ω

� � � �u v x D u v R u u v B u v p u v s

u w x R u u w B u w

d ( , , ) ( , , ) ( , ) d ,

( ) d ( , , ) ( , ), (13)
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M

with ∫= −
Ω

− +R u u v k u k u v x( , , ) : ( ) db b  and ∫ θ=
Ω +

B u v b uv x( , ) : dq
q1B

.
We discretize the time derivative by a backward Euler step. Any higher order but L-stable method, like certain 

SDIRK schemes43, are appropriate as well.
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FEniCS implementation
Applying a backward Euler time step to (13) results in the weak form for the time step

∫ ∫

∫

α
−

Δ
+ = − − ⋅

−
Δ

= − − .

Ω

+
+ + + +
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+
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+
+ + +
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d ( , , ) ( , )

n n
n n
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n

b
n

b
n

n
b
n

b
n

1
1 1 1 1 1

1
1 1 1

This weak form is conveniently implemented using the automated Finite Element package FEniCS27. For faster 
execution, it is recommended to pre–assemble the system matrix, which FEniCS can do automatically based on 
the given mesh and weak formulation. The pulsating laser is realized by pre–assembling two systems, with and 
without the bleaching term B(u, v). To resolve the effect of bleaching, the bleaching interval is a multiple of the 
time step: Δtb = mΔt, ∈m . To use FEniCS a high-level Python script is written, where the weak formulation is 
expressed in the UFL form language. UFL is a domain specific language for defining weak formulations in a nota-
tion close to the one presented in this paper44. DOLFIN then interprets the script and passes the UFL to the 
Variational Form Compiler (FFC). Then Instant (build on top of SWIG) turns it into a C++ function callable 
from Python. In the end, the linear systems are solved by the UMFPACK sparse, direct solver via PETSc45,46. 
Optional iterative and parallel solvers are available. A test on the given mesh and the system from this paper 
showed that the iterative generalized minimal residual method with PETSc algebraic multigrid preconditioner 
was overall 20–30% slower than the direct solver.

Calibration and simulation of FLIP images
The discontinuous Galerkin method approximates the solution to the PDE model (7)–(10) as a piecewise bilinear 
and possibly discontinuous function defined on a triangulation of the cell. The discrete geometry from the seg-
mented FLIP images is written into a .geo geometry file. By Gmsh47 the mesh is constructed on the segmented cell 
geometry found in the geo file and displayed in Fig. 3. It consists of 1523 triangles; 991 located in the cytoplasm, 
503 in the nucleus and 29 in the bleaching area.

The initial fluorescence intensity 0 ≤ c(0, x) ≤ 1 is extracted from the first FLIP image. The original images are 
affected by some noise, however. Therefore, the FLIP images are preconditioned by Gaussian smoothing (with 
a radius of one pixel = 0.05467326 μm) within the cell domain. The intensity of free and hindered molecules is 
initialized according to (10) i.e., the intensity pattern as seen in the first blurred FLIP image is carried by the 
hindered molecules.

The bleaching time interval was Δtb = 0.8 s followed by a recovery phase of 1.8 s, resulting in a total frame rate 
of 2.6 s. For the simulation the discrete time step is set to be Δt = 0.2 s.

Not yet defined model parameters are: the diffusion coefficient α, the bleaching term β =
+

b q
q1

 both appear-
ing in the PDE model (7), the proportionality factor γ in reaction rates (4) and (5), as well as the permeability 
constant p in the interface condition (8).

Calibration.  The remaining parameters are identified by calibrating the simulation to observed FLIP 
images. To this end, a misfit functional is minimized with respect to the parameters. At discrete times 
ti = 2.6(i − 1) + 2.0 seconds i = 1, 2, 3, …, 50 we measure the difference between the simulated intensity and the 
preconditioned (blurred) FLIP images represented as a piecewise linear finite element function on the mesh. For 
tests regarding the number of FLIP images used, see Supplementary S.3. Thus, the misfit functional is expressed as

Figure 3.  Finite element mesh on Chan-Vese active contours generated by Gmsh. Green: cytoplasm, orange: 
nucleus, blue: bleaching area.
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∫∑= + −
= Ω

E u t u t c t xx x x1
50

( , ) ( , ) ( , ) d ,
(14)i

i b i g i
1

50 2

where cg denotes the intensity of the goal function. Squaring the deviation puts a strong penalty on outliers and 
results in a more even distribution of residuals. The PDE constrained calibration problem reads:

α β γ α β γ=
α β γ<

p E p( , , , ) argmin ( , , , ),
p0 , , ,

where u and ub solve the PDE model (7). To perform the optimization, we apply the Nelder–Mead downhill sim-
plex algorithm48 which is part of the SciPy library49. It calls the semipermeable membrane FLIP model (13) 
implemented as a FEniCS function. Initially the Nelder–Mead search constructs with five initial guess vectors 
ξk = (αk, βk, γk, pk) forming a four dimensional simplex. The misfit functional (14) is evaluated in all five vertices 
Ek = E(ξk) and the vortices are renumbered in ascending order < < <E E E1 2 5. The least optimal simplex 
vector ξ5 is replaced by a (hopefully) better approximation. The iteration stops if both the progress in the optimal 
parameters ξ ξ−+n n

1
( 1)

1
( )  and the variation of the misfit functional E5 − E1 are small. Default tolerances are 

10−4. For details, we refer to48–50. The performance of alternative algorithms and norms is discussed in 
Supplementary S.4 and S.5, respectively.

Based on the literature17,51 and numerical experiments in19 a qualified initial guess is: α0 = 25, β0 = 20, γ0 = 0.5 
and p0 = 0.05. Figure 4 depicts the progress of the optimization process with corresponding parameters shown in 
Fig. 5. We clearly observe the monotone decrease of the misfit functional from initially E = 193 down to E = 140 
after 133 iterations with totally 231 function evaluations. The estimated parameters are

α β γ= . = . = . = . .p16 1, 35 6, 0 319, and 0 111 (15)

The Nelder–Mead algorithm can call the FLIP solver multiple times per iteration, here resulting in 231 func-
tion evaluations in form of forward solutions of the PDE system (7)–(10). The calibration process takes approxi-
mately 3 hours on an Intel Core i5 processor at 3.2 GHz with 8 GB memory running Ubuntu 14.04.5.

Simulation and visualisation.  With the optimized parameters (15) our FLIP model as stated in Section 
2.3 is completely determined. Recall that reaction rates k± as well as initial intensities are extracted from the 
first (denoised) FLIP image. A sequence of FLIP images in McArdle RH7777 cells is displayed in the top row of 
Fig. 6(a–d). Green fluorescent protein (GFP) was repeatedly bleached with full laser power at a 30 pixel (1.64 μm) 
diameter circular region in the cytoplasm (green circle), in a temperature controlled (35 ± 1 °C) environment of 
a Zeiss LSM 510 confocal microscope using the 488-nm line of an Argon laser. The entire images were scanned 
with 0.5% laser power between each bleach. The total frame rate inclusive bleaching was 2.6 s and the image area 

Figure 4.  Plot of error E during the optimization process for the semipermeable membrane model.

Figure 5.  Parameters during the optimization process for the semipermeable membrane model.
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is approximately 15 × 15 μm. As mentioned earlier, we use Gaussian blur with radius 1 pixel to denoise the FLIP 
image. The blurred FLIP sequence is presented in the second row of Fig. 6(e–h). The first blurred FLIP image 
is used to create k+ and the subsequent is used to generate goal functions. A goal function is a piecewise linear 
discontinuous Galerkin function defined on the mesh, based on the pixel values from the blurred FLIP images. 
The goal functions displayed in the third row of Fig. 6(i–l) were used to calibrate the FLIP model. Finally, the 
simulation results of our calibrated FLIP model can be seen in the lowest row of Fig. 6(m–p).

The structure established in the simulation mainly originates from the reaction kinetics given in (2). In Fig. 7 
k+ is illustrated based on the estimated proportional factor γ = .0 319. One can clearly see that the spatial map of 
k+ resembles the structure from the first intensity image as stated in (4). Hindrance to free diffusion is clearly 
higher in the nucleus compared to the cytoplasm, which is in accordance with earlier studies10,20.

Figure 6.  The first four images (a–d) are the original FLIP images of the McArdle RH7777 cells expressing GFP 
in the cytoplasm and nucleus. The green circle on the image (a) shows the 30-pixel wide bleaching area. The left 
most FLIP image (a) is taken before bleaching, the next image (b) is taken after it has been bleached 10 times i.e. 
time t = 26 s. The third FLIP image (c) is the 20’th FLIP image in the sequence (time t = 52 s) and the last (d) is 
at time t = 104 s which correspond to FLIP fame 40. The second row (e–h) shows the corresponding Gaussian 
blurred (radius = 1 px) FLIP images. The third row (i–l) shows the goal function and the last row (m–p) shows 
the simulation results, all at times corresponding to the displayed FLIP images.
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Discussion and Conclusion
To compare the spatiotemporal profile of fluorescence loss between experiment and simulation, we make use of 
our previously developed method, namely to fit a stretched/compressed exponential (StrExp) function to each 
pixel position in the data and simulation outputs17. This function is an extension of the exponential function, 
as it can be considered as the sum of exponentials with a distribution of rate constants, rather than a single 
rate constant. This leads to a time-dependent rate coefficient, suitable for modeling delays and long-tail kinetics, 
not addressable using a single exponential decay function. The StrExp function is widely used for modeling 
physico-chemical processes and is used here to provide an independent assessment of the quality of our FLIP 
model. The StrExp function provides an accurate description of fluorescence loss kinetics and reads with ampli-
tude map I0(x), time constant map, τ(x), heterogeneity map, h(x) and a background term, Ib(x)17,52–54

τ
=









−




















+ .I t I t Ix x
x

x( , ) ( ) exp
( )

( )
h

b
x

0

1
( )

The heterogeneity parameter describes the shape of the intensity decay with 0 ≤ h < 1 modeling a delayed 
(compressed) exponential and 1 < h ≤ 2 modeling a stretched exponential, which is faster than exponential ini-
tially and slower for long times compared to τ. For h = 1, one recovers a mono-exponential function. We showed 
previously, that the StrExp function can accurately model diffusional transport in FLIP simulations, both in 2D 
and in 3D. We found that the shape of the fluorescence loss profile is well approximated with 1 < h ≤ 2 inside the 
bleach spot and a gradient of h-values as function of distance from the bleaching spot in the range 0.5 ≤ h < 1 
outside the bleached region17. We demonstrated also that binding/release-dominated transport can be fitted with 
a StrExp function as well. Finally, we found that local heterogeneity in the h-map between neighboring pixels for 
GFP FLIP experiments indicates deviation from classical diffusional transport with space-invariant diffusion 
constant in living cells. In fact, we found for exactly the same experimental FLIP sequence used in the current 
study, that pixel-to-pixel variation of h-values, either larger or smaller than one exist in the cytoplasm and in the 
nucleus (see Figs 4 and 5 in17). This can be seen particularly clearly when calculating the rate coefficient map, 
which is defined as:
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Here, In(x, t) = exp(−(t/τ(x))(1/h(x))) refers to the intensity decay normalized to the initial fluorescence given an 
amplitude equal to one17,52. For a stretched decay, the rate coefficient decreases over time, while for a compressed 
decay, the rate coefficient increases, indicating respective slowing and accelerating fluorescence loss kinetics at a 
given position17. We fitted this function to the experimental and calibrated FLIP sequence using a plugin, which 
we presented previously to the popular image analysis program ImageJ18 named PixBleach55,56. As shown in Fig. 8, 
the outcome of the FLIP simulation and calibration coincides nicely with the experimental FLIP data including 
spatially heterogeneous amplitude and time constant maps. As for the experimental data, fluorescence loss in the 
nucleus is significantly slowed, and the nucleus shows spatially varying fluorescence loss kinetics in experiment 
and FLIP simulation. From that, we conclude that our model, using spatially varying binding/release rate con-
stants can accurately describe the experimentally known heterogeneity of nuclear diffusion of GFP, even though, 
we do not explicitly model spatially varying diffusion (i.e., we kept D spatially invariant and varied local binding 
affinities to unknown subcellular structures)17,23. The spatially varying intensity of GFP is observed at steady state 
in living McArdle cells and has been reported in many other studies as well23,57. Local differences in diffusion of 
GFP have been measured by fluorescence correlation spectroscopy (FCS) in the nucleus of HeLa cells, ranging 
from D ≈ 10 μm2/s to D ≈ 35 – 50 μm2/s, but those differences in diffusion were not correlated with GFP intensity 

Figure 7.  Plot of the reaction coefficient k+ with γ = 0.319. Note that in areas where a low number of hindered 
molecules are observed on the FLIP images k+ is low and in areas with high intensity k+ is also high.
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in the same regions23. It is likely that the compact nuclear DNA creates local barriers to diffusion28, which we 
detect as locally delayed fluorescence loss profiles17.

As long as diffusion barriers are penetrable for GFP on the time scale of its cellular turnover by synthesis and 
degradation no spatial gradients of this protein should be expected. In other words, barriers can cause protein 
confinement on a short time scale but should lead to normal diffusion on a long time scale and therefore to a 
complete exploration of the three-dimensional nuclear space. As a consequence, any concentration gradients will 
be smoothened out and a homogeneous nuclear intensity of GFP would be expected. If on the other hand, the 
affinity of GFP for various nuclear subregions varies, a heterogeneous steady state distribution can be expected. 
Coexisting phases due to differences in polyelectrolyte concentration and properties have been proposed to con-
tribute to the nuclear organization31, and GFP could show different affinities for such nuclear domains. Thus, 
our simplified mass-action model, while ignoring intradomain diffusion, emphasizes exchange of GFP between 
nuclear areas of different affinities for this protein. The same is true, though to a lower extent, for the cytoplasm. 
Similarly, the nuclear membrane can be seen as a barrier to diffusion, detectable by a variant of FCS58. The time 
constant map inferred from fitting the StrExp function to the experimental FLIP sequence or to the calibrated 
FLIP model data changes abruptly at the nuclear membrane, demonstrating that our computational FLIP model 
can detect barriers to diffusion as well (Fig. 8c). Also, the heterogeneity map and the maps of rate coefficients 
indicate delayed fluorescence loss in the nucleus for the experimental and calibrated FLIP sequence (compare 
Fig. 8b and e,f). This delay, characterized by a compressed StrExp function with increasing rate coefficients as 
function of time is a direct consequence of the presence of two effects: i) the nuclear membrane, acting as strin-
gent barrier to diffusion and ii) hindrance to diffusion combined with partitioning preference of GFP in domains 
in the nucleus, which also causes the higher overall accumulation of GFP in that compartment compared to the 
cytoplasm. Both, the comparable shape of the fluorescence loss kinetics and the nuclear accumulation of GFP 
despite passive permeation across the nuclear membrane, are important validations of our reaction-diffusion 

Figure 8.  Pixel-wise comparison of temporal evolution of fluorescence loss between experiment and model  
(a–d); Pixel-wise fitting of a StrExp function to the calibrated model FLIP data (left panels) or to the 
experimental FLIP sequence (right panels) for the amplitude maps (a), the heterogeneity maps (b), the time 
constant maps (c) or the RMSE maps (d). The range is indicated, and the rectangular inset in panel (b) color–
codes h = 1, as a reference value for a mono-exponential decay. (e,f) Selected frames of the temporal profile of 
rate coefficients (16) for the calibrated (e) and experimental FLIP data (f). The scale bars in (a) and (e) are 5 μm. 
See text for further explanations.
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FLIP model. Interestingly, on a smaller spatial scale (i.e., in the range of a few microns) the heterogeneity map 
is more structured for the experimental FLIP data than for the calibrated model (Fig. 8b). This leads to a larger 
spatial variation of the bleaching rate coefficients in the experimental FLIP sequence compared to the FLIP model 
(compare Fig. 8e and f, especially in the nucleus). It is likely that this minor discrepancy is a result of anomalous 
diffusion processes, which are not taken into account in our model59.

For further validating our model of passive permeation across the nuclear membrane, we made use of the 
data by Mohr et al.24, who compared the size dependence of nuclear permeation of various inert and spherical 
probe molecules24. The passive (i.e. not receptor mediated) influx of each studied molecular species followed 
first order kinetics, and the measured influx rate constant in permeabilized HeLa cells could be used to estimate 
the membrane permeability as p = k · V/A (nuclear volume, V = 1130 μm3 and nuclear area, A = 540 μm2). With 
these values and the Stokes-Einstein relation, we have performed a forward simulation of a FLIP experiment with 
selected probe molecules of very different Stokes radius (Supplemental Fig. S8). Clearly, increasing the Stokes 
radius from 0.67 nm for Fluorescein-tagged cysteine (Fl-Cys), over 1.69 nm for Ubiquitin (Ubq) to 2.85 nm for 
maltose-binding protein (MBP) had a dramatic effect on the fluorescence loss kinetics in the nucleus. While the 
nuclear membrane presented not much of a barrier for the nucleocytoplasmic exchange of Fl-Cys, permeation 
of MBP was strongly hindered. On the same time scale, lateral diffusion of all three probe molecules to the 
bleached area caused complete fluorescence loss in the cytoplasm (Supplemental Fig. S8). Together, these sim-
ulation results are in line with the experimental findings of Görlich and colleagues24, and shows the potential of 
our reaction-diffusion FLIP model to study nuclear transport and intracellular diffusion of other cargo molecules 
than GFP.

The simulation results of the calibrated FLIP model agree very well with the goal function and even the FLIP 
images in Fig. 6. The internal structure of the cell is accurately reproduced by the remarkably simple reaction–
diffusion model. It might be worth noting that the FLIP images and hence also the goal function reflect a time 
interval of 1.8 s what it takes the confocal microscope to scan the image during the recovery phase after bleaching. 
The simulated images, however, display snapshots at discrete times t = 0, 26, 52 and 104 seconds.

By applying a discontinuous Galerkin method, it is possible to model the nuclear membrane as an internal 
interface instead of resolving the internal membrane dynamics as in19. As a consequence not only the DG mesh 
consists of 147 times fewer triangles, but also the PDE model is simpler replacing the internal membrane dynam-
ics by the interface condition (8). The typical runtime for the simulation of a FLIP sequence is about 108 times 
faster than for the continuous Galerkin method. Also, this result exceeds the expectation formulated in the intro-
duction. One reason is that the PDE model (7) consists of only two equations instead of four as in19.

In the literature, one can find several papers using a semipermeable membrane model, see34,51,60. Peters51 
measures the permeability constant for a liver cell with a different size of dextrans. The article presents results for 
dextrans with a molecular mass of 19.5, 39.0 and 62.0 kDa. Although only three measurements are presented, it 
is clear that the correlation between the mass of the molecules and the respective measured permeabilities 0.705, 
0.027 and 0.0036 μm/s is nonlinear. As we only have three data points, a fit would be strongly biased by the error 
in the data. For GFP with its estimated Stokes radius of 2.42 nm and a molecular mass of 27 kDa however, one 
may expect a permeability in the lower range of the interval (0.027, 0.705). The estimated permeability for GFP of 
p = 0.111 clearly matches with that expectation.

It is also possible to model active transmembrane dynamics in the framework of a discontinuous Galerkin 
method. In that case, the semipermeable membrane condition (8) will be replaced by an active membrane condi-
tion based on reaction kinetics. A follow–up article is in preparation.

Data availability.  Experimental FLIP sequences, simulated images and program code will be made available 
by the authors upon request.
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