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 40 

Abstract 41 

Cognitive behavioral therapy (CBT) is a first-line treatment for obsessive-compulsive 42 

disorder (OCD), but clinical response is difficult to predict. In this study, we aimed to develop 43 

predictive models using clinical and neuroimaging data from the multicenter Enhancing 44 

Neuro-Imaging and Genetics through Meta-Analysis (ENIGMA)-OCD consortium.  45 

Baseline clinical and resting-state functional magnetic imaging (rs-fMRI) data from 159 adult 46 

patients aged 18-60 years (88 female) with OCD who received CBT at four 47 

treatment/neuroimaging sites were included. Fractional amplitude of low frequency 48 

fluctuations, regional homogeneity and atlas-based functional connectivity were computed. 49 

Clinical CBT response and remission were predicted using support vector machine and 50 

random forest classifiers on clinical data only, rs-fMRI data only, and the combination of both 51 

clinical and rs-fMRI data. 52 

The use of only clinical data yielded an area under the ROC curve (AUC) of 0.69 for 53 

predicting remission (p=0.001). Lower baseline symptom severity, younger age, an absence 54 

of cleaning obsessions, unmedicated status, and higher education had the highest model 55 

impact in predicting remission. The best predictive performance using only rs-fMRI was 56 

obtained with regional homogeneity for remission (AUC=0.59). Predicting response with rs-57 

fMRI generally did not exceed chance level. Machine learning models based on clinical data 58 

may thus hold promise in predicting remission after CBT for OCD, but the predictive power 59 

of multicenter rs-fMRI data is limited. 60 

  61 
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Introduction 62 

Obsessive-compulsive disorder (OCD) is a psychiatric disorder with a lifetime 63 

prevalence of 2-3% [1] and is characterized by repetitive thoughts of an intrusive and 64 

distressing nature, and/or repetitive mental and behavioral compulsions. Current common 65 

treatment options for OCD involve cognitive behavioral therapy (CBT) with exposure and 66 

response prevention (ERP) or pharmacological treatment with a selective serotonin reuptake 67 

inhibitor [2, 3]. With ERP, individuals with OCD are exposed to their obsessions and 68 

subsequently taught to resist the urge of compulsive behavior and tolerate the associated 69 

distress. The aim is to diminish the associated emotional response, and the behaviors and 70 

avoidance done in attempts to reduce emotions, which thereby break the reinforcing cycle of 71 

obsessions and compulsive behaviors [4]. While approximately 50% of individuals with OCD 72 

benefit from ERP/CBT (hereafter referred to as CBT), they sometimes only achieve a partial 73 

reduction in symptoms, can result in dropout rates of 19%, and may not always be as cost 74 

effective as pharmacological treatment [2, 5-8]. It currently cannot be accurately predicted 75 

which patients will benefit from CBT and why. If treatment outcomes could be accurately 76 

predicted for individual patients, this could enable personalized treatment planning and 77 

improve our understanding of the factors underlying treatment response.  78 

The use of machine learning may provide such opportunities. Predictive models can 79 

use both clinical and neuroimaging data on brain structure and function to identify 80 

(bio)markers relevant for predicting treatment outcomes. Meta-analyses have identified 81 

multiple clinical factors that are related to poorer CBT response at the group level, such as 82 

higher OCD symptom severity at baseline as measured by the Yale-Brown Obsessive 83 

Compulsive Scale (Y-BOCS), increased anxiety, higher age, comorbid personality disorder, 84 

and hoarding subtypes, but these factors cannot make accurate predictions for individual 85 

patients [9-13]. Machine learning studies have started to test multivariate predictive models 86 

based on clinical factors, but the accuracy of those models has been limited [14, 15]. In an 87 

attempt to improve model accuracy and uncover biomarkers of CBT response, machine 88 

learning studies have incorporated functional magnetic resonance imaging (fMRI) data. Initial 89 

studies indeed suggest that predictive models using fMRI data are more accurate than models 90 

based on clinical data [16-18]. However, those studies are limited by the use of smaller 91 

samples (N<60) from single research sites, which tend to yield inflated model accuracy and 92 

decreased generalizability to other samples, due to overfitting to features of the data they are 93 

trained on [19, 20]. To obtain more robust biomarkers, large multicenter data are required 94 
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with independent validation methods. Currently, it is unclear whether CBT outcome can be 95 

predicted in multicenter datasets and whether clinical data, fMRI data, or its combination 96 

yields the highest accuracy for predicting clinical outcome.  97 

In this study, we predicted CBT outcomes in OCD using pre-treatment 1) clinical and 98 

demographic data, and 2) resting-state fMRI data to estimate brain function using derivatives 99 

that have been associated with OCD pathophysiology (i.e. fALFF, ReHo, and functional 100 

connectivity [21-23]. Data were obtained from several sites of the multicenter Enhancing 101 

Neuro-Imaging and Genetics through Meta-Analysis (ENIGMA) OCD consortium. We 102 

trained machine learning models to predict clinical response, remission, and post-treatment 103 

symptom severity as determined by the Y-BOCS, and evaluated model accuracy in 104 

independent samples using leave-one-site-out cross-validation. The study is reported in 105 

accordance with TRIPOD guidelines for diagnostic studies [24]. 106 

 107 

Methods 108 

Participants 109 

 The initial sample consisted of 300 participants for whom rs-fMRI data and 110 

information about CBT outcome was available. We excluded participants below 18 years of 111 

age (n=56), samples from sites with N<20 [25] to ensure classifiers were provided with 112 

sufficient data per site (n=71), and 14 participants with insufficient data quality 113 

(rotation/translation>4 mm/degrees, average FD>0.25 with <100 volumes), leading to a 114 

sample of 159 participants (88 female, mean age 33±9.5 years) across four ENIGMA-OCD 115 

neuroimaging sites [18, 26, 27]. OCD was diagnosed according to the diagnostic criteria from 116 

the Diagnostic and Statistical Manual for Mental Disorders IV or 5 (DSM-IV/5). All studies 117 

were approved by the local institutional review board and participants provided written 118 

informed consent.  119 

Although all sites administered CBT focused on ERP, exact CBT protocols differed across 120 

sites. One site administered the Bergen 4-day treatment protocol. The three other sites 121 

administered CBT through standard protocols, with a varying number of sessions and 122 

duration. Two of these three sites administered CBT in a group setting. All sites included 123 

homework tasks as an additional part of the therapy. 124 

 125 
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Clinical data 126 

At baseline, clinical and demographic data (henceforth termed clinical data) were recorded 127 

and consisted of the participants’ age, biological sex, education level, medication use, current 128 

diagnosis of depression, current diagnosis of an anxiety disorder, Y-BOCS at baseline, and 129 

obsession type (aggressive, cleaning/contamination, sexual/religious, hoarding, and/or 130 

ordering/symmetry obsessions). For an overview of all clinical data, see Table 1. 131 

Neuroimaging data 132 

Resting-state fMRI (rs-fMRI) scans were acquired (see Table S1 for imaging acquisition 133 

parameters) and processed locally using the fMRIPrep-based Harmonized AnaLysis of 134 

Functional MRI pipeline (HALFpipe) [28-30], according to standardized protocols (see 135 

http://enigma.ini.usc.edu/protocols/functional-protocols/) as described in Bruin et al., 2023. 136 

Preprocessing steps included motion correction, slice timing and susceptibility distortion 137 

correction (if available), normalization, and denoising using grand mean scaling with a mean 138 

value of 10,000, and correction of head motion, white matter, and cerebrospinal fluid artifacts 139 

using the top five principal noise components in aCompCor and ICA-AROMA [31]. 140 

To estimate local brain activity, fMRI data were band-pass filtered (0.01-0.1 Hz) and fALFF 141 

and ReHo were extracted, which measure the local spontaneous neural activity and its 142 

regional coherence, respectively [32]. These values were subsequently smoothed with a 6-mm 143 

FWHM kernel. Voxel-wise values were subsequently averaged per region of interest (ROI) to 144 

obtain 400 mean fALFF and ReHo values based on the Schaefer 400 atlas [33]. 145 

For brain-wide functional connectivity, fMRI data were high-pass filtered (0.008 Hz). Since 146 

ROI time series with less than 80% voxel coverage were excluded during data extraction, we 147 

restricted the sample for the connectivity analysis by excluding subjects with >20% missing 148 

ROIs (n=39). The remaining correlation matrices (n=120) were then masked to include only 149 

regions that had coverage for all subjects, leading to a 330-by-330 connectivity matrix with 150 

regions from the Schaefer 400-17 network atlas [33], 17 ROIs from the subcortical Harvard-151 

Oxford Atlas [34], and 17 cerebellar ROIs from the Buckner 17-network atlas [35].  152 

Machine learning 153 

For binary classification, we predicted two types of CBT outcome for each data modality: 154 

clinical response (defined as ≥35% reduction in Y-BOCS) and remission (≤Y-BOCS of 12) 155 

[36]. Additionally, we performed regression on post-treatment Y-BOCS to overcome 156 
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limitations of dichotomizing continuous Y-BOCS using support vector regression and RF 157 

regressor with identical parameters on the grid search as for binary classification.  158 

Training and validation were performed with a nested loop, in which the model was trained 159 

on three sites and validated on the fourth independent site. We compared the performance of 160 

random forest (RF) and support vector machine (SVM) models on predicting CBT outcome 161 

with clinical data only, rs-fMRI data only, or different combinations of clinical and rs-fMRI 162 

data. For each of the four folds, label-stratified grid search was performed on the training data 163 

to find the optimal hyperparameters for SVM (C: 0.1-1000, gamma: 0.0001-1, kernel: radial 164 

basis function or linear) and RF (maximum number of features: 10-300, minimum samples 165 

per leaf: 1-10, minimum samples per node split: 2-20, number of decision trees: 100-1000) 166 

with balanced accuracy as the scoring function. These hyperparameters were subsequently 167 

used in the model to predict outcome in the held out test site. If there was class imbalance for 168 

a CBT outcome variable (>60% belonging to the majority class), random under-sampling of 169 

the majority class was performed on the training data.  170 

We also performed an additional classification using nested 3x5 cross-validation with five 171 

site-stratified outer folds and three CBT-outcome stratified inner folds. Because multi-site 172 

imaging data has been shown to induce noise and biases that counteract the learning of 173 

relevant features in shuffled cross-validations [37], we scaled and fitted the data on the 174 

training and testing set separately and performed ComBat [38] regression to regress out 175 

batch/scanner effects of the different imaging sites on the train and test set separately for the 176 

outer folds. 177 

Model performance was assessed by averaging the area under the receiver operating 178 

characteristic curve (AUC), positive predictive value (PPV), negative predictive value (NPV), 179 

sensitivity, and specificity over the different sites/folds for classification. We obtained 95% 180 

confidence intervals for AUC values using an analytical computation of the DeLong method 181 

[39]. Root mean square error (RMSE) and coefficient of determination (R2) over the different 182 

sites/folds were calculated for regression. Statistical significance of the best performing model 183 

was statistically tested with 1000 permutations, and Shapley Additive explanation (SHAP) 184 

values were extracted for model interpretation [40]. 185 

 186 

 187 
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Univariate analysis 188 

Besides the multivariate analyses, we performed confirmatory univariate analyses for both the 189 

clinical and rs-fMRI data. A whole-brain univariate analysis was performed to compare 190 

differences in fALFF and ReHo data between remitters and non-remitters while correcting for 191 

covariates of age, biological sex, medication use, and imaging site with a two-sample t-test 192 

using Statistical Parametric Mapping 12 (SPM12, https://www.fil.ion.ucl.ac.uk/) in Matlab 193 

R2018b [41]. Multiple comparisons correction of whole brain voxel-wise comparisons was 194 

employed with family-wise-error (FWE) rate correction at α=0.05 on the cluster level (cluster 195 

forming threshold p<0.001). Connectivity matrices were compared between remitters and 196 

non-remitters with the Network Based Statistics (NBS) toolbox in Matlab R2018b using 5000 197 

permutations at α=0.05 (network based statistics method, significance based on cluster 198 

intensity) while correcting for age, biological sex, medication use, and imaging site. 199 

 200 

 201 
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Results 215 

Patient characteristics 216 

Participants had a mean Y-BOCS of 26.3±4.8 at baseline, indicating severe OCD. On 217 

average, participants received 16.0±6.6 sessions of CBT with an average treatment duration of 218 

11.5±8.9 weeks. Following treatment, Y-BOCS significantly reduced to 14.7±6.7; 219 

t(158)=22.16,p<0.001). The majority of the 159 individuals (110, 69%) responded to the 220 

treatment (≥35% reduction in Y-BOCS) and 67 (42%) achieved remission (Y-BOCS ≤12). 221 

Patient characteristics are described in Table 1. 222 

Table 1. Demographic and clinical data of the total participant sample (N=159). 223 

Variable Mean±SD/N 

Age 33.0±9.5 

Sex 88 female/71 male 

Education (yrs) 13.8±3.0 

Medicated 101 prior/129 during 

Current diagnosis of major depressive disorder 29 

Current diagnosis of an anxiety disorder 42 

Y-BOCS 26.3±4.8 

Aggression/checking obsessions 134 

Cleaning/contamination obsessions 99 

Sexual/religious obsessions 70 

Hoarding obsessions 52 

Ordering/symmetry obsessions 52 

Clinical response                           
(≥35% reduction) 

110 

Remission (Y-BOCS≤12) 67 

 224 

 225 
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Classification Performance 226 

Clinical data only 227 

Performance metrics across all data modalities and outcome predictions are depicted in Figure 228 

1,2, S1 and S2. 229 

Multivariate prediction of response after CBT using clinical data yielded a low mean AUC of 230 

0.58 (see Tables 2 and 3). The prediction of remission achieved the highest performance with 231 

a mean AUC of 0.69 using a random forest classifier (95% CI [0.58, 0.73], p=0.001). From 232 

this model, the variables with the highest SHAP values indicated that a lower Y-BOCS at 233 

baseline, lower age, an absence of cleaning obsessions and unmedicated status, and higher 234 

educational level contributed most to a prediction of remission (see Figure 3).  235 

Neuroimaging data only 236 

Mean AUCs for predicting clinical response and remission using fALFF, ReHo, and 237 

functional connectivity data ranged between 0.44 to 0.59 (see Table 2 and 3 for all 238 

performances across the rs-fMRI measures).  239 

 240 

 241 
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Table 2: SVM and RF prediction performance of CBT response (≥35% reduction) in OCD with rs-fMRI 252 

and clinical characteristics in a leave-one-site-out framework. 253 

 fALFF ReHo Functional 

Connectivity 

Clinical 

data 

Clinical 

+fALFF 

Clinical 

+ReHo 

Clinical 

+Functional 

Connectivity 

SVM  

AUC (95% 

CI) 

0.52±0.04  

(0.41-

0.58) 

0.44±0.05 

(0.35 – 

0.52) 

0.44±0.10 

(0.31 – 0.50) 

0.49±0.13 

(0.43 – 

0.60) 

0.51±0.05 

(0.43 – 

0.60) 

0.47±0.04 

(0.37 – 

0.53) 

0.55±0.11 

(0.44 – 0.62) 

PPV 0.33±0.33 0.51±0.17 0.54±0.36 0.69±0.05 0.53±0.32 0.45±0.27 0.43±0.11 

NPV 0.37±0.15 0.29±0.09 0.25±0.16 0.41±0.29 0.32±0.19 0.29±0.10 0.66±0.14 

Sensitivity 0.44±0.44 0.33±0.27 0.34±0.25 0.60±0.22 0.54±0.34 0.34±0.34 0.57±0.15 

Specificity 0.61±0.41 0.56±0.19 0.54±0.37 0.39±0.28 0.48±0.34 0.59±0.30 0.53±0.11 

RF  

AUC (95% 

CI) 

0.56±0.06 

(0.45 – 

0.62) 

0.50±0.08 

(0.47 – 

0.64) 

0.44±0.04 

(0.35 – 0.54) 

0.58±0.08 

(0.50 – 

0.66) 

0.48±0.02 

(0.44 – 

0.61) 

0.47±0.13 

(0.45 – 

0.62) 

0.48±0.06 

(0.38 – 0.56) 

PPV 0.73±0.10 0.68±0.12 0.56±0.10 0.75±0.04 0.65±0.12 0.65±0.13 0.36±0.09 

NPV 0.36±0.16 0.34±0.15 0.29±0.09 0.45±0.23 0.32±0.11 0.31±0.18 0.59±0.09 

Sensitivity 0.65±0.12 0.52±0.19 0.35±0.20 0.66±0.16 0.40±0.24 0.49±0.17 0.43±0.08 

Specificity 0.47±0.22 0.49±0.21 0.54±0.18 0.50±0.16 0.57±0.25 0.44±0.26 0.53±0.11 

 254 

 255 

 256 

 257 
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Table 3: SVM and RF prediction performance of CBT remission (Y-BOCS ≤12) in OCD with rs-fMRI 265 

and clinical data in a leave-one-site-out framework. 266 

 267 

 fALFF ReHo Functional 

Connectivity 

Clinical data Clinical 

+fALFF 

Clinical 

+ReHo 

Clinical 

+Functional 

Connectivity 

SVM  

AUC (95% 

CI) 

0.50±0.01 

(0.48-

0.64) 

0.57±0.09 

(0.53-

0.68) 

0.45±0.04 

(0.37 – 0.56) 

0.63±0.07 

(0.56 – 0.71) 

0.49±0.07 

(0.42 – 0.58) 

0.63±0.06 

(0.55 – 

0.70) 

0.60±0.09 

(0.48 – 0.65) 

PPV 0.33±0.21 0.44±0.28 0.31±0.11 0.55±0.06 0.34±0.20 0.53±0.10 0.50±0.13 

NPV 0.48±0.28 0.65±0.02 0.44±0.26 0.72±0.18 0.63±0.19 0.77±0.14 0.69±0.13 

Sensitivity 0.40±0.38 0.34±0.24 0.47±0.34 0.71±0.13 0.30±0.38 0.71±0.23 0.42±0.28 

Specificity 0.60±0.37 0.81±0.07 0.42±0.29 0.55±0.18 0.67±0.28 0.55±0.12 0.77±0.13 

RF  

AUC (95% 

CI) 

0.49±0.05 

(0.40 – 

0.56) 

0.59±0.08 

(0.50-0.64 

0.50±0.03 

(0.44 – 0.55) 

0.69±0.16 

(0.58 – 0.73) 

0.52±0.02 

(0.43 – 0.59) 

0.61±0.11 

(0.50 – 

0.64) 

0.55±0.07 

(0.49 – 0.66) 

PPV 0.43±0.36 0.55±0.13 0.21±0.22 0.67±0.20 0.51±0.37 0.56±0.10 0.39±0.25 

NPV 0.60±0.10 0.65±0.11 0.62±0.07 0.75±0.20 0.62±0.11 0.66±0.16 0.66±0.07 

Sensitivity 0.27±0.38 0.40±0.17 0.09±0.09 0.70±0.21 0.33±0.38 0.42±0.25 0.27±0.23 

Specificity 0.72±0.35 0.79±0.02 0.91±0.06 0.68±0.26 0.72±0.38 0.79±0.05 0.83±0.09 

 268 

ReHo achieved the highest performance in predicting remission, with a mean AUC of 0.59 269 

using an SVM, although prediction of clinical response using ReHo only achieved a mean 270 

AUC of 0.50. fALFF predicted response and remission with mean AUC values ranging 271 

between 0.49 to 0.56 for predicting remission and response with an RF, respectively. 272 

Functional connectivity had the lowest performance of all imaging measures with mean AUC 273 

values ranging between 0.44 to 0.50 for predicting response and remission with RF. 274 

Multimodal data 275 

We next evaluated whether the combination of clinical and rs-fMRI data could result in better 276 

predictions. The use of multimodal data did not outperform the use of single rs-fMRI 277 

measures or clinical data in the prediction of CBT outcome: the best performing model was 278 

the combination of clinical data and ReHo with a mean AUC of 0.63 for predicting remission 279 

using an SVM.  280 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2025. ; https://doi.org/10.1101/2025.02.14.25322265doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.14.25322265
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

 

5-fold cross validation 281 

To evaluate whether models could perform better when data from every site is available 282 

during training, we additionally performed 5-fold cross-validation with participants across all 283 

sites shuffled over the folds (see Table S2 and S3). Compared to leave-one-site-out cross 284 

validation, 5-fold cross-validation yielded similar or marginally higher prediction 285 

performances for functional connectivity (AUC=0.55) and the combination of clinical data 286 

and fALFF (AUC=0.59), but none of the modalities and models outperformed the best model 287 

with leave-one-site-out cross-validation. 288 

Regression performance 289 

We next evaluated whether post-treatment Y-BOCS could be accurately predicted using SVR 290 

and RF Regressor. This generally yielded poor results with high RMSE and low R2 values, 291 

especially for the rs-fMRI data. The use of clinical data for predicting post-treatment Y-292 

BOCS using an RF had the relatively lowest mean RMSE of 6.05 (see Table S4). 293 

Univariate analysis 294 

Finally, we evaluated whether there were univariate associations between baseline differences 295 

in ReHo, fALFF, functional connectivity and clinical data between remitters and non-296 

remitters. We found no statistically significant differences between both groups in any of the 297 

imaging measures. 298 

Clinically, remitters only showed lower baseline Y-BOCS severity (M=24.2,sd=4.5) than 299 

non- remitters (M=27.8, sd=4.5), t(142)=4.9, p=<0.001, Bonferroni corrected). To explore 300 

whether baseline Y-BOCS could also predict remission, we computed the ROC curve for the 301 

entire sample. This yielded a total AUC of 0.72 for predicting remission. This analysis also 302 

revealed a Y-BOCS cut-off point of 23.5 with the best balanced accuracy in predicting 303 

remission (balanced accuracy: 0.67), albeit with a poor balance between sensitivity (0.87) and 304 

specificity (0.46). For all Y-BOCS cut-off points and their respective performance in 305 

predicting remission, see Table S5. 306 

 307 

 308 

 309 

 310 
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Discussion 311 

In this multicenter ENIGMA-OCD cohort study, we investigated the potential of using 312 

baseline clinical data and fALFF, ReHo, and functional connectivity measures from resting-313 

state fMRI data for predicting CBT outcomes in adult participants diagnosed with OCD. We 314 

found moderately positive results in the prediction of CBT remission using clinical data 315 

(AUC=0.69), but also found that prediction of CBT outcome with only rs-fMRI data was 316 

unsuccessful: mean AUC values for various rs-fMRI features ranged between 0.44 (for 317 

predicting CBT response with functional connectivity data) to 0.59 (for predicting CBT 318 

remission with ReHo data). In general, performance was better for predicting CBT remission 319 

than response, even when using random under-sampling to account for the class imbalance of 320 

clinical response. We also attempted regression on the post-treatment Y-BOCS value, which 321 

also yielded unsatisfactory performance for both rs-fMRI and clinical data (high RMSE and 322 

low R2 values).  323 

We achieved the highest performance with clinical data, but only for the prediction of 324 

remission. With an AUC of 0.69 with leave-one-site-out cross validation, we reach a 325 

performance that falls just short of being classified as acceptable discrimination [42], but this 326 

performance is higher than reported in previous work on predicting CBT outcome in OCD 327 

with clinical data [14, 15].  The performance may have been limited due to inter-site 328 

differences in CBT protocols and patient inclusion. One of the four sites followed the Bergen 329 

4 day CBT protocol, which has shown high efficacy in the treatment of OCD [43] regardless 330 

of pre-treatment Y-BOCS severity [44]. The other sites followed different ERP protocols in 331 

both group and individual settings, with varying number of sessions, duration, and efficacy. 332 

Despite these differences, our results show that the factors determining CBT remission are 333 

relatively universal: lower baseline Y-BOCS, lower age, an absence of cleaning obsessions, 334 

unmedicated status, and a higher education increase the chances of being classified as a 335 

remitter. Feature importance in machine learning models should be interpreted with caution as 336 

the models have a multivariate nature, but previous studies have consistently indicated that 337 

high Y-BOCS at baseline predicts worse CBT outcome, which is corroborated by our study 338 

[9, 45]. Our ROC analysis revealed that remission indeed could also be predicted with the 339 

baseline Y-BOCS alone with a comparable mean performance to that of our multivariate 340 

models. However, while this yielded a high sensitivity (0.87) for the highest balanced 341 

accuracy (0.67) with a cut-off Y-BOCS point of 23.5, specificity was only 0.46. This indicates 342 

that Y-BOCS alone cannot predict non-remission, and that a better balance between 343 
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sensitivity and specificity can be achieved by using multivariate models and additional 344 

clinical variables, besides baseline Y-BOCS. 345 

The importance of age and educational level for CBT outcome have also been reported 346 

previously, although not consistently [11, 46]. Contrary to prior studies, we found no evidence 347 

for the hoarding obsession subtype being negatively associated with CBT outcome [9, 10]. 348 

Instead, there was an indication that patients with contamination obsessions were less likely to 349 

remit. While studies have shown that contamination obsessions can be treated successfully 350 

with CBT [47, 48], these studies tend to focus on clinical response, which may not necessarily 351 

extend to clinical remission for this subtype. 352 

In general, the prediction of CBT response did not exceed chance-level when rs-fMRI and 353 

clinical data were used jointly. The fact that response could not be predicted successfully for 354 

pooled rs-fMRI and clinical data may lie in the underlying data distributions of CBT 355 

outcomes. As most of the participants achieved a clinical response to CBT, there was a large 356 

class imbalance between groups, which despite undersampling of the majority class made 357 

prediction difficult. For remission, we predicted an outcome that was more balanced and may 358 

stand out more in a sample where the majority achieved response, but a minority achieved 359 

remission. The use of a clinical decision model that predicts remission may also be more 360 

beneficial as patients achieving remission are less likely to relapse [49], but whether a model 361 

performance of 0.69 AUC is actually beneficial to patient care will need to be investigated in 362 

a thorough cost-benefit analysis [50]. 363 

The unsuccessful prediction of CBT outcome with rs-fMRI is not in line with earlier research 364 

which has reported that, at least in smaller monocenter samples, rs-fMRI may have a potential 365 

in predicting CBT outcome through baseline activity and connectivity of subcortical and 366 

cortical areas such as the ventromedial prefrontal cortex and subcortex [16-18]. While these 367 

studies show that functional connectivity may be relevant for the prediction of CBT response 368 

for individual institutes, the chance level performance in our study indicates that such models 369 

cannot generalize to data from other institutes.  370 

The use of multi-site data provides opportunities to increase the sample size and thereby the 371 

generalizability of model performance, but this variation and heterogeneity could also 372 

negatively impact model performance. Increases in sample sizes in psychiatric research tend 373 

to increase data heterogeneity and thereby reduce model performance [20, 51], which proves 374 

even more difficult when considering that OCD has a highly heterogeneous biological and 375 
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clinical presentation [52-54], and large samples are often obtained by the use of multiple 376 

scanners at different imaging sites which additionally induces artificial variability [55, 56]. 377 

Further variability in the biological data in this study includes the use of medication, which 378 

has been shown to affect fMRI signals [57-59]. In our 5-fold cross validation analysis, we 379 

employed ComBat on the rs-fMRI data to mitigate between-site variability. However, this 380 

unfortunately did not improve performance as compared to leave-one site out cross-381 

validation, which could imply that no observable biological markers of therapy response were 382 

present in the baseline data. This notion is supported by our univariate statistical analyses 383 

where we found no baseline differences in fALFF, ReHo, and functional connectivity 384 

between future remitters and non-remitters. While multivariate machine learning analyses are 385 

typically more sensitive to detect patterns in neuroimaging data than univariate analyses [60], 386 

the results from this univariate analysis indicate a possibility that no useful biological markers 387 

of brain activity related to CBT outcome were present, at least among those selected, in the rs-388 

fMRI data for our models. 389 

In light of these findings, the strengths and limitations of this study should be considered. The 390 

relatively large multi-site sample size for both neuroimaging and clinical data is a strength of 391 

our study, allowing for better representation of the large clinical heterogeneity in OCD and 392 

improvement of model generalizability. Although we almost reach acceptable discrimination 393 

for predicting remission with the use of clinical data only, the sample size in this study may 394 

still have been too limited for reliable model performance [61], especially with the use of 395 

neuroimaging. Unfortunately, larger sample sizes also increase the number of confounding 396 

factors that are difficult to account for, and this is a limitation of our study: there were site 397 

differences in both the rs-fMRI acquisition and CBT protocols with variations in treatment 398 

type, duration, and efficacy. Many of the patients were also simultaneously taking 399 

psychotropic medication. Without accounting for these factors, no definitive conclusion can 400 

yet be drawn about the value of rs-fMRI data for the prediction of CBT outcome in OCD. 401 

In summary, this study used multi-site imaging and clinical data from a relatively large 402 

(n=159) sample of individuals from the ENIGMA-OCD cohort in an attempt to find reliable 403 

biomarkers of CBT response in OCD. We showed moderate performance in the prediction of 404 

remission with the use of clinical data. Baseline YBOCS severity, age, education level, 405 

unmedicated status and an absence of cleaning obsessions were the most relevant features to 406 

achieve remission. The potential for clinical use needs to be further evaluated before these 407 

results can be implemented. Yet, our study did not reveal any useful biomarkers of CBT 408 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 14, 2025. ; https://doi.org/10.1101/2025.02.14.25322265doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.14.25322265
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

 

outcome derived from resting-state fMRI data. While this study has limitations that prevent us 409 

from drawing any definite conclusions on the use of rs-fMRI data in predicting CBT outcome, 410 

our results imply that clinical data are more relevant for the prediction of CBT remission in 411 

OCD. 412 
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Figure legends 618 

 619 

Figure 1: Mean AUC values of SVM and RF in the prediction of CBT response (≥35% 620 

reduction in Y-BOCS) in OCD. Mean and standard deviations depicted for each AUC, modality, and 621 

model. Clinical=clinical data, fALFF=fractional amplitude of low frequency fluctuations, ReHo=regional 622 

homogeneity, FC=functional connectivity, RF=random forest, SVM=support vector machine. 623 

 624 

Figure 2: AUC values of SVM and RF in the prediction of CBT remission (Y-BOCS≤12) in 625 

OCD. Mean and standard deviations depicted for each AUC, modality, and model. Clinical=clinical data, 626 

fALFF=fractional amplitude of low frequency fluctuations, ReHo=regional homogeneity, FC=functional 627 

connectivity, RF=random forest, SVM=support vector machine. 628 

 629 

Figure 3: SHAP values of all clinical features in predicting CBT remission, indicating that 630 

lower Y-BOCS severity, lower age, an absence of cleaning obsessions, unmedicated status, 631 

and higher education are the most relevant features for predicting remission.  632 
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