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Abstract: The stabilization efficiency of flavonoids (rutin and hesperidin) in polyester (polylactide
(PLA) and polyhydroxyalkaonate (PHA)) composites under oxygen at high temperature was
investigated. The polymer was homogenized with three antioxidants then processed by extrusion.
The effects of stabilizers on the following physicochemical properties were investigated: melt flow,
Vicat softening temperature, surface energy, and color change (Cie-Lab space). The aim of this
study was to improve the stability of aliphatic polyesters by extending and controlling their lifetime.
Differential Scanning Calorimetry DSC and Thermogravimetric analysis DTG methods were used
to confirm the stabilizing effects (the inhibition of oxidation) of flavonoids (rutin and hesperidin)
on the ageing process of biodegradable polymers. The levels of migration of plant antioxidants
from PLA and PHA were determined and compared to the industrial stabilizer (Chimassorb 944 UV
absorber). Based on this study, a comparable-to-higher efficiency of the proposed flavonoids for the
stabilization of polyesters was found when compared to the commercial stabilizers. Thus, in the
future, natural plant-derived substances may replace toxic hindered amines, which are commonly
used as light stabilizers (HALS—Hindered Amine Light Stabilizers) in the polymer industry.
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1. Introduction

Biopolymers, polymers from renewable raw materials, have recently become the most attractive
alternative to synthetic non-degradable petro-polymers. The extension of the shelf life of food packed
in polymers can also be achieved by the addition of antioxidants to the polymer resin. Environmental
protection concerns and the rising cost of oil have pushed biodegradable polymers into world
markets [1–6]. Unfortunately, aliphatic biopolymers such as polylactide (PLA) are characterized
by poor resistance to climatic factors mainly due to the presence of polar ester groups that increase
their susceptibility to hydrolysis. Apart from biodegradation, PLA can undergo photodegradation
and hydrolytic degradation. However, new polymers that are being explored should have stability for
some time. Despite this disadvantage, PLA is considered to be a green polymer and a polymer of the
21st century. Polylactide is characterized by its ease of processing, good mechanical properties
(particularly Young’s modulus), a glass transition temperature higher than room temperature,
and higher transparency, all of which indicate that PLA is a promising material for packaging
and other industrial applications. PLA has good physical and mechanical properties, making it
possible to replace petrochemical thermoplastics. Additionally, PLA processing can be carried out
using existing machines [7–21]. Biodegradable polymers obtained from microbial fermentation,
especially polyhydroxyalkaonates (PHAs), are biodegradable, biocompatible, and thermo-processable
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with flexible strengths. Aliphatic polyesters are products which can be degraded by enzymatic activities
of various microorganisms, and the degradation products are non-toxic. PHAs have found applications
in the form of packaging materials including films, boxes, and coatings. The biodegradable PHA
products can reduce the disposing of packaging waste that is burdening life worldwide through a
substantial reduction in non-degradable polyolefins waste [22–26].

The addition of flavonoids results in the stabilization of the polymer during processing.
This solution also delays the oxidation of the lipid components of nutritional products. The antioxidant
is added to the polymer via the following mechanisms: Diffusion of antioxidant molecules from the
interior of the polymer phase to its surface; oxidation or evaporation of the antioxidant from the
polymer surface; and migration or antioxidant sorption onto the surface of the packaged product.
In the field of polymer technology, natural antioxidants are increasingly becoming a green alternative
to compounds such as hindered amine light stabilizers (HAS), phosphate derivatives, and synthetic
polyphenols. There have been studies reported in the literature concerning the use of natural
flavonoids for the stabilization of polymers, but the research primarily concerns polyolefins, which are
commonly used in packaging. Flavonoids act as antioxidants and interact directly with free radicals
or indirectly cause an increase in free radical scavenging, leading to compounds with a lowered
reactivity. Flavonoids have the ability to chelate pro-oxidation metals, which prevents the formation
of reactive hydroxyl radicals in cells and inhibits or enhances the activity of many different enzymes.
The benefit of mixing free radicals with natural antioxidants is that the antioxidants will react with
free radicals, protecting cells from free radical damage and interrupting free radical reactions [27–37].
Therefore, in our research, we decided to combine two ecological materials derived from renewable
raw materials, namely, aliphatic polyesters and natural flavonoid antioxidants. This solution seems to
be very beneficial, both in terms of environmental protection and human health [38–42].

2. Materials and Methods

2.1. Reagents

The subjects of the study were polylactide (PLA) IngeoTM Biopolymer 4043D from Nature
WorksTM (Minnetonka, MN, USA) with the following properties: Tg = 55–60 ◦C, Tm =
145–160 ◦C, and Melt Flow Index MFI = 6 g/10 min and polymer P(3,4HB) 2001 from the
polyhydroxyalkanoate group of polymers (PHA) with the following properties: P(3,4HB) containing
12 mol% 4-hydroxybutyrate, the average Mw was approximately 520 kDa, MVR = 15–20 g/10 min,
(assay conditions: temperature 170 ◦C, nominal load 2.16 kg), and a density of 1.25 g/cm3. PHA was
obtained from Simag Holdings LTD (Hong Kong, China) (Figure 1).
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Figure 1. Chemical composition of polylactide (PLA) and polyhydroxyalkanoate (PHA).

Different flavonoids were used as stabilizer additives at a concentration of 1 phr (parts per
hundred rubber) for PLA (100 phr) and PHA (100 phr). Pure rutin powder (≥94%, HPLC)
and hesperidin (Hesperetin 7-rhamnoglucoside, ≥80%) were obtained from a commercial source
(Sigma-Aldrich, Steinheim, Germany) and used as received. The oligomeric hindered amine light
stabilizer (HAS), Chimassorb 944 (Poly[[6-[(1,1,3,3-tetramethylbutyl)amino]-1,3,5-triazine-2,4-diyl]
[(2,2,6,6-tetramethyl-4-piperidinyl)imino]-1,6 hexanediyl[(2,2,6,6-tetramethyl-4-piperidinyl)imino]]),
was obtained from Ciba (Basel, Switzerland) (Figure 2).
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2.2. Methods for the Preparation of PLA and PHA Composites with Antioxidants

The granules of each of the PLA and PHA polyesters with a specific antioxidant were subjected to
extrusion in a Brabender extruder working in the horizontal position with a screw diameter of Ø 25.
All samples were produced under specific extrusion conditions: Polylactide polymer (PLA) samples
were prepared at 180 ◦C, while polyhydroxyalkanoate (PHA) samples were extruded at 160 ◦C.

2.3. Measurement Methods

2.3.1. Thermal Analysis of PLA and PHA Composites with Antioxidants

The crystallized specimens were characterized by using temperature-modulated DSC (TA 2920;
TA Instruments, Greifensee, Switzerand) at a heating rate of 5 ◦C/min with a 60 s heating/cooling
cycle for the modulation period and an amplitude of ±0.769 ◦C to determine the glass transition
(Tg) crystallization temperature (Tc) and the melting temperature (Tm). The DSC was calibrated with
indium before use. For the measurement of Tc, we used amorphous samples after quenching from the
melt state (~200 ◦C).

Thermal decomposition (TG) was studied by using a Mettler Toledo Thermobalance
(TA Instruments, Greifensee, Switzerand). Samples of approximately 5 mg were placed in aluminum
pans and heated from 20 to 650 ◦C under a dynamic flow of nitrogen (50 mL/min). Five heating rates
(5 ◦C/min) were used.

The Vicat softening temperature was determined with a D-Vicat.HDT/3/300/FA material
testing device (Peter Huber Kältemaschinenbau GmbH, Offenburg, Germany). The temperature
was standardized in ISO 306 and ASTM D 1525. This was the temperature at which a needle
with a 1 mm2 cross-sectional area at a predetermined load penetrated the test sample to a depth
of 1 mm at a defined rate of temperature rise. The measurement parameters were as follows:
load = 10 N, inductive displacement gauge resolution = 0.001 mm, temperature gradient = 120 ◦C/h,
initial temperature = 45 ◦C, final temperature = 150 ◦C, and displacement range was up to 15 mm.

The melt flow index (MFI) of the extruded pellets was determined using a PIN 7026 melt flow
instrument (CEAST, Planegg, Germany). The melt index was measured at 190 ◦C with a mass of
2.16 kg according to ASTM D1238. The pellets were dried under vacuum at 80 ◦C for 12 h before



Polymers 2018, 10, 1252 4 of 17

the MFI tests. The test was performed in accordance with ISO 1133D using the MELT-FLOW-INDEX
TESTER MeltFloWon plus (CEAST, Planegg, Germany).

2.3.2. Ageing of PLA and PHA Composites with Antioxidants

Thermo-oxidation ageing characteristics were determined according to the standard
PN-82/C-04216. Samples were exposed to air at an elevated temperature (383 K) for 10 days in
a dryer with thermo-circulation.

UV ageing was performed using a UV 2000 apparatus from Atlas. The measurement lasted 288 h
and consisted of two alternately repeating segments with the following parameters: daily segment
(radiation intensity = 0.7 W/m2, temperature = 60 ◦C, and duration = 8 h) and night segment (no UV
radiation, temperature = 50 ◦C, and duration = 4 h).

Weathering was carried out using a Weather-Ometer (Atlas; Ci 4000, Chicago, IL, USA). The test
was based on two variable segments simulating day and night conditions, and the samples were
subjected to two different cycles: daily cycle (radiation intensity = 0.4 W m−2, temperature = 60 ◦C,
duration = 240 min, humidity = 80%, and rain water on) and night cycle (no radiation, temperature =
50 ◦C, humidity = 60%, and duration = 120 min).

2.3.3. Surface Properties and Color Characteristics of PLA and PHA Composites with Antioxidants

The color of the obtained materials was measured using a CM-3600d spectrophotometer
(Konica Minolta Sensing, Inc., Osaka, Japan). The wavelength range was 360–740 nm, and the change
in color dE*ab was calculated as follows:

dE ∗ ab =
√
(∆a2) + (∆b2) + (∆L2) (1)

where L is 100, which represents an ideally reflecting diffuser. The minimum value for L is zero,
which corresponds to the color black. The a* and b* axes were not limited to special units. A positive
value for a* is red; a negative a* is green; a positive b* is yellow; and a negative b* is blue.

The whiteness index is a numerical indicator used to indicate the degree of whiteness. In the
CIE Lab color space, two of the axes are perceptually orthogonal to lightness. Hue can be calculated
together with chroma, transforming coordinates a and b from rectangular form to polar form. Hue is
angular component of the polar representation whereas chroma is the radial component.

Whitenessindex : Wi = 100 −
√
(100 − L)2 + a2 + b2 (2)

Chroma : C∗
ab =

√
a2 + b2 (3)

Hue:
h*ab = arc tg (b/a); where a > 0 and b > 0 (4)

h*ab = 180 + arc tg (b/a); where a < 0 and b > 0 (5)

In order to measuring the surface free energy of PLA and PHA composites with antioxidants,
the contact angle was determined using a metallographic microscope. Plate samples of PLA and
PHA were placed in drops of distilled water and, for subsequent measurements, in droplets of
water and diiodomethane using a microsyringe. The contact angle was calculated from the mean of
5 measurements. Measurements were made for samples before ageing and after UV ageing.

Based on measurements of contact angles for four measuring fluids (with different polarities),
the free surface energy of the solids (γs) was determined. Free surface energy is the sum of two
components—the dispersive (γS

D) and non-dispersive (γS
P) effects:

γs = γS
D + γS

P (6)
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where γs is the free surface energy (mJ/m2), γS
D is the dispersion component of the free energy

of the tested materials (mJ/m2), and γS
P is the polar component of the free energy of the tested

materials (mJ/m2).
In the Owens-Wendt model, the following equations were used for the dispersion component

and the polar component:

(γP
S )

0,5
=
γw·(cos θw + 1)− 2·

√
γD

w·γD
S

2·
√
γP

w
(7)

(γD
S )

0,5
=
γD·(cos θD + 1)−

√
γP

D
γP

w
·γw·(cos θw + 1)

2·
[√

γD
D −

√
γP

D·
γD

w
γP

w

] (8)

where: γw = water surface free energy (=72.6 mJ/m2)

γD
w, γ

P
w = water dispersion component (=21.6 mJ/m2) and water polar component (=51.0 mJ/m2)

γD = diiodomethane surface free energy (=50.8 mJ/m2)

γD
D, γ

P
D = diiodomethane dispersion component (=48.5 mJ/m2) and polar component (=2.3 mJ/m2)

Specific migration tests were performed according to the European Standard EN 13130. The release
of stabilizers from the polyesters was studied in one simulant (model solutions): ethanol at a
temperature of 25 ◦C. Sheets with an area of 5 cm2 and a thickness of 4 mm were immersed completely
in 10 mL of ethanol and incubated at the chosen temperature for 14 days. A volume of 2 mL of the
model solution (ethanol) in contact with polyester stabilized with flavonoids was taken at 2, 4, 6, 8, 10,
12, and 14 days of incubation in order to follow the release of the additive with time. The solutions
were scanned from 190 to 1100 nm in a UV-spectrophotometer (Evolution 220, Thermo Fisher Scientific,
Waltham, MA, USA).

3. Results and Discussion

3.1. Thermal Analysis (Differential Scanning Calorimetry and Thermogravimetry) of PLA and PHA
Composites with Antioxidants

First, we performed a thermogravimetric analysis TG of samples of the flavonoids themselves
and of the effects of flavonoids on the tested polyesters. The stability of the flavonoids themselves was
extremely important from the perspective of processing polymers; it is important for the additives to
be stable at processing temperatures. The results indicated that the most thermostable compound was
the Chimassorb 944 industrial stabilizer; its temperature at 20% mass loss was as high as 442.50 ◦C.
Hesperidine and rutin were characterized by a T20 temperature of 279–281 ◦C (Figure 3).
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Figure 3. TG curves of investigated stabilizers (rutin, hesperidin, and Chimassorb 944) obtained during
the temperature increase of 5 ◦C per minute in static air.

PLA itself was more stable with a temperature at 20% mass loss of 392 ◦C. Flavonoid addition did
not have a marked effect on the stability of the polyesters. Rutin and hesperidine were not affected at
the T20 and T50 PLA and PHA temperatures. The impact of the commercial UV absorber was identical
to that of the flavonoids (Figures 4 and 5).
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Figure 4. TG curves of investigated PLA stabilized with 1 phr of rutin, hesperidin, and Chimassorb
944 obtained during the temperature increase of 5 ◦C per minute in static air.
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Figure 5. TG curves of investigated PHA stabilized with 1 phr of rutin, hesperidin, and Chimassorb
944 obtained during the temperature increase of 5 ◦C per minute in static air.

Next, we performed DSC. The results showed that the addition of both natural and synthetic
stabilizers did not affect the PLA glass transition temperature. However, it was noticeable
that the oxidation temperature increased with the addition of the antioxidants. For example,
hesperidine increased the oxidation temperature T0 to 27 ◦C. Chimassorb also raised the oxidation
temperature by approximately 16–17 ◦C. Surprisingly, a significant reduction in PLA oxidation energy
was observed (∆H0 = 21.69 J/g) by adding rutin (∆H0 = 11.85 J/g) and hesperidin (∆H0 = 8.38 J/g).
A reduction in oxidation energy was associated with improved stability by reducing the oxidation effect.
The melting enthalpy values were lowest for the PLA/Chimassorb sample (∆H0 = 6.07 J/g) and highest
for the PLA/hesperidin sample (∆H0 = 19.40 J/g). However, it was apparent that after antioxidant
ageing, all the tested antioxidants acted in a stabilizing manner as opposed to solar ageing. After solar
ageing, the PLA/Chimassorb 944 sample had the best high-stability properties (Table 1).

Table 1. The Differential Scanning Calorimetry DSC analysis of PLA samples.

Sample Tg (◦C) ∆Hcc (J/g) Tcc (◦C) ∆Hm (J/g) Tm (◦C) ∆H0 (J/g) T0 (◦C)

Before Ageing

PLA 59.66 18.94 108.10 16.82 148.68 21.69 229.41
298.22

PLA/Rutin 59.15 12.20 111.33 12.54 148.97 11.85 245.79
305.38

PLA/Hesperidin 59.40 19.45 107.25 19.40 148.35 8.38 256.29
308.72

PLA/Chimassorb 944 59.81 8.13 114.90 6.07 151.04 26.52 246.22
19.73

After Thermo-Oxidation Ageing

PLA 58.37 27.59 107.76 23.67 148.43 19.08 223.76
290.52

PLA/Rutin 59.58 26.83 108.43 21.42 148.94 2.36 242.58
271.04

PLA/Hesperidin 58.51 24.34 108.27 21.44 148.32 0.94 248.57
250.67

PLA/Chimassorb 944 58.67 7.57 111.92 5.61 150.63 7.03 306.02
313.25
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Table 1. Cont.

Sample Tg (◦C) ∆Hcc (J/g) Tcc (◦C) ∆Hm (J/g) Tm (◦C) ∆H0 (J/g) T0 (◦C)

After Weathering Ageing

PLA 58.50 27.92 107.92 23.03 149.04 26.45 259.74
293.48

PLA/Rutin 58.43 30.56 105.52 25.06 147.79 10.84 237.57
300.43

PLA/Hesperidin 42.02 34.63 92.66 37.73 139.99 17.14 230.06
270.01

PLA/Chimassorb 944 58.44 11.04 111.85 8.79 150.46 15.72 271.96
316.19

Tg = glass transition temperature, ∆Hcc = enthalpy of crystallization, Tcc = crystallization
temperature, ∆Hm = enthalpy of melting, Tm = melting temperature, ∆H0 = enthalpy of oxidation, T0 = initial and
final oxidation temperature.

Before ageing, the PHA reference samples and PHA with stabilizers had similar thermal
characteristics. The low-molecular-mass addition was similar to PLA in terms of increasing the
oxidation temperature to 44 ◦C with hesperidin and 30 ◦C with the commercial stabilizer. In contrast
to PLA samples, PHA samples were more resistant to solar ageing than to long-term thermo-oxidative
effects. Such results might be closely related to the various dispersions and impeded lability of
stabilizers in the polyester matrixes PHA and PLA (Table 2, Figure 6).

Table 2. The Differential Scanning Calorimetry DSC analysis of PHA samples.

Sample Tg (◦C) ∆Hcc (J/g) Tcc (◦C) ∆Hm (J/g) Tm (◦C) ∆H0 (J/g) T0 (◦C)

Before Ageing

PHA 36.79 15.36 76.75 (1) 6.53
(2) 33.93

(1) 127.85
(2) 156. 67 9.66 199.27

260.33

PHA/Rutin 39.67 13.37 81.51 (1) 5.76
(2) 28.93

(1) 128.52
(2) 156.59 1.31 235.12

255.89

PHA/Hesperidin 36.57 13.87 77.35 (1) 6.15
(2) 32.57

(1) 128.41
(2) 157. 36 20.63 243.57

275.98

PHA/Chimassorb 944 37.37 16.66 78.47 (1) 3.86
(2) 31.50

(1) 126.52
(2) 156. 49 1.71 229.18

251.18

After Thermo-Oxidation Ageing

PHA 35.14 14.73 75.02 (1) 6.09
(2) 35.57

(1) 123.17
(2) 156.37 2.12 209.36

251.44

PHA/Rutin 36.93 17.50 76.49 (1) 9.48
(2) 36.05

(1) 132.57
(2) 156. 43 3.68 195.74

255.11

PHA/Hesperidin 35.30 16.50 73.33 (1) 4.95
(2) 36.27

(1) 128.93
(2) 155.68 19.00 201.67

264.40

PHA/Chimassorb 944 37.12 15.85 76.17 (1) 4.44
(2) 34.74

(1) 125.25
(2) 155.88 1.61 207.06

243.30

After Weathering Ageing

PHA 27.85 13.54 71.15 (1) 4.56
(2) 34.16

(1) 129.94
(2) 153.67 4.23 185.68

243.37

PHA/Rutin 26.24 14.41 71.94 (1) 4.44
(2) 35.67

(1) 126.63
(2)154.26 9.52 204.71

262.03

PHA/Hesperidin 35.38 11.44 63.90 (1) 0.12
(2) 30.33

(1) 100.29
(2) 130.63 7.36 200.69

249.40

PHA/Chimassorb 944 30.35 8.29 67.09 (1) 3.08
(2) 28.94

(1) 123.08
(2) 153.01 8.13 204.04

251.20

Tg = glass transition temperature, ∆Hcc = enthalpy of crystallization, Tcc = crystallization temperature,
∆Hm = enthalpy of melting, Tm = melting temperature (first melting endotherm (1) and second melting
endotherm (2)), ∆H0 = enthalpy of oxidation, T0 = initial and final oxidation temperature.
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Figure 6. DSC curves of (A) PLA and (B) PHA stabilized with 1 phr of rutin, hesperidin,
and Chimassorb 944 obtained by heating from room temperature to 300 ◦C.

3.2. Physicochemical Properties of PLA and PHA Composites with Antioxidants

Many food products are packed in polymeric materials. However, it should be noted that such
polymers contain low-molecular-mass additives, which tend to migrate from the food packaging.
Modern packaging should comply with the European Commission Regulation 2011 on plastic materials
and articles intended to come into contact with food.

The level of migration of low-molecular-mass antioxidant compounds into the model solution
was determined using an analytical assay. In this study, ethanol as a fatty food simulant was analyzed
at 24 ◦C. The migration process of the antioxidants was studied by UV-Vis spectroscopy because many
additives absorb light in the UV region. The use of natural substances of plant origin in packaging
materials is beneficial to both future consumers and manufacturers of packaging with environmentally
friendly intentions. Migration after 14 days with a value greater than or equal to 0.011 mmol/L in the
polylactide sample was most likely due to migration kinetics. The migration after 14 days was found
to be 0.140 mmol/L. The prevalence of migration was noticeable in the PHA sample (migration after
14 days = 0.304 mmol/L), while the lowest level of migration seen for routine use was found to be
0.054 mmol/L after 14 days. The stability of all antioxidants used in PHA was much higher than when
used in PLA. Taking into account the chemical composition of stabilizers, the most difficult and slowest
should be HAS migration, while rutin and hesperidin have the same molecular size. This theory
has not yet been confirmed in practical experiments. Thus, it can be clearly stated that innovative
antioxidants have a level of migration to the environment that is similar to commercial-scale stabilizers,
and they are therefore acceptable (Figure 7).
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Figure 7. Global migration results in the simulant (ethanol) from extruded laboratory samples (A) PLA
and (B) PHA.

The surface properties of polymeric samples sometimes determines their susceptibility to ageing.
The hydrophilicity and surface hydrophobicity were very important parameters for evaluating the
oxidation processes of the polymer. Contact angle measurements of PLA were calculated based on
the method proposed by Owens et al., as seen in Figure 8. Surface properties of the PLA film were
evaluated by contact angle measurements using water and diiodomethane as test liquids.

The surface energy of polyesters after the addition of stabilizers was generally reduced in both
PLA and PHA. The antioxidant supplement can increase the number of polar groups. PLA alone
had an energy of 84 mJ/m2, which was reduced by 33 mJ/m2 upon the addition of hesperidin.
Similar phenomena were observed for PHA samples with an energy of 65 mJ/m2, but after hesperidine
addition, the value was decreased by 25 mJ/m2. It is likely that hesperidine is labile in polymers and
migrates to the surface where it alters the surface properties through the presence of polar groups.
The other applied stabilizers did not greatly change the surface properties of the tested polyesters.

The impact of stabilizers on the flow index of the PLA polyester was also investigated. PLA itself
had an MFI of 4.23 g/10 min and an MVR of 4.23 cm3/10 min. The use of additives in PLA resulted in
almost a doubling of both the MFI and MVR ratios. Rutin did not affect the change in flow rate indexes
of polylactide, while hesperidine worked more plastically than the commercial stabilizer (Figure 9).
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Figure 8. Surface free energy (mJ/m2) of (A) PLA and (B) PHA stabilized with rutin, hesperidin,
and Chimassorb 944.

Polymers 2018, 10, x FOR PEER REVIEW  12 of 18 

 

 

Figure 9. Melt flow index (MFI) and melt volume rate (MVR) of PLA stabilized with rutin, hesperidin, 

and Chimassorb 944. 

The results of the softening temperature experiment, determined according to the Vicat method, 

indicated that the addition of both flavonoid and amine antioxidants did not significantly affect the 

plastic softening temperature. It can be argued that PHA is much harder and has a higher softening 

temperature compared to PLA. Temperatures of the polyhydroxyalkanoate PHB reference and PHB 

loaded with hesperidin were similar, but a higher change was observed for Chimassorb (Figure 10). 

 

Figure 10. Vicat softening temperature of PLA and PHA stabilized with rutin, hesperidin, and 

Chimassorb 944. 

Color is one of the most important parameters that can significantly change the visual properties 

of polyester samples. The addition of natural flavonoid antioxidants gave a beautiful and distinctive 

color to the polyester samples. Figure 11 shows an exemplary photograph of samples with flavonoids. 

The photos were taken with the Leica stereoscopic microscope. The software Optaview was used to 

analyze and process photos of selected samples. The pictures show samples at 43× magnification. 

These flavonoids act as natural pigments and dyes in plants. Using colorimetric analysis, the UV-Vis 

spectrophotometer could detect color changes that occurred not only under the influence of natural 

antioxidants, but also to a great extent under the influence of climatic factors. The measurements by 

4.23 4.74

9.6

15.52

4.1 4.85
6.13

9.74

PLA PLA/Rutin PLA/Hesperidin PLA/Chimassorb

944

0

2

4

6

8

10

12

14

16

18

In
d
ex

 MFI (g/10 min)

 MVR (cm
3
/10 min)

64.2 63.8 62.7 63.7

88.4
102.7

88.1

109.9

Reference Rutin Hesperidin Chimassorb 944
0

20

40

60

80

100

120

V
ic

at
 t

em
p

er
at

u
re

 (
o
C

)

 PLA  PHA

Figure 9. Melt flow index (MFI) and melt volume rate (MVR) of PLA stabilized with rutin, hesperidin,
and Chimassorb 944.

The results of the softening temperature experiment, determined according to the Vicat method,
indicated that the addition of both flavonoid and amine antioxidants did not significantly affect the
plastic softening temperature. It can be argued that PHA is much harder and has a higher softening
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temperature compared to PLA. Temperatures of the polyhydroxyalkanoate PHB reference and PHB
loaded with hesperidin were similar, but a higher change was observed for Chimassorb (Figure 10).
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Figure 10. Vicat softening temperature of PLA and PHA stabilized with rutin, hesperidin,
and Chimassorb 944.

Color is one of the most important parameters that can significantly change the visual properties
of polyester samples. The addition of natural flavonoid antioxidants gave a beautiful and distinctive
color to the polyester samples. Figure 11 shows an exemplary photograph of samples with flavonoids.
The photos were taken with the Leica stereoscopic microscope. The software Optaview was used to
analyze and process photos of selected samples. The pictures show samples at 43× magnification.
These flavonoids act as natural pigments and dyes in plants. Using colorimetric analysis, the UV-Vis
spectrophotometer could detect color changes that occurred not only under the influence of natural
antioxidants, but also to a great extent under the influence of climatic factors. The measurements by
the Cie-Lab used the coordinates in a uniform color space consisting of L* and chromaticity indices
a* and b*. In the case of PHA, the chroma parameter and brightness were the most affected by
ageing. Significant color changes (dE*ab) were observed after thermal ageing combined with oxidation.
Surprisingly, when exposed to solar radiation, the sample exhibited limited color change as detected
by this UV instrument (chroma, hue, and whiteness index). The reason for this might have been too
small a dose of UV ageing and weathering. In contrast, the polylactide samples significantly changed
color in comparison to the PHA samples (Figures 12 and 13).
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Figure 12. Color difference (dE*ab) (A), change of whiteness index (B), chroma (C) and hue (D) of
PHA composites stabilized with 1 phr of rutin, hesperidin, and Chimassorb 944 after UV ageing
and weathering was measured according to the Cie-Lab color scale. Coordinate a* green/red color
component (a* > 0 red, a* < 0 green) and b* blue/yellow color component (b* > 0 yellow, b* < 0 blue).
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Figure 13. Color difference (dE*ab) (A), change of whiteness index (B), chroma (C) and hue (D)
of PLA composites stabilized with 1 phr of rutin, hesperidin and Chimassorb 944 after UV ageing
and weathering was measured according to the Cie-Lab color scale. Coordinate a* green/red color
component (a* > 0 red, a* < 0 green) and b* blue/yellow color component (b* > 0 yellow, b* < 0 blue).

The degradable PLA and PHA polymers used, although different, have been tested for the
effect of plant-derived additives on their stability. Interesting research results have been obtained,
which indicates the improvement of polyester resistances to the oxidation, and what is associated with
it may suggest that they will have a longer “life time” span without losing their degradability after the
end of their service life. The addition of natural antioxidants means that the produced materials can be
considered as environmentally friendly. Interesting packaging materials have been obtained that are
characterized by a specific lifetime and are also colored thanks to the addition of flavonoids. The color
of such materials can be used in many applications, such as in the labeling of packaged food.
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4. Conclusions

This study revealed that the stabilization of polyesters by the addition of plant-derived substances
was a successful and effective process. The addition of rutin and hesperidin significantly increased
the resistance to oxidation of both PLA and PHA. The presence of hydroxyl groups in the flavonoids’
structure gave them excellent antioxidant properties.

The reaction of the OH groups during the oxidation reaction was indicated by a color change,
and therefore the polymer ageing processes could be monitored in a controlled way. In addition,
flavonoids are natural, commonly occurring substances that are widespread in the plant world.
With the growth of plastics consumption, it is important to seek out and study new environmentally
friendly stabilizers. The combination of polymers obtained from renewable raw materials with the
addition of plant substances is an interesting alternative to existing materials.
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