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Abstract: Microscopic objects change the apparent permittivity and conductivity of aqueous systems
and thus their overall polarizability. In inhomogeneous fields, dielectrophoresis (DEP) increases the
overall polarizability of the system by moving more highly polarizable objects or media to locations
with a higher field. The DEP force is usually calculated from the object’s point of view using the
interaction of the object’s induced dipole or multipole moments with the inducing field. Recently,
we were able to derive the DEP force from the work required to charge suspension volumes with
a single object moving in an inhomogeneous field. The capacitance of the volumes was described
using Maxwell–Wagner’s mixing equation. Here, we generalize this system’s-point-of-view approach
describing the overall polarizability of the whole DEP system as a function of the position of the object
with a numerical “conductance field”. As an example, we consider high- and low conductive 200 µm
2D spheres in a square 1 × 1 mm chamber with plain-versus-pointed electrode configuration. For
given starting points, the trajectories of the sphere and the corresponding DEP forces were calculated
from the conductance gradients. The model describes watersheds; saddle points; attractive and
repulsive forces in front of the pointed electrode, increased by factors >600 compared to forces in the
chamber volume where the classical dipole approach remains applicable; and DEP motions with and
against the field gradient under “positive DEP” conditions. We believe that our approach can explain
experimental findings such as the accumulation of viruses and proteins, where the dipole approach
cannot account for sufficiently high holding forces to defeat Brownian motion.

Keywords: system’s perspective; MatLab® model; microfluidics; DEP trajectory; LMEP; protein
dielectrophoresis; virus trapping; LOC; µTAS; force spectroscopy

1. Introduction

Analytically, dielectrophoresis (DEP) is usually modeled using the electroquasistatic
dipole approach [1]. There are few descriptions with the free energy approach or Maxwell’s
stress tensor [2]. Almost every approach is from the object’s point of view. Recently, we pre-
sented a new analytical model from the system’s perspective. It is based on the capacitive
charge work to suspend a single spherical object [3]. For DEP and the electro-orientation of
ellipsoidal objects, our results have shown a steady increase in the overall polarizability of
the suspension systems [4]. Even though this increase is slow with regard to the field oscil-
lation, we propose considering electro-orientation and DEP as “conditioned polarization
mechanisms.” Moreover, our results suggest that the law of maximum entropy produc-
tion (LMEP) [5–8] provides a powerful phenomenological criterion for AC–electrokinetic
effects. Our derivations have shown the importance of distinguishing between active
and reactive components in DEP [3]. In the case of suspensions, the reactive components
of the impedance result in extraordinarily high permittivities and conductivities at low
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and high frequencies, respectively. We suspect that this stealth effect has prevented—for
over a century—any discussion of AC–electrokinetic forces in terms of the electrical work
performed on suspensions.

In the dipole approach, the object is assumed to be small compared to the characteristic
length of the field inhomogeneity. This allows the assumption of a homogeneous effective
polarization described by the induced dipole moment with two equal dipole charges.
Their interaction with the slightly inhomogeneous external field produces unequal forces
at the two poles of the object, leading to DEP. The dependencies of the dipole moment
on the field frequency and media parameters are summarized in the Clausius–Mossotti
factor (CMF) [1,9]. Objects that are more and less polarizable than the suspension medium
are assumed to move in (positive DEP) and against (negative DEP) the field gradient
direction, respectively. This view is mainly correct for small objects. Objects of small size
can “sense” the field gradient very locally and with negligible distortion of the external
field. Consequently, their DEP trajectories “track” the steepest field gradient at each point.

However, in microchambers, complicated field distribution and inhomogeneous object
polarization is typical, because the objects are relatively large with respect to the cham-
ber [10–15]. The simple CMF description becomes problematic because the total force
results from the superposition of polarization contributions from the entire volume of the
inhomogeneously polarized object with the inhomogeneous field [16,17]. Examples include
individual objects inducing mirror charges at the electrode surface or the attraction of two
adjacent objects of the same size, where each object is subject to the field resulting from the
inhomogeneous polarization of the respective other object. Analytically, these relationships
are described by multipole models [18–20].

Our system’s approach shows how the DEP force can be derived from the charge
work with an object moving between suspension volumes in an inhomogeneous field [3].
Maxwell–Wagner’s mixing equation described the apparent (or complex) specific conduc-
tivity of the volumes [21,22]. After separating the reactive and active components of the
capacitive charge work, it could be shown that the active component drives the DEP [3]. At
a given field frequency, the advancement of the object within the field gradient increases
the overall polarizability of the DEP system through positive and negative DEPs in unison
with its effective overall conductivity and, in turn, the dissipation of the electric field energy
in ohmic heat.

In this paper, we generalize this approach by introducing a numerical “conductance
matrix” to describe the overall (DC) polarizability of the system as a function of the position
of the object in the DEP chamber. The assumption of DC properties for the object and the
external medium prevents problems in separating reactive contributions in the electric
work conducted on the DEP system [3]. However, it does not reduce the complexity of the
field-induced object behavior since DEP is determined by the real (in-phase) part of the
object polarization, even in the presence of complex media properties.

As one example, we considered high- and low-conductive 200 µm 2D spheres in a
square 1× 1 mm DEP chamber with 199 by 199 “2D voxels” using the classical-plain versus
pointed-electrode configuration. The conductance matrix contains the overall chamber
conductances calculated for each position that was geometrically accessible to the sphere
center. The matrix values were used as interpolation points for the MatLab® quiver line
function to calculate “conductance fields”, which completely describe the DEP behavior
of the sphere. For a given start position, the complex trajectories of the sphere’s center
follow the conductance gradient for the whole sphere, i.e., each step increases the overall
conductance of the DEP system, and hence the dissipation of electric field energy at the
fastest rate according to the LMEP.

2. Theory
2.1. General Remarks

The specific apparent, i.e., complex conductivity of aqueous media, is reduced by
objects made of material with low conductivity or permittivity and increased in the presence



Micromachines 2022, 13, 1002 3 of 18

of objects with high conductivity or permittivity. The actual effect is frequency-dependent.
While the effective conductivity of suspensions increases with frequency, their effective
permittivity drops [23]. Analytically, the conductivity of a suspension of monodisperse
objects can be described by mixing equations [21]. For a given volume fraction, the effect of
the objects on the conductivity of the suspension depends on their shape, orientation, and
arrangement in relation to the external electric field [24–28].

The shape and frequency dependence of the induced dipole moment for objects
confined by closed surfaces of the second degree (ellipsoids, spheroids, spheres, and
cylinders) is generally summarized by the unitless, complex CMF, which has real (in-phase)
and imaginary (out-of-phase) parts. For a homogeneous, general ellipsoid, it is described
by the complex conductivities of the external (σe) and object (σi) media [29]:

f
CM

= f<CM + j f=CM =
σi − σe

σe + n(σi − σe)
(1)

Complex parameters are underscored. j being
√
−1. The ellipsoid’s shape is coded in

the depolarizing coefficient n along the axis oriented in the field direction. For 3D and 2D
spheres, it is 1/3 and 1/2, respectively. Note that the circle representing the sphere in 2D
has the polarizability of a cylinder oriented perpendicular to the field in 3D [30].

The CMF is generally derived for a homogeneous external field, which induces a
dipole moment. The DEP force is proportional to the real part of the CMF f<CM = <( f

CM
),

and any real polarization ratio of an object and external medium occurring for frequency-
dependent properties can be modeled by combining appropriate DC conductivities for
the external and object media. The imaginary part f=CM = =( f

CM
) vanishes for the low-

(ω → 0) and high- (ω → ∞) frequency limits, and the CMF is described by the real parts of
the media’s conductivities (σi, σe) or permittivities (εi,εe). With n = 1/2 for the 2D sphere:

f<CM = f
CM

ω→0

= 2
σi − σe

σi + σe
or f<CM = f

CM
ω→∞

= 2
εi − εe

εi + εe
, respectively. (2)

The same CMFs are obtained at the frequency limits for the same conductivity and
permittivity ratios. The factors sweep the range between −2.0 and 2.0 (−1.5 and 3.0 for
the 3D sphere) with the limiting values reached for σi << σe or εi << εe, and σi >> σe or
εi >> εe, respectively.

The CMFs of Equation (2) are three times larger than the usual expressions because
the depolarization coefficient of 1/3 of the 3D sphere has not been separated and truncated
against the 1/3 in the volume term; a step that is historically justified but is a simplification
only for 3D spheres [9,17]. This allowed us to retain the full volume term in Equation (17),
which reflects the ponderomotive (bodily) nature of the DEP force.

In the model below, we use the low-frequency limit by combining a tenfold ratio
of external conductivity and object conductivity (1.0 S/m with 0.1 S/m and vice versa)
corresponding to sphere and external medium conductances of 1.0 S and 0.1 S in 2D. These
parameters yield CMFs of −1.64 and 1.64 for 2D spheres.

2.2. Charge Work and Conductance Change

A chamber of cuboid shape with two plain-parallel rectangular y by z electrodes of
distance x is to be filled with a medium of complex specific conductivity σe. The complex
conductance of the chamber is:

Le = σe
yz
x

= (σe + jωε0εe)k (3)

σe and εe are the real parts of the conductivity and permittivity. ω and ε0 being the
circular frequency and the permittivity of vacuum. The cell constant k is the generalized
geometry factor relating the conductance for chambers of any geometry to the conductivity
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of the measured medium. With a single object suspended at location i, the suspension’s
effective conductivity is σS(i) [3]. The chamber conductance is:

LS(i) = σS(i)k =
(

σS(i) + jωε0εS(i)

)
k (4)

Neglecting the stray capacitance, the same cell constant relates the suspension cham-
ber’s capacitance to the suspension’s permittivity. The chamber can be described as a lossy
capacitor, using the relation between complex conductance and capacitance:

CS(i) = −j
LS(i)

ω
= −j

σS(i)

ω
k =

(
ε0εS(i) − j

σS(i)

ω

)
k (5)

The charge work conducted on the capacitor by the rms AC-voltage Ve f f applied to
the chamber is:

WC
S(i) =

<
(

CS(i)

)
2

V2
e f f =

CS(i)

2
V2

e f f =
ε0εS(i)k

2
V2

e f f (6)

The energy (heat) dissipation in the chamber is:

PS(i) = LS(i)V
2
e f f = σS(i)kV2

e f f (7)

If the field at the object’s location is inhomogeneous, the capacitive charge work can
induce DEP. In principle, the DEP work conducted in moving the object to location i + 1
can be obtained from:

∆WC = WC
S(i+1) −WC

S(i) =
CS(i+1) − CS(i)

2
V2

e f f = ε0
εS(i+1) − εS(i)

2
kV2

e f f (8)

However, the description of the suspension properties, e.g., by mixing equations, may
introduce reactive components and requires the identification of the active component of
the apparent charge work, which drives DEP [3]:

∆WC
DEP =

ε0

2

(
εactive

S(i+1)
− εactive

S(i)

)
kV2

e f f =
ε0∆εDEP

2
kV2

e f f (9)

A first, a necessary but not sufficient condition for identifying ∆εDEP is that εactive
S(i)

and εactive
S(i+1)

are strictly the real components of permittivity. There are three ways to ensure
that only active components enter Equation (9): analysis of the expression to eliminate
reactive components and using the high-frequency limit of permittivity expressions or the
low-frequency limit of conductivity expressions. For the two limiting cases, the reactive
components of the DEP force vanish, similar to the imaginary components for ω → 0 and
ω → ∞ in Equations (4) and (5), respectively [3]. For an illustration of the correspondence
of the real, i.e., active parts of the suspension’s limiting permittivity and conductivity cases
with the induced DEP force, see Figure 4 in [3]. DEP movement changes the dissipation by:

∆P =
(

L
S(i+1)

− L
S(i)

)
V2

e f f =
(

σS(i+1) − σS(i)

)
kV2

e f f (10)

By analogy with Equation (9), the active component of dissipation is generated in
the immediate vicinity of the object (compare with “influential-radius”) in phase with
the external field. In contrast, the reactive component is generated by out-of-phase field
components, mainly in the volume of the suspension medium. For ω → 0, the (out-of-
phase) reactive components vanish, and the apparent and active components of dissipation
become identical [3]:

∆PDEP =
(

σactive
S(i+1)

− σactive
S(i)

)
kV2

e f f =
(

Lactive
S(i+1)

− Lactive
S(i)

)
V2

e f f = ∆LDEPV2
e f f = ∆LV2

e f f (11)
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The total dissipation of the DEP system becomes proportional to its DC conductance,
simplifying the analysis of the DEP behavior.

2.3. DEP Force

For the fastest increase in the overall polarizability of the system and its active
components, the DEP step from location i to i + 1 must be oriented in the direction of
the maximum differential quotient of the capacitive charge work or, more generally,
the direction of the charge work gradient [3]. Using Equation (9) and the step width
∆r =

∣∣∣→r i+1 −
→
r i

∣∣∣ = ri+1 − ri calculated from the location vectors
→
r i and

→
r i+1, we obtain

the DEP force:

→
F

C

DEP = grad
(

WC
DEP

)
≈ MAX

 ∆WC
DEP∣∣∣→r i+1 −
→
r i

∣∣∣
 →

r i+1 −
→
r i∣∣∣→r i+1 −
→
r i

∣∣∣ = ε0k
2

MAX
(

∆εDEP
∆r

)
V2

e f f

→
r i+1 −

→
r i

∆r
(12)

→
r i+1−

→
r i

∆r defines the unit vector pointing in the direction of DEP translation. The DEP-
induced differences in the active components of the charge work are always positive. At
low frequency or DC, the increase in polarizability is strictly proportional to an increase
in the conductance of the system and consequently dissipation. Accordingly, the DEP
trajectory of a single object can be calculated from the maxima of the differential quotients
of the DC conductance. In analogy to Equation (12), from Equation (11), we obtain:

→
F DEP ∼ grad(LDEP)V2

e f f ≈ MAX
(

∆LDEP
∆r

)
V2

e f f

→
r i+1 −

→
r i

∆r
(13)

Note that this relation between the DEP force and system polarizability coincides
with the DC limit of Maxwell–Wagner’s mixture equation [22] (cf. [3]). To compare forces
between different chamber and electrode setups, Equation (13) was normalized to the
square of the chamber voltage and the basic conductance LBasic of the chamber without an
object. In 3D, we obtain the normalized force:

→
F DEP ∼

1
LBasic

MAX
(

∆LDEP
∆ri

)→
r i+1 −

→
r i

∆r
(14)

In the 2D description, fields, currents, etc., have no z-component, as in the case of
thin films of uniform thickness, e.g., a metal layer on glass. Here, we use a 2D model
geometry with a thickness of z = 1m perpendicular to the sheet plane, neglecting the
z-components. Combining the 3D suspension conductivity with thickness yields the DC-
sheet conductances L2D

S(i) = σactive
S(i)

z and L2D
S(i+1) = σactive

S(i+1)
z. Equation (11) reads:

∆P2D
DEP = ∆σDEPzk2DV2

e f f = ∆L2D
DEPV2

e f f (15)

with k2D being the 2D-cell constant. Note that both conductance differences, ∆LDEP and
∆L2D

DEP have the unit Siemens. In 2D, Equation (14) reads:

→
F

2D

DEP ∼
1

L2D
Basic

MAX

(
∆L2D

DEP
∆ri

)→
r i+1 −

→
r i

∆r
(16)

L2D
Basic is the system’s sheet conductance without an object. Note that the right-hand

side of Equation (16) has unit “m”. The straightforward approach using the system’s
capacitive-charging work (Equation (12)), similar to the derivation in [3], provides the
“Newton” for the DEP force. Probably, from the object’s point of view, the correct propor-
tionality factor in a 3D model includes the magnetic field constant. In the system approach



Micromachines 2022, 13, 1002 6 of 18

used here, a normalized force is obtained, which can be converted into an exact force for a
given location (see below).

3. Materials and Methods
3.1. Software

A 2D numerical solver based on the finite-volume method was implemented in
MatLab® (version R2018b). It was developed to simulate the potential distributions, current
paths, and total conductance for arbitrary geometries and conductivity distributions with
current sources (electrodes) [31].

The total conductance data for the 2D system with 199 × 199 2D voxels were stored in
a matrix and used as interpolation points for the MatLab® quiver line function to calculate
the conductance field.

SigmaPlot 11.0 (Systat Software GmbH, Erkrath, Germany) was used for postpro-
cessing and plotting data in line graphs. Inkscape 1.1.2 (GNU General Public License,
version 3) was used to create graphical images and overlays of graphs with matrix images.

The data points of the Figures are given in the Supplementary Materials.

3.2. Numerical 2D Model

Without an object, a square chamber of x = y = 1m confined by plain-parallel
electrodes with a depth of 1 m perpendicular to the sheet plane has a (sheet) conductance
of 0.1 and 1 S for volume conductivities of 0.1 and 1 S/m, respectively. The same sheet
conductance occurs for square cm- or µm-size chambers with a depth of 1 m. Since only
conductance and no size-related, frequency-dependent polarizabilities are considered, the
2D model is independent of a specific dimension in the x-y plane. To recognize microfluidic
geometries, we assume an area of 1 × 1-mm2 for the DEP chamber, which is formed
by 199 × 199 square elements. Each of the elements was assigned a homogeneous area
conductance. Due to the assumed thickness, we refer to these elements as “2D voxels” (“2D
volume pixels”).

The electrodes are located outside the chamber volume. The pointed and plain elec-
trodes were formed by a single and row of 199 highly conductive 500-S voxels. The sheet
conductance of the chamber was calculated for all positions accessible to a single 200 µm
2D sphere with a diameter of 39 voxels (Figure 1). The odd number symmetry defines a
single central voxel and allows precise localization with respect to the pointed one-voxel
electrode. Using 95 (19 voxels) and 497 µm (99 voxels) spheres, we showed that the results
in this range do not qualitatively depend on the size of the sphere.

Figure 1. 200 µm 2D sphere approximated with a diameter of 39 voxels in the horizontal and vertical
directions. The central voxel is marked in white. Linear rows of 11 voxels form the horizontal and
vertical edges.
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4. Result and Discussion
4.1. DEP Chamber Characterization

The classical setup with one pointed and one plain electrode was chosen to demon-
strate the capability of our system approach. Figure 2A shows the field distribution without
the sphere. Benign DEP behavior was observed in the range marked by the double arrow,
which mainly corresponds to the dipole model. Figure 2B,C show the potential, field
strength, and field gradient along the symmetry line. In Figures 2–4, current lines were
used instead of field lines to more clearly show the polarization of the sphere.

Figure 2. (A) Potential and current line distributions in the 1 × 1-mm2 chamber without the sphere
energized with 1 V at the pointed electrode (center right) versus 0 V at the plain electrode (vertical
gray bar on the left). At the symmetry line, the dipole range is marked. (B) Potential (dashed) and
field strength (full) along the symmetry line of the chamber (500 µm≤ x≤ 500 µm, y = 0 µm). Vertical
lines mark the limits of the chamber volume. The curve was enlarged by multiplication with a factor
of 10 to show the field behavior in the dipole region more clearly. (C): Field gradient along the
symmetry line.

Figure 3. Potential and current line distributions for different positions of the 1.0 S sphere in 0.1 S
medium, in front of the plain electrode (A), on the watershed (B), in a largely homogeneous field
region (C), and at the pointed electrode (D). The conductances are (A): 35.744 mS, (B): 35.563 mS,
(C): 35.647 mS, and (D): 83.912 mS. The basic sheet conductance L2D

Basic of 34.908 mS without a sphere
corresponds to a cell constant of k2D = 0.34908.
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Figure 4. Potential and current line distributions for different positions of the 0.1 S sphere in the
1.0 S medium, at the plain electrode (A), in a largely homogeneous field region (B,C), and in front of
the pointed electrode (D). The conductances are (A): 343.29 mS, (B): 342.28 mS, (C): 340.10 mS, and
(D): 60.682 mS. The basic sheet conductance L2D

Basic of 348.97 mS without sphere corresponds to a cell
constant of k2D = 0.34897.

Theoretically, all plots in Figure 2 and the cell constant of the chamber k2D calculated
from Equation (2) are independent of the medium conductance. The basic conductance
values L2D

Basic of the chamber without an object were calculated with media of 0.1 S and
1.0 S from voltage and current using a MatLab® routine. The two obtained cell constants
showed negligible numerical differences.

4.2. DEP System with a Homogeneous Sphere

Figures 3 and 4 show the field distributions in the DEP system for the two complemen-
tary conductance ratios of sphere and suspension medium for different sphere positions.
According to theory, more favorable positions result in a higher overall conductance of
the system.

4.3. Calculation of Trajectories and Forces

For a single-object suspension, the electric work conducted in the inhomogeneous
field of a linear DEP system leads to the system’s overall permittivity and conductivity
increase [3]. For objects with effective conductivities that are higher (“positive DEP”) and
lower (“negative DEP”) than those of the external medium, this is true, even though the
total conductance of the systems without the object is always lower or higher, respectively,
than with the object (Figures 3 and 4).

The DEP behavior of the sphere was modeled using the “conductance matrix”. The
160 × 160 matrix elements were calculated as the overall sheet conductances of the system,
with the sphere’s center located at each of the 160 × 160 accessible voxel coordinates.
The basic sheet conductance determines the upper and lower boundary of the overall
conductance of the DEP systems with the low- and high-conductance sphere, respectively.
As a reference, the mean chamber conductance L2D was calculated from all values in the
conductance matrix. It corresponds to the average start conductance obtained in a field-free,
thermally relaxed DEP system for infinitely many starting positions of the sphere.

It was insufficient to consider DEP steps of the sphere’s center voxel to one of the up
to eight neighboring voxels in the rectangular and diagonal directions to construct DEP
trajectories from a given start voxel. We found that this “eight-neighbors” approach did not,
for example, prevent the incorrect crossing of a bent watershed, i.e., bifurcation-boundary
lines separating the catchment areas of different endpoints. Thus, we applied the quiver
line function of MatLab® to generate a “conductance field” using the elements of the
conductance matrix as interpolation points. The conductance field provided smooth and
more precise trajectories, watersheds, saddle points (bifurcation points), and normalized
DEP forces. The program shifted the object stepwise along a quiver line in the direction of
the maximum overall conductance increase to construct a trajectory. Positions with object
voxels located outside the chamber area were excluded, i.e., the sphere was deflected by the
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chamber walls moving along the interface until reaching a point of attraction (endpoint).
Clearly, the trajectories do not influence the endpoint conductance, while the DEP work
conducted depends on the trajectory. Along each trajectory, the normalized DEP force was
calculated with Equation (16).

One may ask whether the pointed electrode is very sharp compared with the experi-
mental situation. However, there are at least two arguments against this assumption. First,
in 3D, the 2D-pointed electrode corresponds to a 1 m vertical blade, and second, a voxel
ratio of electrode to object of 1:39 (Figure 1) is similar to the size ratio of 110 nm-thick
glass-chip electrodes and 4 µm cells [32].

4.4. Trajectories and Forces

Figures 5 and 6 show the results for the two complementary conductance combinations.
The 19-voxels-wide, white frames in Figures 5A and 6A are geometrically inaccessible to
the center of the sphere. In both conductance scenarios, the system’s sheet conductance
increases steadily along each trajectory toward a specific endpoint (Figures 5B and 6B).
In Figures 5B,C and 6B,C, sheet conductance and normalized DEP force, respectively, are
plotted over the same abscissas.

Figure 5. Single 200 µm, 2D sphere of 1.0 S (reddish circles in (A)) in the chamber of Figure 2 with 0.1
S medium. The mean conductance is L2D

= 35.739 mS. (A) Conductance field plot with trajectories
(a–g). A watershed (bent white line) separates the two caption areas of the stable endpoints E1 and
E2. E3 is an instable saddle point in the middle of the watershed. (B) Sheet conductance along the
trajectories. Basic and mean conductance are marked. The system’s sheet conductance increases
steadily along each trajectory, reaching moderate and high peak values at the endpoints E2 and E1,
respectively. Trajectories b, c, d, and e end at E2. Trajectories a, f, and g end at E1, reaching L2D by
coincidence (insert). (C) Normalized DEP forces calculated with Equation (16) from the conductance
values in (B).
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Figure 6. Single 200 µm 2D sphere of 0.1 S (reddish circles in (A)) in the chamber of Figure 2 with 1.0 S
medium. The mean conductance is L2D

= 340.14 mS. (A) Conductance field plot with trajectories
(a–j). Two watersheds (bent white lines) and one symmetry line (trajectory f) separate four catchment
areas with the four stable endpoints (E4, E1, E3, and E5). E6, and E7 are instable saddle points. E2 is
an instable minimum at the end of the symmetry line. Trajectories close to f, such as j, are diverted
to E1 or E3. (B) Sheet conductance along the trajectories. Basic and mean conductance are marked.
Trajectories b and e end at E4; trajectories a, c, and j at E1; trajectory f at E2; trajectories d and g at
E3; trajectories i and h at E5. (C) Normalized DEP force calculated with Equation (16). Forces along
trajectories parallel to the plain electrode toward the endpoints E1, E2 and E3 are very low. The
constant forces observed at the start of trajectories e, d, and f (Figure 6C, left insert) may be due to the
reversal of the effect discussed above.

At endpoint E1, the sheet conductance reaches a value close to L2D (Figure 5B, insert)
but more than twice that value at E2 (Figure 5B). At the instable saddle point E3, the DEP
force vanishes. The sphere should theoretically travel along the watershed toward E3 for
start points on the watershed. However, a stable trajectory along the watershed could not
be established for numerical reasons.

In Figure 5A (trajectories b and e), geometric restriction by the chamber wall or plain
electrode (trajectory a) causes deflections in the sphere’s trajectories. These are visible
in the plots of the sheet conductance (Figure 5B) and, in particular, the normalized force
(Figure 5C). The deflections occur before the sphere travels a longer distance along the
plain electrode (trajectory a) or the chamber wall (trajectory e), or after it hits the restriction
near an endpoint (E2, trajectories b and c). In the latter case, the maximum force is observed
when the sphere touches the restriction. The final “correction” steps toward the endpoint
generate a lower force. A similar process, although with a long “correction distance,” can
be seen in trajectory a (Figure 5B,C, insert: green dashed curve). In the case of a “direct hit”,
i.e., when the sphere reaches the endpoint directly (trajectories d and f ), the force curve
ends in the peak value. The peak forces reach very high values at the pointed electrode (E2)
and moderate values when the sphere reaches the plain electrode (E1).
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The final steps along the projected conductance gradient before the vertical edge of
the 2D sphere is attached to the plain electrode or chamber wall cause a greater increase in
conductance and produce a higher force than the deflected motion in the attached state.
However, minor movement in parallel to the restriction in the vicinity of an endpoint does
not significantly change the sphere’s center distance to the tip of the pointed or center of the
plain electrode. Thus, the overall conductance of the system does not change dramatically,
and the resulting forces are not exceptionally high when the center or one of the neighboring
voxels of the sphere’s edge touches the pointed electrode (E2) or the center voxel of the plain
electrode (E1). Accordingly, the peaks with finally decreasing force (trajectories b, c, and
e) can be explained by minor corrections of the position near an endpoint (Figure 5C). We
suppose that such a force reduction after the final peak is also observed in high-resolution
3D models.

However, the force curve here is probably additionally modulated by the shape
approximation of the 2D sphere with straight vertical edges (Figure 1). Another effect
that may play a role in this behavior was observed in 3D COMSOL Multiphysics® (www.
comsol.com) simulations with a highly conductive sphere in a coaxial DEP chamber. In this
system, we found the conductivity minimum not in the attached state of the sphere but
at a very short distance from the center electrode (results not published). For the model
geometry used here, a comparable distance would be in the voxel size order of magnitude,
preventing further investigation in this work.

Trajectories d and f run along the symmetry line between the pointed and plain elec-
trodes. At saddle point E3, they start in opposite directions to different endpoints, although
the common view would predict an attraction by the pointed electrode (cf. Figure 2). The
existence of the watershed separating two regions of attraction along the symmetry line
contradicts the dipole view.

In Figure 6, the sheet conductance of the system reaches slightly higher peak values at
the “hidden” endpoints E4 and E5 than at the endpoints at the plain electrode. We suppose
that the sphere’s size determines the shape of the watersheds and whether low-conductance
spheres can “hide” away from the electrodes. The peak forces calculated for the 0.1 S sphere
are generally lower than for the 1.0 S sphere.

4.5. Mirror Charge Effects

In the dipole model view, the 1.0 S sphere moves along the field gradient (Figure 2C),
from the plain electrode to the pointed electrode, from areas with low field to those with
high field. In our model, the sphere is initially attracted to the plain electrode (Figure 5A,
trajectory f ) and to the pointed electrode only beyond a watershed (Figure 5A, trajectory d).
We suppose that the attraction toward the plain electrode is caused by mirror charges that
exceed the dipole effect in the weak gradient in front of the plain electrode.

In the dipole model view, the 0.1 S sphere moves against the field gradient (Figure 2C),
from the pointed to the plain electrode, from high field to low field areas (Figure 6A,
trajectory f ). Above the first 100 µm, Figure 6C shows a very high, steadily decreasing
repulsive force. However, the force increases again approx. 200 µm away from the plain
electrode, despite the decreasing field gradient, until the sphere attaches to the electrode
(insert of Figure 6C, trajectory f ). The increase in force is related to the increase in the
chamber conductance due to an overall reduced screening of the plain electrode by the
low-conductive sphere (Figure 4A). This view is consistent with the interaction with mirror
charges induced at the plain electrode.

While the mirror charge effect clearly dominates for the 1.0 S sphere at distances of
about 150 µm from the plain electrode, the observability of the 0.1 S sphere is blurred by
the synchronous action of two equidirectional forces. We suggest that the mirror charge’s
contribution to the DEP force depends strongly on the sizes and curvatures of the object
and electrode. The electrode areas must be large relative to the object size for a high mirror
charge to be induced. This effect is negligible at the pointed electrode.

www.comsol.com
www.comsol.com
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4.6. DEP Force Reversibility in the Dipole Range

For 2D spheres or infinitely long 3D cylinders whose axis of symmetry is perpendicular
to the field, the exchange of the conductivities of the external medium and the object
reverses the sign of the CMF at constant magnitude (Equation (2)).

Accordingly, the direction of the dipole force is inverted for any position in the DEP
chamber. If dipole forces prevailed, every trajectory would have to be exactly reversed, and
the quotient of the DEP force magnitudes would have to be (minus) one. However, Figure 7
already shows a more complex picture along the symmetry line of the DEP chamber.

Figure 7. Absolute value of the quotient of the normalized DEP forces acting on the 1.0 S and 0.1 S
spheres plotted along the symmetry line of the chambers (trajectories d and f of Figure 5 and trajectory
f of Figure 6).

The plot of the quotient has characteristic regions separated by a zero point represent-
ing the vanishing force for the 1.0 S sphere at the watershed. The positive branch results
from the attraction of the 1.0 S and 0.1 S spheres to the plain electrode. While the force
magnitudes remain low in the positive branch, the quotient of seven at the plain electrode
indicates the high-conductance sphere’s more efficient induction of mirror charges. More-
over, at the pointed electrode, this sphere experiences a force magnitude of around twice
as high as the low-conductance sphere. From zero to the right, the force ratio reaches the
expected −1 plateau, indicating dipole-like behavior. The plateau ranges from approx. −70
to 270 µm, i.e., over about 42% of the electrode distance along the symmetry axis accessible
to the sphere.

We suggest that reversibility is a criterion for the applicability of the dipole approach
in certain regions of the DEP chamber. Nonreversibility indicates the presence of higher-
order moments, mirror charges, and so on. Interestingly, the total conductance of the
DEP chamber corresponds to the average conductance, roughly in the middle of the
dipole region.

4.7. Relating Normalized to Actual DEP Forces

In the dipole region, the DEP forces only reach moderate magnitudes compared to
the forces in front of the pointed electrode, where they reach magnitudes up to thousands
of times higher than in the dipole region. Figure 8 considers the “dipole range” where
the forces of the classical dipole model can be quantified and directly compared with the
normalized DEP forces from Equation (16).

Stokes friction limits DEP velocities to the linear range in aqueous media, i.e., the
velocities are proportional to the driving forces. Accordingly, experimentally observed
accelerated DEP motion near electrodes is caused by changes in the DEP force. In the dipole
model, the DEP force is:

→
F DEP = <

(→
m
)
· grad

(→
E
)
= ε0εeV0 f<CM

→
E · grad

(→
E
)

(17)
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where ε0 and V0 are the permittivity of vacuum and the volume of an ellipsoidal object:

V0 =
4π

3
abc (18)

with the principal semiaxes a, b, and c (2D sphere: a = b, c = 1 m). For an electrode voltage

of 1 V and the field parameters of Figure 8, we obtain
→
E · grad

(→
E
)
= 0.5602 V2/m3, which

can easily be rescaled to any experimental electrode voltage. Experiments or calculations
can provide values for the actual DEP force at the chamber position x = 186 µm, y = 0 µm,
where our model yields normalized forces of approx. 0.12 for the 2D sphere. Clearly, the 2D
inhomogeneity in the polarization of the 2D sphere causes the very high force magnitudes
at the pointed electrode (Figures 3D, 4D, 5C and 6C). They are about 1500 (1.0 S sphere)
and 580 (0.1 S sphere) times higher than the forces in the dipole region at the chamber
position considered.

Figure 8. DEP behavior in the dipole range marked in Figure 2. (A) Field strength and field gradient
along the symmetry line for 1 V potential difference at the electrodes. The vertical auxiliary line at
x = 186 µm is perpendicular at a field gradient of 1 V/m2 (field strength of 0.5602 V/m). Horizontal
auxiliary lines run out to the respective ordinates from the intersections with field strength and
field gradient plots. (B) DEP of the sphere increases the overall conductance of the chamber. Top:
1.0 S sphere, 0.1 S medium (short, dashed line, left ordinate, positive DEP), bottom: 0.1 S sphere
1.0 S medium (long dashed line, right ordinate, negative DEP). At x = 186 µm, the conductances
are 36.02 mS and 337.6 mS. The common baseline corresponds to the basic conductances of the two
setups. (C) At x = 186 µm, the normalized forces from Equation (16) are 0.1211 (1.0 S sphere, 0.1 S
medium) and 0.1234 (0.1 S sphere, 1.0 S medium).
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The exact force conversion with Equation (17) indeed calls for calculating the con-
ductance field for a 3D object. However, in dipole theory, the force magnitude experi-
enced by a 3D sphere in positive DEP can be twice that experienced in negative DEPs
(Equations (1) and (17)). Moreover, we believe that 3D inhomogeneity would induce even
higher forces at the pointed electrode when polarizing a 3D sphere.

4.8. Remark on “Positive” and “Negative” DEP

Trajectories with a changing orientation within an inhomogeneous field indicate a
problem with defining the sign of the DEP force in relation to the external field gradient.
While “positive” and “negative” DEPs correspond to the common understanding in the
dipole region, the definition becomes fuzzy elsewhere in the chamber, especially when the
force direction reverses because the object itself changes its “field environment,”, e.g., due
to mirror charges.

4.9. Thermodynamic Aspects

The theoretical description of AC–electrokinetic effects, such as electro-orientation,
DEP, electrorotation, or mutual attraction, usually relies on electrostatic approaches. How-
ever, for lossy media, the validity of the approach is not clear per se, since electrostatic
systems are generally in a state of equilibrium without energy dissipation and entropy
production by resistive and displacement currents. Moreover, the electrokinetic effects
induced must themselves lead to energy dissipation. Despite these seemingly severe prob-
lems, our LMEP approach and experimental observations in the dipole region agree very
closely with object-oriented electrostatic models.

Assuming that the DEP system is near equilibrium in its linear range and the applica-
tion of the electrode voltage causes only minor deflection of the system from equilibrium,
which remains in the linear range, it should approach a new “voltage-on equilibrium”
through the minimization of entropy production according to Prigogine’s principle [33–35].
Then, after voltage-off, the system should return to its previous state. Nevertheless, our
theoretical and experimental findings suggest that electrokinetic phenomena increase the
overall energy dissipation and are in contradiction with Prigogine’s principle. In fact, the
problem had already been addressed in 1912 and discussed by [36] (see also the references
contained therein). In light of this work, one may wonder how a Kirchhoff network, which
is generally the electrotechnical basis of our approach, would react if it could rearrange
itself. Perhaps a kind of “Kirchhoff Rearrangement” is the effect we observe with the DEP?

From the point of view of the system, the work on a volume of material can be stored
or dissipated (i) as electric field energy, (ii) as magnetic field energy, or (iii) as Joule heat [29].
In our model, we use the degree of the DEP system’s overall increase in conductance
as a criterion for the DEP force induced. At constant electrode voltage, dissipation of
electrical energy is proportional to the square of the applied voltage according to Rayleigh’s
dissipation function, and it increases with the total conductance of the system [37]. While a
small proportion of this energy is “dissipated” in DEP translation, DEP increases the total
energy dissipation and the electrical work that must be done while DEP progresses.

In particular, it has been shown how DEP is related to the complex, i.e., apparent
permittivity and conductivity of the suspension, both of which consist of an active and a
reactive part. Like electrical machines, the reactive part (capacitively stored at the objects)
is out of phase with the active component and performs no DEP work. While the DEP
force is proportional to permittivity and conductivity’s active components, the reactive
components are dissipated [3]. A related discussion on the contributions of electronic
polarization to the total field energy in lossy dielectrics seems to be underway [38].
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4.10. Nonspherical Objects

An applied field can change the impedance of a suspension by inducing electro-
orientation, DEP translation, or electrodeformation of objects [11,39]. As shown in theory
and experiments, the (frequency-dependent) axis with the highest CMF is aligned in linear
fields [32,40]. In homogeneous ellipsoids, the longest axis always has the highest CMF
and is aligned [27]. This leads to a reduced suspension impedance and, at constant field
strength, increased electrical power dissipation. For homogeneous spheroids, it has been
theoretically demonstrated that the field-induced orientation moments are proportional to
the increase in the conductivity of the suspension they induce [4].

A nonspherical object in an inhomogeneous field experiences force and torque, simulta-
neously resulting in both DEP and electro-orientation. Furthermore, the object’s movement
modifies both force and torque. Friction opposes both types of motion and can, for example,
prevent a complete alignment at a particular location before the object moves to another
location where a different alignment is induced. The situation is further complicated by the
different nature of the friction opposing the translational and rotational motion, as can be
seen, for example, from the different radius dependencies for the translation (~R: Stokes
friction) and rotation of spheres (~R3) [41].

5. Conclusions and Outlook

Recently, we derived the classical DEP force expression from the capacitive charge
work gradient on a suspension of a single object in an inhomogeneous field, but abstracting
from the actual chamber and electrode geometries. Here, we extended this approach to the
entire DEP chamber by introducing a conductance field, the low-frequency equivalent of
the capacitance field. The fields fully describe the object’s DEP behavior and inherently
account for inhomogeneous object polarization, mirror charges, electrode shielding effects,
and so on.

Our model simplifies the computation of DEP forces in complex field environments.
However, if the approach is applied to nonspherical objects or multibody systems, for
example, to compute aggregation patterns, this comes at the expense of high computational
effort, especially in 3D systems. Appropriate methods, such as Monte Carlo simulations,
would likely reduce the computation time.

Objects with an effective conductivity lower or higher than that of the suspension
medium usually show negative or positive DEPs, in other words, they move counter to or
in the direction of the field gradient. Here, we reveal some exceptions to this rule outside
regions where dipole effects dominate, something that may call for a conceptual rethink. A
manuscript is in preparation extending the present results to pointed-versus-pointed, plain-
versus-plain electrodes, and to four-pointed-electrode arrangements in one-versus-three,
side-by-side, and field-cage drive modes.

We believe that our model can explain experimental findings such as the paradoxical
accumulation of viruses and proteins in field cages or at electrode edges, where the dipole
approach cannot account for sufficiently high trapping forces to withstand Brownian mo-
tion [16,17,42–44]. Forces large enough to trap small objects can result from inhomogeneous
object polarization at electrodes or other surfaces and near to other objects. Although these
forces act over larger distances than the Van der Waals forces do, the distances appear to
be too small to trap objects from the entire suspension volume. This is why we propose
the “sticky-fly-trap model”. Viruses or molecules that approach electrode surfaces or other
viruses or molecules by media flow or diffusion, to the point of becoming inhomogeneously
polarized, snap to the surface or can form aggregates. This mechanism is suggested by
experiments, which show that the aggregation of objects takes longer than redispersion
after the field has been turned off. The aggregation is limited by the “undirected”, random
motion, while the dissolution of the aggregate is achieved by a “directed” diffusion away
from the high concentration.

One final point is worth mentioning: the striking similarities between the snap-to-
surface behavior in the DEP model and in our earlier force spectroscopy experiments with
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like-charged glass spheres and mica surfaces [45]. In these experiments, snap to surface
has been observed over distances of up to 800 nm, clearly too large to be explained by the
Van der Waals attraction, although this may lock the bead at the surface once it is reached.
Here, we propose a “self-DEP” mechanism to explain the large snap-to-surface distances.
Self-DEP can result from the oscillating dipole induced in a vibrating bead with fixed
surface charges, e.g., in the mid-kHz range. In the case of dispersion, the vibration leads to
the induction of a dipole by separating the center of the bead’s fixed charges, which move
with the object, and the center of the countercharges in the external medium. In “self-DEP”,
the interaction of the oscillating dipole with mirror charges induced on conducting or
polarizable surfaces leads to attractive forces. The contribution of mirror charges to DEP
forces has been described by Pethig; chapter 5.4 in [46]. Here, we found the attraction by
mirror charges for both high- and low-polarizable objects.

The systems perspective allowed us to identify new approaches and perhaps even
new fields of work for DEP research. These are (i) the modeling of the high repulsion
and snap-to-surface forces induced by the inhomogeneous polarization of the objects;
(ii) the calculation of DEP forces in complex field environments and multibody systems;
and (iii) the role of active and reactive contributions in frequency-dependent DEP and other
electrokinetic AC models in relation to the total work done on the systems [3].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13071002/s1, conductance matrix with trajectory coordinates
for Figures 5 and 6: L_Matrix_Fig.5 and L_Matrix_Fig.6; Data points for Figures 2B,C, 7 and 8:
Data_Figs.2_7_8.
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