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Abstract

Prospective monitoring of mood was started by Kraepelin who made and recorded frequent observations of his
patients. During the last decade, the number of research studies using remotely collected electronic mood data has
increased markedly. However, standardized measures and methods to collect, analyze and report electronic mood
data are lacking. To get better understanding of the nature, correlates and implications of mood and mood instability,
and to standardize this process, we propose guidelines for reporting of electronic mood data (eMOOD). This paper
provides an overview of remotely collected electronic mood data in mood disorders and discusses why standardized
reporting is necessary to evaluate and inform mood research in Psychiatry. Adherence to these guidelines will improve
interpretation, reproducibility and future meta-analyses of mood monitoring in mood disorder research.

Remotely collected mood data in mood disorder
research

Mood disorders are among the most commonly diag-
nosed mental disorders. Unipolar disorder affects
approximately 1 in 4 people over a lifetime’. Bipolar
disorder, characterized by recurrent episodes of sad/
depressive and elated/manic mood, has an estimated
prevalence of 1-2% and is a major cause of morbidity and
mortality”®. The changes in mood that characterize uni-
polar disorder and bipolar disorder are accompanied by
shifts in cognitive function, energy, activity, sleep and
other behavioral aspects that may be quantified*~”.

In unipolar and bipolar disorder, mood deviations pre-
sent both in the form of a mood episode and in the form
of sub-syndromal mood instability, and mood instability
has been suggested as a part of the bipolar prodrome”®°.
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During the last decade there has been a gradual shift of
therapeutic focus from mood episodes to inter-episodic
mood instability'®~"?. Unlike mood state which describes
a more prolonged prevailing state or disposition'?, mood
instability may be reflected by changes in polarity and
severity of mood deviations as well as by the frequency of
shifts in mood on a more daily or weekly basis. A sub-
stantial proportion of patients with mood disorders
experience mood swings on a daily basis, and instability of
mood has clinical significance in and of itself. Frequent
monitoring on a daily or weekly basis may also capture the
reactivity of mood (often termed affect), whereas less
frequent monitoring is more likely to capture only the
average mood state. Reactivity of mood reflects response
to environmental situations or events. It can be both over
or under-reactive, for example Kraepelin’s description of
depressive patients as insensitive to bad news. Both mood
reactivity and mood states are altered in patients with
unipolar and bipolar disorder, as well as in those at
identifiable high-risk'*. Thus, mood instability is part of
the prodrome of both unipolar disorder and bipolar dis-
order, and has been associated with substantial disability
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including impaired functioning, increased risk of hospi-
talization, high risk of relapse, and substance misuse in
bipolar disorder®”'*'>~!, Due to the clinical importance
of mood instability, it has been suggested as a target for
treatment in its own right. Mood instability could prove to
be a more sensitive measure of outcome in randomized
controlled trials (RCT) than remission, relapse or recur-
rence of full-blown mood episodes®**~**, and would make
meaningful early phase proof of concept trials more effi-
cient for both drug and psychological interventions.

Consecutive monitoring of mood symptoms and epi-
sodes dates back to Kraepelin who made frequent
observations of the prospective clinical course of his
patients®®. Patient-based self-reports evolved in the con-
text of structured psychological treatments, when the first
controlled treatment trials were conducted in the 1960s.
Self-monitoring has come to be viewed as a helpful
component of cognitive behavioural therapy, dialectical
behavioural therapy and in patient self-management of
chronic diseases generally. Thus, frequent, or even con-
tinuous, fine-grained measurements of mood (i.e., polar-
ity, stability, context) in clinical, high-risk and
epidemiological populations provides an important
opportunity to gain a better understanding of the nature,
correlates and clinical implications of mood disorder.

Today self-report measures are ubiquitous in psychia-
tric research, and various mood charting instruments for
self-monitoring have been used in the management of
mood disorders in clinical samples. Paper-based mood
charting instruments, such as the National Institute of
Mental Health LifeChart Method (NIMH-LCM)?° and the
Systematic Treatment Enhancement Program for Bipolar
Disorder (STEP-BP), have proven validity compared to
clinical rating scales for depression and mania®”*®, Paper-
based mood charting instruments can be viewed as
facilitating tools helping patients gain illness insight,
facilitate patient empowerment, teach patients to recog-
nize early warning signs of recurrence of mood episodes
and enable individualized characterization of mood and
mood instability in detail. However, paper-based mood
charting is potentially inconvenient, time consuming,
costly and unreliably time stamped. These limitations lead
to low patient-compliance, and potential recall bias when
reporting data retrospectively, i.e., where patients com-
plete batches of daily ratings at a single time point
(sometimes referred to as hoarding or backfilling)**~>>.
Retrospective recall bias may be a particular problem for
mood monitoring because patients need to recall both
variation and intensity around a global mean®*,

Digital technologies that are widely accepted by the
general public are being integrated into the routine care of
bipolar disorder to increase patient involvement and
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expand clinician oversight between visits. They provide
suitable platforms for active or passive patient monitoring
including computers and smartphones. Many applications
are available today to monitor bipolar disorder away from
medical settings that require active patient participation.
These include validated products for daily mood charting
such as the ChronoRecord (www.chronorecord.org) on a
computer®®, the MONARCA system on a smartphone®,
and the Life-Chart on a smartphone and web site, the use
of text messaging, e-mail and web-based entry imple-
mented for weekly self-report of mood scores (e.g., by the
True Colours programme (% https://oxfordhealth.
truecolours.nhs.uk/www/en/), and weekly or monthly
use of an interactive voice response (IVR) system to
complete the PHQ-9. In all cases, the patients are pro-
moted to respond to questions about symptoms of their
illness. In addition to self-reported symptoms information
about parameters such as daily medications taken, activ-
ities done during the day, sleep (time, quality etc.) can be
collected long-term detailed characterization and
research. Although challenges remain regarding the
interpretation of self-reported data, much of the current
knowledge on the psychopathology of bipolar disorder,
particularly in regards to the quality of remission between
acute episodes, has been informed by the daily recording
efforts of patients worldwide.

Digital electronic and remote self-monitoring of mood
offers the possibility of ecological momentary assessments
(EMA)* for remote fine-grained assessment in real-time
and in naturalistic settings. It allows the timing and
compliance of data collection to be verified and eliminates
the need for costly and error-prone data entry. The facility
to send prompts to complete ratings may help remind
patients to perform the self-monitoring and may have
higher utility (feasibility) and lower intrusiveness com-
pared to the paper-based alternatives. The pattern of
responding to prompts also provides an informative data
stream. In the Cequel trial the time taken to respond to
prompts was found to predict improvement in depressive
symptoms in advance of any change in mood score™.
Furthermore, remote self-monitoring methodology is a
way to aid individuals to gain greater insight into the
dynamic and temporal nature of mood and mood stability
in mood disorder in daily life'"*’.

The rapid evolution of smartphone technology and the
ubiquity of mobile networks have seen increasing growth
of e-mental health technologies®®. These include electro-
nic platforms offering tools for remote self-monitoring of
mood and smartphone apps for self-monitoring of mood
and other symptoms related to mood disorders. These
have been implemented and used by several researchers in
observational studies and randomized controlled
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trials®***~*?, and enable collection of data on daily mood

and sub-syndromal mood fluctuations.

Today there is a particular abundance of publicly and
commercially available applications for monitoring mood.
While these appear to be popular among consumers, sig-
nificant concerns have been raised about their quality and
evidence base®™. In a review from 2015, Nicholas et al.
reported that none of the symptom monitoring apps that
they identified had a duty of care alert, few had been subject
to rigorous research evaluation, or cited published material
about the app, some provided wrong information regarding
the illness. Only a small proportion had a privacy policy.
Further, the lack of rigorous research evaluation of the
potential benefits and pitfalls with smartphone-based
monitoring and treatment has been emphasized*”.

Within research settings much greater care has been
taken to embrace some of these issues. The MONARCA
studies showed that the self-reported severity of depressive
and manic symptoms by patients with bipolar disorder
correlated well with clinically rated symptoms measured
using the Hamilton Depression Rating Scale and the
Young Mania Rating Scale®”***>, However, overall there
was no immediate benefit of smartphone-based monitor-
ing on the severity of depressive and manic symptoms in
these patients. Another study confirmed that smartphones
have the potential to monitor bipolar disorder symptoms
in daily life**. RCTs investigating the potential positive as
well as negative effects of smartphone-based treatment in
mood disorders are ongoing®****’. The use of objective
smartphone-based sensor data to reflect illness activity and
bipolar disorder diagnosis have also been con-
ducted*"**¥%°  Further, remote capture monitoring of
electronic mood data in high-risk groups such as the
adolescent and emerging adult offspring of bipolar or
depressed parents may be a fruitful new direction of early
identification and prevention research’.

The holy grail would be a completely frictionless mea-
sure using a wearable device linked to a smartphone or
from data from the smartphone itself, that would accu-
rately estimate or predict mental state. This might be
possible from geolocation signals, bodily movement, the
speed and accuracy of keyboard use, patterns of text and
phone use or voice quality.

Overall, few of these research approaches have been
developed for wider public use. Moreover, native mobile
phone apps require users to download them in the first
place, need ongoing updating as operating systems change
and may run down the smartphone’s battery. While there
are moves towards the use of mobile websites, which can
be used across devices (i.e., smartphone types, iPads etc.),
it currently remains difficult to link these with other
objective smartphone-based sensor data.

Despite the rapid expansion in their use standardized
measures and methods to collect, analyze and report
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electronic mood data are lacking. Therefore, this paper
aims to provide an overview of the status of remotely
collected electronic mood data in mood disorders
research and make the case why standardized reporting is
necessary to advance research into the nature and course
of mood disorders, inform clinical practice, and ultimately
improve outcomes for individuals at risk of or suffering
from mood disorders. Following from this overview, we
propose guidelines for electronic mood monitoring
research (eMOOD). Adherence to these guidelines will
improve interpretation, reproducibility and future meta-
analyses of mood data from independent research studies.

Drawbacks of inconsistent study reporting and
lack of consensus

Based on a literature search covering mood disorders
and electronically measured mood conducted in PubMed,
PsychInfo and Embase, the studies that were identified
had drawbacks in each of the individual original studies,
and these were used to suggest a minimum of guidelines
for reporting of electronic mood data to improve the
design, analysis and reporting of future studies (Table 1).

Inconsistent reporting of research methods, analyses
and results impedes the assessment of studies. Readers
need to be able to assess the strengths and weaknesses of
the entire study methodology and have these presented in
the context of the wider field. Failure to report necessary
details can significantly hamper efforts to make compar-
isons including calculation of summary effect sizes
between studies in future meta-analyses and replication
studies. Published research also influences subsequent
design of new studies such that greater methodological
rigour and standardization assists future authors in
experimental design and data collection. In addition, more
consistent reporting of studies may speed up the peer
review process.

Questionnaires for electronic self-monitoring of mood
Even in studies where the experimental design is clearly
reported the absence of any agreed points of reference can
still make study comparison challenging. For example the
daily monitoring used in the AMoSS study®', conducted
by some of the authors of the present paper, was a 6 item
mood questionnaire (anxious, elated, sad, angry, irritable,
energetic—all scored on a Likert scale of 1-7) anchored to
weekly self-reported clinical symptoms on the Quick
Inventory of Depressive Symptomatology (QIDS) and the
Altman Self-rating Scale for Mania (ARSM). On the other
hand the MONARCA studies®”*"**, conducted by other
authors of the present paper, used a single scale to eval-
uate mood on a daily basis (scored from depressive to
manic on a scale from -3, -2, —1, —0.5, 0, + 0.5, + 1, +
2,4+ 3) anchored to clinician evaluated depressive and
manic symptoms collected fortnightly using the Hamilton
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Depression Rating Scale (HDRS) and the Young Mania
Rating Scale (YMRS). While there are equivalent scores
for example for the QIDS and the HDRS, no direct
comparisons of the daily measures can be made. Fur-
thermore, the question of the clinical status of the patient
is an additional issue as frequent contact can act as a form
of intervention and thus alter the outcome measures of
interest. While validated rating scales are reported to have
good reliability and reproducibility, these are often for use
in very specific patient groups and their generalisability to
those with other diagnoses and comorbidities is unclear.

Adherence to electronic self-monitoring

Adherence to electronic self-monitoring is an important
factor to consider and report as is often low and can have
a significant impact upon the reliability and representative
nature of the data. If significant levels of missing values
are present, a detailed description on how these were
handled should be included so that readers and future
studies have the possibility to assess and replicate the
methods used. The nature of smartphone data, and par-
ticularly phone sensor data, complicates data sharing and
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few groups currently make their data available for sec-
ondary analyses or to facilitate combining datasets.

Analyses of mood data

Mood data can be quantified in many different ways and
is further complicated by the lack of consensus about how
mood and specifically mood instability is defined, mea-
sured and reported'®*"***%, The nomenclature includes
intensity, valence, entropy, reactivity, variability, fre-
quency of mood changes, and affective phase, all of which
require different methods of quantification and represent
different dimensions of mood states.

Opverall, standardized measures and methods to collect,
analyze and report remotely collected electronic mood
data are lacking. With the present paper, we propose
below a set of minimum standards for reporting such data
(eMOOD) (Table 1). These could assist researchers in
reporting their mood data, assist readers in how to criti-
cally examine the existing literature on mood reporting in
mood disorders, aid the reproducibility and production of
meta-analyses within the field, and ultimately provide
insights into the pathophysiology of mood disorders.

Table 1 eMOOD: guidelines for reporting on remotely collected electronic mood data in mood disorder
Topic Checklist item
Participants

Study group selection
Comparison group selection
Participation rate

Inclusion and exclusion criteria

Disease characteristics

Recruitment details; Diagnostic assessment; lliness severity assessment; experience level of assessor
Recruitment details; Methods used to rule out psychiatric illness

Detailed description on participation rate of participants versus non-participants

Detailed description of inclusion and exclusion criteria

Age at first depressive episode, age at first hypomanic/manic episode; duration of illness; severity of illness;

comorbidities; medication use; substance misuse; number of previous mood episodes

Demographics
Study design
Data collection

Hardware / software

Age; sex, socioeconomic status; education

Time of baseline assessments, follow-up period, blinding of assessors

Software; online; app-based; software available for public or not; participant level of technical skills; funding of

system used; investigator or industry-initiated study

Questionnaires/patient-reports used

Collection details
entering was possible

Data analysis

Missing data

Description of the self-report measure(s) used; dimensionality validation in the participant group

How often are participants asked to complete mood ratings; time of day; Instructions; whether retrospective

% of missing data; imputation method employed; criteria for participant exclusion on basis of missing data;

comparison of those excluded with included participants (see Table 2 for more details)

Method of analyses

Analyses planned in advance with clear definition of the primary, secondary and tertiary analyses/outcome

measures including definition of covariates for adjustment (protocol); Metrics used; software/script employed in

the calculations; transformations if used; unadjusted and adjusted models reported

Conflict of interest

All potential conflicts of interest clearly stated
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Guidelines for reporting on remotely collected
electronic mood data—eMOOD

To help and standardize reporting of remotely electro-
nically collected mood data, we propose the mood
reporting guidelines: eMOOD (Table 1). Adherence to
these guidelines will help improve interpretation, repro-
ducibility and future secondary analyses and meta-
analyses of mood and mood instability in mood disorders.

Participants (top section of Table 1)
Study group selection

The description of participant groups is an essential,
but often under-reported, feature of any scientific paper.
Details on where, when and how the recruitment
occurred should be specified—for example through
advertisement or subspecialty clinical program. Especially
for case-control studies this information is crucial—
including details on excluded participants and main
reasons for exclusion. The method for determining elig-
ibility including diagnosis (or in high-risk research diag-
nosis of the parent or relative) should be described as
should the experience of the person administering the
diagnostic assessment or interview. Furthermore, details
on which diagnostic system (the Diagnostic and Statis-
tical Manual for Mental Disorders or the International
Classification of Disease) was used should be specified as
these differ. Psychiatric classification can be challenging
and the rigid application of diagnostic criteria, especially
from structured interviews conducted by trained but
clinically inexperienced raters (and independent of the
context in which they occur) may generate misleading
diagnoses. On the other had self-report diagnostic
instruments are variable, even idiosyncratic in nature and
while some show reasonable consistency with clinician-
based assessments they can make comparisons between
studies difficult.

Compatrison group selection

Recruitment of a proper comparison group, especially in
case-control studies, can be difficult. Often studies recruit
as controls healthy individuals from a selected population
not necessarily from the same population as the patients
or high-risk individuals, e.g., family members of patients,
introducing possible confounding variables. Further,
controls may only differ from the study population by
specific diagnosis (i.e., both clinical populations) or con-
sist of ‘super-healthy’ individuals not representative of the
general population®®. Recruitment via advertisement or
the internet may result in selected populations not
representative of the target population or the general
population and the recruitment via national registers, as
possible in some countries, may lead to low participation
rates. Future studies should critically take initiatives to
minimize selection bias increasing the validity and
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generalizability of study results. Regarding the statistical
analyses comparing cases and controls, unadjusted ana-
lyses as well as analyses adjusted for possible confounding
variables should be reported so that it is possible to
interpret whether the differences between groups repor-
ted reflect true findings.

The increasing availability of polygenic risk scores may
provide an interesting way of estimating predisposition to
psychiatric disorder on the one hand and resilience on the
other in a range of populations, most notably young
people. The more fine grain the phenotype the more
potential there may be for useful correlation with genetic
data. Mendelian randomization may offer a technique for
testing specific causal hypotheses about variety of expo-
sures and genetic risks>*.

Participation rate and analyses of participants versus non-
participants

The participation rate and analyses of participants ver-
sus non-participants are rarely reported in studies of
remotely collected mood data. Participants in such studies
may be younger, more well educated and suffer from less
severe mood disorders than non-participants, and char-
acteristics of participants may differ for patients and
individuals included in the control group. Such differ-
ences may potentially result in selection bias and decrease
generalizability of findings.

Inclusion criteria

Inclusion and exclusion criteria should be explicitly
stated. Sex, age, socioeconomic level, psychiatric and
somatic comorbidity, alcohol and recreational drug use,
psychotropic treatment, including antidepressant use, are
all known to influence mood states, and all should be in
any protocol.

Disease characteristics

Mood disorders are highly heterogenous in terms of
etiology and phenomenology — often including contra-
dictory symptoms contained within a single disorder (e.g.,
both hypersomnia and insomnia form part of the criteria
for a depressive episode). Also, age of onset, sex and
treatment response are known to be associated with dif-
ferential clinical trajectories® . For example, early age
of onset and sex have been associated with a more chronic
clinical course with higher levels of mood instability"®.
Furthermore, an excellent response to long-term lithium
prophylaxis identifies a more homogeneous subtype of
bipolar disorder similar to classical manic-depressive ill-
ness and characterized by a highly recurrent episodic
course with good quality of remission®. This means that
diagnostic specifiers should be described where possible.
In addition, mood state at study entry should be stated as
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well as illness duration, number and polarity of previous
mood episodes and inter-episode functioning.

Demographics

Mood instability has been suggested to decline with age,
to be more common in women than men, and more
frequently reported in those who are in part-time
employment and those on lower incomes™™®'. As a
minimum, these variables should be considered as possi-
ble covariates in the statistical analyses.

Study design

Details on study design including if possible access to a
study protocol or link to registry (https://www.
researchregistry.com; https://clinicaltrials.gov) prepared
in advance specifying the statistical analyses (see methods
of analyses below), cofounding variables to include in
statistical analyses, outcome measures and power
calculations.

Clearly stated data on mood and clinically assessed
symptoms collected at baseline should be included toge-
ther with the duration of the study and information on
frequency and total number of clinical evaluations.

Data collection (middle section of Table 1)
Hardware/ software

Some monitoring systems have only been developed for
specific operating systems (Android or iOS), and this
dictate other functionalities linked to the specific type of
smartphone. Details of smartphones models used in stu-
dies should be included so that readers can clearly assess
possible differences between studies.

The way in which questionnaires/patient-reported
mood scales are delivered to patients has a significant
impact on response rates®>®>, The use of prompts and the
algorithms employed for repeat prompts are also perti-
nent here. Capability to amend results should be stated as
should the way in which patients are able to visualize their
data: there is preliminary evidence that mood monitoring
per se may be considered an intervention of sorts®
although current data suggest that continuous monitoring
of mood (and other variables) has no beneficial or detri-
mental effects on mood®**. Data storage arrangement
including security should be stated as should any on
device processing.

Questionnaires/patient-reports used

The choice of mood measure is also an important
consideration in study design. There are a wide range of
validated mood questionnaires available, although many
are only validated for use in specific populations. While
most research studies employ validated scales, publicly
available apps tend not to do so. Validated scales are
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preferable scientifically, but the move towards app-based
monitoring poses a challenge as the majority of these tools
are lengthy and unwieldy to answer on a smartphone
screen. A wide range of approaches have been employed
in publicly available apps including single mood scales
with depression and mania as two extreme poles or
anchor points, emotion icons or ‘emoticons', and pre-
selected mood states. Each study should state the method
for measuring mood used, rationale and the validity
optimally in relation to a well validated observer-based
blinded assessment of mood*"** in their study population.

Collection details

The frequency with which mood is reported and the
study population being targeted varies widely between
studies. The majority of systems employ weekly ratings
using validated measures such as the QIDS or the ASRM,
but more frequent (i.e., daily) ratings using shorter mood
reports are commonly used and are often preferred by
patients. More frequent monitoring may also capture the
reactivity of mood (often termed affect), whereas less
frequent monitoring is more likely to capture the average
mood state only. The important issue is how and what
patients or study participants are instructed to evaluate,
and therefore what the data actually measure. Each study
should clearly state how the participants were instructed
and educated to evaluate their mood state.

Reactivity of mood reflects response to environmental
situations or events. It can be both over- or under-
reactive, for example Kraepelin’s description of depressive
patients as insensitive to bad news. Mood state reflects a
more prolonged prevailing state or disposition'®. Both
mood reactivity and mood states are altered in patients
with unipolar and bipolar disorder, as well as in those at
identifiable high-risk'* and as such may warrant pro-
spective monitoring. The ideal frequency of mood
reporting may also differ between high-risk or diagnostic
groups and for different outcomes (i.e., prediction of
onset, recurrence, monitoring of the quality of remission
or psychosocial functioning). For example, individuals
with borderline personality disorder report very frequent
changes in affect (multiple times per day) which are likely
to be missed using weekly monitoring, whereas someone
with euthymic bipolar disorder will likely need a lower
frequency of monitoring. Preliminary data suggests that in
youth at confirmed familial high-risk for bipolar disorder,
changes in temperament and increased variability in
weekly mood ratings maybe correlates of the early stages
of emerging illness®>®°, Given that mood instability is a
common experience across mental illnesses, details on
frequency of reporting are important for interpretation of
results.
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Table 2 Approaches to handling missing data
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Method Description

Limitations

Replacement with mean or median

Last observation carried forward/back Inserts the last observation in place of the missing data points

Reduces variance
Weakens covariance and correlations

Linear interpolation

Inserts the mean or median of the whole dataset in place of missing data

Assumes a linear relationship between two points and uses non-missing

Reduces the variance

Ignores existing trends in the data

Inappropriate in oscillatory data

values from adjacent points to compute a value for the missing data points

Regression substitution

Does not quantify uncertainty about
that value

Reduces variance

Maximum likelihood estimation

Predicts the most likely value of the missing data

Identified likely set of values based on observed data. The maximum

May overestimate model fit

Limited to linear models

likelihood estimate of a parameter is the value of the parameter that is most

likely to have resulted in the observed data

Multiple imputation

Plausible values for missing observations are created that reflect uncertainty. Complex to employ

These values are used to impute the missing values. This process is repeated,

to create a number of ‘completed' datasets. Each of these datasets is

separately analyzed. The results are then combined allowing the uncertainty

of the imputation to be taken into account

Choosing the correct model can be
difficult

Dimensionality

Views missing data as an additional dimension within the data

Complex to employ. May be
difficult to interpret

Data analysis (bottom section of Table 1)
Missing data

Missing data is ubiquitous in self-reported mood data
and poses a significant methodological challenge. There
are many causes of missing data and their understanding
can assist in deciding how best handle this in analyses
(Table 2). Mood data may be missing at random (i.e.,
unrelated to the mood state) or not at random (i.e.,
missing because of mood state)*®. For the latter, any
attempts to impute the missing data may inadvertently
lead to the loss of meaningful data. Replacing missing data
with the mean or median does not take into account the
time series nature of the data and makes no assumption
about the relationship between variables: it has the overall
effect of reducing the variance in the dataset. This
approach also risks weakening covariance and correla-
tions in the data. Last observation carried forward or next
observation carried back are common statistical approa-
ches to the imputation of missing data in time series; both
can introduce error if the data has a clear trend and make
assumptions that might not reflect the true mood state of
that particular patient. Linear interpolation is preferable

where there is a clear trend, but not if data is oscillatory
which often is the case of mood disorders. Regression
substitution can be used to estimate missing values but can
overestimate model fit and reduces the variance. Maximum
likelihood estimation identifies a set of values that are most
likely to have resulted in the observed data using all avail-
able data to calculate a log likelihood. Multiple imputation
is a more sophisticated approach which utilizes correlations
between data and creates values for the missing data based
upon these correlations: it then averages the simulated data
by incorporating random errors in the prediction. This
approach provides more accurate variability, as it considers
variability due to sampling and due to imputation; however,
it can be complex to employ. Alternative approaches where
missing data is viewed as adding dimensionality are also
being developed. Finally, if there is too little data to include
then participants may need to be excluded from the ana-
lysis. This can limit the generalizability of the findings as
poor responders may represent a particular phenotype or
state of illness severity. Given the impact on the final results
of missing data, it is essential that the strategy for dealing
with it is explicitly stated and rationalized.
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Table 3 Mathematical approaches to quantifying variability of mood data

Statistical method Assumptions

Limitations

Time domain e.g.,, RMSSD Normally distributed data

Frequency domain/ Spectral

Data considered a sum of sinusoidal oscillations

Influenced by extreme scores

No estimate of the width of the distribution

Do not distinguish different signals

Examples of datasets with identical means, SDs and RMSSDs
with very different underlying data structure

Long data series required

analysis with distinct frequencies
Analyses require stationarity within data
Entropy Considered a measure of randomness/

irregularity

Should be calculated on non- normalized

time series

Accuracy reduced in short time series
Sinusoidal trends are detrimental

Spikes in the data can impair linear estimates

Methods of analyses

Within mood disorder, mood varies over time in both
severity and polarity and these changes can be dramatic
and unpredictable. While most clinical trial settings use
standard summary statistics to describe mood outcomes
(e.g., mean, median) there is increasing interest in how
mood instability can be mathematically quantified and
how changes over time can be modelled (Table 3). While
the phenomenological features of mood disorders provide
a starting point for analyses, there are currently no bio-
logical systems on which to base the parameters of a
model and a series of quite arbitrary assumptions must be
made.

In the absence of an agreed semantic definition and
reporting method for mood instability**, the mathema-
tical quantification of instability has been done in a variety
of ways'®?0722515267 Time series analyses are the sim-
plest means of representing variability and these include
metrics such the standard deviation (SD) and root means
squared successive differences (RMSSD)*®° (Table 3).
Standard deviation provides a measure of the variation of
a set of values and the extent to which those values
deviate from the mean. However, SD is an inappropriate
measure of dispersion in skewed data, does not provide
any estimate of how far typical values tend to be from the
mean and is influenced by extreme scores. RMSSD is a
simple algorithmic approach widely used in the quantifi-
cation of heart rate and heart rate variability. The diffi-
culty with these time domain measures is that they do not
reliably distinguish different signals, and there are many
examples of datasets with identical means, SDs and
RMSSDs with very different underlying data structure.

Frequency domain or spectral analysis is an alternative
method for quantifying time series data in which the data
is considered as a sum of sinusoidal oscillations with
distinct frequencies: the amplitude and phase of the

frequencies describe the underlying signal’® (Table 3).
Frequency domain analyses require stationarity within the
data (i.e., that properties such as the mean and the stan-
dard deviation of the signal remain constant throughout
the recording period); it is often used in the analysis of
heart rate variability®”. More complex explicitly oscillatory
models have been also been proposed®, but the oscilla-
tion periods are either too long to clearly identify peri-
odicity”"”?, too short or too noisy””.

Entropy analysis is a measure of randomness or irre-
gularity within the data and is sometimes used to repre-
sent complexity (Table 3). It has the advantage that it can
be applied to relatively short series of data (100—900 data
points)”®. The order of the data is important, but once
again non-stationary data can compromise meaningful
interpretation. Other approaches such as network analy-
sis’* and signature-based learning models have also been
used to analyse mood data. These focus on the inter-
relationship between different mood dimensions (e.g.,
how anxiety, low mood, irritability interact) rather than
variability per se but are an exciting new development in
the analysis of mood data.

Statement of conflicts of interest (bottom section of
Table 1)

The field of ‘mHealth’ (the delivery of healthcare ser-
vices via mobile communication devices) is opaque and as
in any other scientific field potential unstated economic
and or scientific conflicts of interest may exist in studies.
It is very important to disclose all potential conflicts, so
the readers can evaluate the literature in an informed and
proportionate way.

Ethics of digitally collected data
The use of digitally collected data for medical research
poses unprecedented ethical challenges and should be
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considered and addressed during all phases of handling
electronic data in research. These include questions
related to individual privacy, data confidentiality,
informed consent, involvement of commercial organiza-
tions, reuse of data, re-identification of de-identified data,
differences in international privacy regulations, and
changing societal attitudes towards public and private
data’. Electronically collected data projects are often
distributed across multiple countries, making issues of
data management, privacy, and consent more complex.
Cloud storage in unknown countries complicates legal
jurisdiction. Privacy laws vary from country to country,
and many countries have not addressed the impact of
modern technology on existing regulations. In addition,
there are many problems related to data created by
patients. Patients may incorrectly assume that all medical
privacy laws apply to commercial Internet companies,
downloaded health apps, or data provided to health
websites’”,

Conclusion

The present paper provides an overview of remotely
collected electronic mood data in mood disorders
research, discusses why standardized reporting is neces-
sary to evaluate and advance research in Psychiatry, and
presents reporting guidelines for remotely collected
electronic mood monitoring. Adherence to these guide-
lines, including addressing ethical aspect of digitally col-
lected data, will improve interpretation, reproducibility
and facilitate future secondary analyses and meta-analyses
of electronically collected mood data from independent
studies.
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