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Visual Abstract

Jugularafferents

There has been a long-standing debate regarding the role of peripheral afferents in mediating rapid-onset ano-
rexia among other responses elicited by peripheral inflammatory insults. Thus, the current study assessed the
sufficiency of peripheral afferents expressing toll-like receptor 4 (TLR4) to the initiation of the anorexia caused
by peripheral bacterial lipopolysaccharide (LPS). We generated a TIr4 null (TIr4=°*"®) mouse in which Tir4 ex-
pression is globally disrupted by a loxP-flanked transcription blocking (TB) cassette. This novel mouse model
allowed us to restore the endogenous TLR4 expression in specific cell types. Using Zp3-Cre and Na,1.8-Cre
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Significance Statement

Using a new transgenic mouse model, our data establish that toll-like receptor 4 (TLR4) is both sufficient
and required for the release of calcitonin gene-related peptide (CGRP) from a subset of vagal afferents. This
finding may be relevant to the understanding of how bacterial infections modulate nerves.

mice, we produced mice that express TLR4 in all cells (TIr4“°*"™® X Zp3-Cre) and in peripheral afferents
(TIr4-°XTB X Na,1.8-Cre), respectively. We validated the TIr4“X™® mice, which were phenotypically identical to
previously reported global TLR4 knock-out mice. Contrary to our expectations, the administration of LPS did
not cause rapid-onset anorexia in mice with Na,1.8-restricted TLR4. The later result prompted us to identify
Tlr4-expressing vagal afferents using in situ hybridization (ISH). In vivo, we found that TlIr4 mRNA was primarily
enriched in vagal Na,1.8 afferents located in the jugular ganglion that co-expressed calcitonin gene-related
peptide (CGRP). In vitro, the application of LPS to cultured Na,1.8-restricted TLR4 afferents was sufficient to
stimulate the release of CGRP. In summary, we demonstrated using a new mouse model that vagally-ex-

pressed TLR4 is selectively involved in stimulating the release of CGRP but not in causing anorexia.

Key words: Cre-loxP; innate immunity; neuropeptide; vagus nerve

Introduction

Toll-like receptor 4 (TLR4) is the main membrane recep-
tor for lipopolysaccharides (LPS), which are endotoxins
derived from the outer membrane of Gram-negative bac-
teria (Poltorak et al., 1998a,b, 2000; Chow et al., 1999).
Hence, the immunologic effects of LPS are blunted in
TLR4-deficient mice (Hoshino et al., 1999). That said,
other membrane proteins, including the myeloid differen-
tiation factor 2 (Park et al., 2009) and TRP channels
(Meseguer et al., 2014; Alpizar et al., 2017) also contribute
to LPS signaling. Upon exposure to LPS, anorexia ensues
(Kent et al., 1992; Porter et al., 1998a) as the direct result
of the actions of proinflammatory molecules on the CNS
(Layé et al., 1994; Grossberg et al., 2010; Daniel et al.,
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2016; Essner et al., 2017). While the anorexic effects of
LPS occur within minutes (Liu et al., 2016), LPS does not
cross the blood-brain barrier (Banks and Robinson,
2010), suggesting that a peripheral neural mechanism in-
volving vagal afferents may contribute to LPS-induced
anorexia. This is because the peripheral endings of vagal
afferents are outside the blood-brain barrier and directly
accessible to bacterial products located in vagally-inner-
vated tissues. Experiments conducted in deafferented an-
imals are in agreement with this view (Bluthé et al., 1994;
Bret-Dibat et al., 1995; Layé et al., 1995; Konsman et al.,
2000). However, it was never clear whether LPS could di-
rectly act on peripheral neurons until TLR4 was found to
be expressed in peripheral afferents, including those in
the vagus nerve (Hua et al., 1996; Hosoi et al., 2005;
Ochoa-Cortes et al., 2010; de Lartigue et al., 2011;
Diogenes et al., 2011; Due et al., 2012; Kunda et al., 2014;
Helley et al., 2015; Li et al., 2015; Boonen et al., 2018).
Moreover, the ability of isolated sensory neurons to di-
rectly and rapidly respond to LPS has been reported in
different species using electrophysiology and calcium sig-
naling (Riley et al., 2013; Meseguer et al., 2014). The in
vivo administration of LPS has also been reported to pro-
duce changes in the neuropeptide expression and firing
rate of vagal afferents (Huang and Lai, 2003; Liu et al.,
2007). Thus, it is plausible that this mechanism allows pe-
ripheral sensory neurons to detect infections in a rapid
manner (Clatworthy and Grose, 1999; Chiu et al., 2013;
Soldano et al., 2016). Finally, it must be noted that within
the brain, TLR4 is expressed in endothelial and glial cells,
but not in neurons (Laflamme and Rivest, 2001;
Chakravarty and Herkenham, 2005; Kigerl et al., 2007).
The latter observation suggests that peripheral afferents
are likely the only neurons in the body able to sense
changing levels of TLR4 activators in a direct manner.
Other findings contradict the view that TLR4 is present
and functional in vagal afferents. Another RNA sequenc-
ing study of vagal afferents failed to detect any vagal
afferents with significant TIr4 mRNA expression (Wang
et al., 2017). This is without mentioning that several
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laboratories have demonstrated that interrupting vagal af-
ferents does not prevent the host of physiological re-
sponses to peripheral LPS, including anorexia (Bret-Dibat
et al., 1997; Schwartz et al., 1997; Hansen et al., 2000;
Martin et al., 2000; Wieczorek et al., 2005). Considering
that vagal afferents are exquisitely sensitive to a wide
range of proinflammatory molecules (Ek et al., 1998; Yu et
al., 2005; Feldman-Goriachnik et al., 2015), it remains
possible that the aforementioned cellular and physiologi-
cal effects of LPS are not directly mediated by TLR4 sig-
naling in vagal afferents themselves. Given the above
uncertainties in the field, the current study aimed to reas-
sess the sufficiency of vagal afferents TLR4 to select LPS-
induced responses using a newly generated transgenic
mouse model.

Materials and Methods

Mice

Mice were all housed in a barrier facility in a light-con-
trolled and temperature-controlled environment [zeitgeb-
er (ZT)0=6 A.M.] with ad libitum access to standard
chow, unless specified otherwise (Harlan Teklad TD.2016
Global). Experimental mice were males, whereas females
were only used for breeding purposes. Single housing
was required during the course of food intake studies.
Otherwise, animals were group housed at all time. All the
procedures in this study were approved by our Institutional
Animal Care and Use Committees and in accordance with
the Society’s Policies on the Use of Animals and Humans in
Neuroscience Research.

Wild-type (WT) C57BI/6 mice

A total of six male mice, between six and eight weeks of
age, on a pure C57BI/6 background were used for chro-
mogenic in situ hybridization (ISH) experiments. These
mice were obtained from our Animal Resource Center.

Na,1.8-Cre“""2-YFP reporter mice

We also generated and genotyped Na,1.8-Cre-ChR2-
YFP mice carrying one Cre allele and one ChR2-YFP al-
lele. A total of four males between six and eight weeks of
age, were used for chromogenic ISH combined with GFP
immunostaining experiments.

Generation of novel Cre-reactivated TLR4-null mice
(T/r4L0XTB)

To generate TIr4“>"™® mice, BAC clones containing the
murine TIr4 gene derived from the 129/Sv strain were ob-
tained from the Sanger Institute. The BAC DNA clone num-
ber bMQ58F22 was electroporated into EL350 bacteria.
First, the loxP sequences present in the BAC backbone
were removed by homologous recombination as previously
described (Lee et al., 2001). Then the validated loxP-flanked
transcription blocking (TB) sequences (Berglund et al., 2012)
were amplified by PCR using primers 5'-GCCTCATTTA
GAAGTGGAATGATAGAAACTCACAGAAATTAATGGGTTC
CCAAGATCATGGGTACCCGCGCCTAGTCGACTTCGAA
TAACTT-3' and 5'-TGTTAAAAAGAATATCGCAAGAGGAAT
CCATGGAGCCATGTTAACTCTCCATTCTTCCTGGGTGGC-
GGCCGCTTAGTTTA-3'. The amplicon was then inserted
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between exons 2 and 3 of the TIr4 gene by homolo-
gous recombination in EL350 cells (Lee et al., 2001).
Kanamycin-resistant clones were selected and recombina-
tion was verified by PCR using the following primers: 5'-
CTGGACAAACAGTGGCTGGA-3" and 5'-GTCATAGATGC
ATGCCAGATACA-3'. Next, the Amp resistance sequence in
the EL350 clones with correctly targeted Tird BAC DNA
(LoxTB-TIr4) was replaced with a Zeocin resistance cassette.
pZErO—1 vector (Invitrogen) was used to amplify the Zeocin
resistance sequence by PCR, and the amplicon was inserted
by homologous recombination. Zeocin resistant clones were
selected and recombination was verified by PCR. Following
this, the pGEM-T easy vector (Promega) was used as a tem-
plate to generate an amplicon containing two TIr4 homology
arms using primers: 5'-CCATTCAAACTGGAACATAGC
CACCTAATTATTTGTCTCTTGTTAGCCAAGTGAAATAGC-
gcggccgcCCAACGCGTTGGATGCATAGC-3’ and 5'-
GTGTGGGTGAAGGTAAGAGTAGCTGTATGCATTACATA-
GATGTATGAAATTGTCAAAGAGCGGTATTTTCTCCTTAC-
GCATC-3'. The TIr4-°XT™® gene was inserted into the
pGEM-T easy vector through homologous recombina-
tion and positive clones were verified by PCR using
primers: 5'-ACCTGATGCGGTGTGAAATAC-3" and 5'-
AGGAAACAGCTATGACCATGA-3'. Sequencing of the
amplicons was performed and enzymatic digestions
were conducted to confirm on-target homologous re-
combination, the sequences of the loxP-flanked TB cas-
sette, and TIr4 native sequences. The targeting vector,
which consisted of the LoxTB-TIr4 gene flanked by 3.2-
kb (left) and 5.2-kb (right) Tlr4 homology arms was
prepared using a commercially available kit (QIAGEN),
linearized by Pvul enzymatic digestion and electropo-
rated into 129/Svd ES cells by the transgenic core facility
at The University of Texas Southwestern Medical Center.
To identify the recombinant clones, genomic DNA was
extracted from ES cells as previously described (Berglund
etal., 2012) and used for long PCR assays to discriminate
between ES clones hosting WT and loxP-modified Tir4
allele. Correct targeting was further confirmed by a cus-
tom multiplex TagMan quantitative PCR (qPCR) assay.
Briefly, extracted DNA was used as template (5-100 ng).
Melanocortin 4 receptor (MC4R) was used as an endog-
enous reference (ID Mm00457483_s1, FAM dye-labeled
probe; Applied Biosystems). Custom primers (5'-TCCTA
ACAGAAAGTGGAAACTTGAG-3' and 5-AGGAATCCA
TGGAGCCATGTTA-3’) and VIC dye-labeled probe (5'-
CCCAAGATCATGCAGGAAGAAT-3') from Biosearch
Technologies were multiplexed with the MC4R assay.
DNA-based gPCRs were conducted on an Applied
Biosystems PRISM 7900HT sequence detection sys-
tem. Correctly targeted recombinant ES cells were in-
jected into blastocysts of C57BI/6 mice. Chimeric male
mice (FO) were crossed to C57BI/6 female mice and
their pups (F1) were screened for germ line transmis-
sion by PCR using the same strategy as for genotyp-
ing. F1 pups bearing the Cre-reactivatable Tir4-null
allele (TIr4-°X™B) were then crossed with zona pellucida
3 (Zp3)-Cre transgenic mice (stock #003651 C57BL/6-
Tg(Zp3-cre)93Knw/J) to restore endogenous TLR4 ex-
pression in all tissues (TIr4“>*T® X Zp3-Cre). Mice
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carrying a WT and/or Cre-mediated recombination allele
(TIr4=°*T® X Zp3-Cre) were genotyped by primer pairs P1
(5'-CTGACTGGTGTGAAGTGGAATATC-3") and P3 (5'-
GTCATAGATGCATGCCAGATACA-3’). Primers P2 (5'-
CTGGACAAACAGTGGCTGGA-3’) and P3 were used to
screen the TIr4"*™® allele. Globally reactivated mice
were used for validation studies and feeding tests. The
group size is indicated in figure legends.

TIr4~°™8 X Na, 1.8-Cre mice

F1 pups bearing the Cre-reactivated Tlr allele
were then crossed with Na, 1.8-Cre mice to produce mice
with endogenous TLR4 reactivation only in Na,1.8 neu-
rons (TIr4-*™8 X Na,1.8-Cre). These mice are referred to
as Na,1.8-restricted TIr4 mice. For all studies, breeding
was set up to obtain the following groups: control,
TIr4“°*™® and Na,1.8-restricted TIr4 mice. Controls con-
sisted of mice expressing one copy of the Na,1.8-Cre al-
lele. TIr4"°X™® mice expressed two copies of the TIr4-°xTB
allele without Cre. Na,1.8-restricted TIr4 mice expressed
two copies of the TIrd=™® allele and one Cre allele. To
validate our ISH probe, we also compared the ganglia from
two TIr4“™® mice to that of two globally reactivated mice
(TIr4“™® x Zp3-Cre). Mice were maintained on a mixed
(C57BI/6 and 129) genetic background. Male mice entered
the experiments at 8-16 weeks of age and were used for
feeding and calcitonin gene-related peptide (CGRP) studies.
The group size is indicated in figure legends.

4L0XTB

LPS preparation and dosage

For animal and culture experiments, we kept 1 mg/mi
aliquots of LPS solution (Sigma L2880 Escherichia coli
055:B5) in sterile pyrogen-free 0.9% saline (Sigma) at
—20°C. When needed, LPS was diluted 100 times in ster-
ile saline for animal studies or in sterile media for culture
studies. In all our feeding studies, LPS was administered
at a single dose of 100 ug/kg of body weight (intraperito-
neal). This moderate dose is sufficient to induce rapid
and transient anorexia in the mouse (Bret-Dibat and
Dantzer, 2000; Lawrence et al., 2012; Liu et al., 2016). A
dose of 2mg/kg (intraperitoneal) was used to stimulate
Nfkbia expression in the nodose ganglion. This dosage was
chosen based on a prior study demonstrating LPS-induced
gene expression changes in the nodose ganglion (Huang
and Lai, 2003). A dose of 500 ng/ml of LPS was used for no-
dose organotypic culture studies (Marrone et al., 2017).

LPS-induced inflammatory response in mice

WT, TIrd"*™8  and TIr4"X™® X Zp3-Cre mice (7-
10 weeks old) were treated with LPS (1 or 0.5 mg/kg body
weight) by intraperitoneal injection. Blood was collected
1.5 h after injection by tail bleeding. Plasma TNFa con-
centrations were determined using the MILLIPLEX MAP
Mouse Cytokine/Chemokine panel (Millipore).

Genomic DNA isolation

Genomic DNA was isolated from tails of six-week-old
mice using REDExtract-N-Amp Tissue PCR kit (Sigma)
following the manufacturer’s instructions.
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Feeding studies

Individually-housed control, TIr4 deficient, and reacti-
vated mice were fasted overnight. At ~9 A.M., fasted
mice were weighed and immediately treated with either
LPS or sterile saline. At the same time, mice were refed
with chow. An experimenter continuously recorded the
feeding behavior of each mouse over 60 min following
treatment. At the end of the 60-min period, food pellets
and body weight were measured. Data were used to cal-
culate the total amount of time spent eating in seconds.

LPS-induced gene expression studies by qPCR

Mice were fasted overnight. The next morning, body
weights were measured to determine the injection volume
of saline or LPS. Then, saline or LPS was administered at
the single dosage of 2 mg/kg, intraperitoneally. One hour
postinjection, mice received an overdose of chloral hy-
drate (500 mg/kg, i.p.) and their nodose-jugular ganglia
were rapidly removed and frozen in liquid nitrogen. Total
RNAs were extracted using RNA Stat60 (Teltest) according to
the manufacturer’s instructions. RNA concentration and qual-
ity were determined by NanoDrop 1000 Spectrophotometer
(Thermo Scientific). Complementary DNA was synthesized
using the High Capacity cDNA kit and was performed at 25°
C for 10 min, 37°C for 120 min, and 85°C for 5min (Applied
Biosystems). Primers for TIr4 (ID: Mm0445274_m1), Nfkbia
(ID: MmMO00477798_m1), and 18s (ID: Hs99999901_s1) were
purchased from Applied Biosystems. The mRNA contents
were normalized to 18s mRNA levels. gPCR was performed
in an ABI Prism 7900HT sequence detection system (Applied
Biosystems) using TagMan Master Mix (Applied Biosystems)
and 10ng of synthesized cDNA. Samples were run in tripli-
cates. The relative amounts of all mMRNAs were calculated
using the AACT assay.

ISH, microscopy, and digital images analysis

Mice received an overdose of chloral hydrate (500 mg/
kg, i.p.), before being transcardiacally perfused with 10%
formalin (Sigma). The nodose-jugular ganglionic mass
was rapidly dissected and kept in formalin for an additional
24 h at 4°C. Fixed ganglia were next incubated overnight in a
solution of 20% sucrose in PBS (pH 7.4) at 4°C before being
frozen on a bed of dry ice. Series of 14-um sections were col-
lected on SuperFrost slides using a cryostat. Tissue was
stored at —80°C for less than a couple of weeks. The tissue
was processed for ISH following the manufacturer’s instruc-
tions (Advanced Cell Diagnostics) with only minor adjust-
ments to the pretreatment. Specifically, slides were baked for
~30min at 60°C before starting the pretreatment. In addition,
the target retrieval solution was heated up to 87°C instead of
99°C. Table 1 summarizes the probes, chromogenic labels,
and reagents used in the current study. Tissue sections la-
beled for TIr4 alone or Tlr4 combined with Calca (CGRP pre-
cursor gene) were counterstained with a hematoxylin solution
(GHS132 Sigma). Tissue sections from Na,1.8-Cre“""2-YFP
mice were not counterstained, but further processed for GFP
immunohistochemistry. Briefly, after several PBS washes, the
sections were incubated overnight at room temperature in a
chicken anti-GFP primary antiserum (Aves Laboratory; GFP-
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Table 1: List of reagents used for ISH
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ISH RNAscope reagents from ACD

Catalog
Gene style Accession Probe number Chromogenic
name(s) number region channel labels Pretreatment Kits
TIr4-C1 NM_021297.2 3006-3775 316801-C1 Fast-Red RNAscope Hydrogen Peroxide RNAscope 2.5 HD
RNAscope Target Retrieval Reagent Kit-RED assay
RNAscope Protease Plus
Calca-C1 NM_007587.2 44-995 417961-C1 HRP-based RNAscope Hydrogen Peroxide RNAscope2.0 2-plex
Green RNAscope Target Retrieval
RNAscope Protease I
TIr4-C2 NM_021297.2 2404-3775 316801-C2 AP-based
Fast Red

10120; RRID:AB_10000240; 1:1000) in 3% normal donkey
serum with 0.25% Triton X-100 in PBS. On the following day,
sections were washed and incubated for 1 h in a biotinylated
anti-chicken secondary antibody (catalog #703065155;
Jackson ImmunoResearch; 1:1000), followed by Streptavidin
Alexa Fluor 488 (Invitrogen, #511223; 1:1000). All our slides
were coverslipped with EcoMount mounting medium
(Biocare Medical, LLC EM897L).

Bright-field images were captured using a Zeiss
microscope (Imager ZI) attached to a digital camera
(Axiocam). A camera lucida attached to the microscope
was also used to draw tissue sections. Drawings were
digitalized and exported to Adobe lllustrator Artwork
15.1. The Zeiss microscope (Imager ZI) was also used for
manual counts of the ISH signals for cell profiles positive
for TIrd/H&E as well as TIr4/Calca. Cell profiles were
counted on digital images by an experimenter unaware
of our experimental design. Fluorescent digital images
were all acquired with the 20x objective of a Zeiss mi-
croscope (Imager ZI) or the 63 x objective of a Leica TCS
SP5 confocal microscope (The University of Texas
Southwestern Live Cell Imaging Core). Scanning param-
eters were adjusted appropriately to improve the signal/
background. We collected Z-stacks separated by
~0.35-0.45um in a 512 x 512-pixel format. NIH ImageJ
software was used to generate our final TIFF images with
combined Z stacks. Adobe Photoshop CS2 software
was used to combine digital images into plates with an-
notations. The contrast and brightness of digital images
were uniformly adjusted. Neuronal versus non-neuronal
profiles were usually easily identifiable by the size, shape
and intensity of the counterstaining of their nuclei. Our
counts should be considered estimates rather than ab-
solute counts. Cells that were considered doubly labeled
included profiles with accumulation of TIr4 mRNA (at
least one red dot per profile) within the boundaries of one
Calca-positive profile. In addition, the circumference of
each identified cell profile was assessed using the mea-
surement tools in Imaged. Images acquired by confocal
microscopy were further evaluated for doubly labeled
cells using plot of fluorescence intensities. Briefly, we
manually traced a line across identified cell profiles using
the ImagedJ software (NIH, Fiji version). Plot profiles of
gray values were generated for each color channel (over-
lapping red and green). Representative plot profiles
were included in our figures. Cells with colocalized
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fluorescence displayed overlapping red and green plots
of fluorescence across the line profile. Cells without
staining or minimal colocalization displayed a flat plot
profile in at least one channel. Colocalization data were
expressed as the mean percentage of identified cell pro-
files = SEM, and the absolute numbers of counted pro-
files were included in the figures.

Organotypic nodose ganglion and CGRP assays

Our protocol was based on previous literature (Gavini
et al., 2018). In particular, we chose to culture ganglia for
5-7 d to give the samples time to rebound from the injury
caused by the acute dissection. Male mice (five to
eight weeks) were deeply anesthetized with isoflurane
before being decapitated and the nodose/jugular ganglia
were quickly removed and stored in chilled HBSS
(Invitrogen) on ice. The isolated ganglia were placed on a
30 mm, 0.4 um pore size, hydrophilic Millicell culture in-
sert (Millipore Sigma; catalog #PICM03050) and main-
tained on the insert in DMEM F-12 GlutaMax media
(Invitrogen) supplemented with 20% heat-inactivated
horse serum (Invitrogen, Life Technologies), and 1x pen-
icillin streptomycin (Invitrogen). Cultures were main-
tained for 5-7d with media changes every other day.
After an overnight incubation in low serum (2.0%), cul-
tures were stimulated with 500 ng/ml LPS or vehicle for
24 h before supernatant was collected. Supernatants
were centrifuged to remove debris and loaded to a
CGRP ELISA kit (Cayman Chemical; catalog #589001)
and the protocol ran according to manufacturer’s
instructions.

Statistical analysis

All of the quantitative data are expressed as the mean
value = SEM. The numbers of mice per group are indi-
cated in each figure. Statistical analysis was performed
using GraphPad Prism software, version 6.07. As indi-
cated in the legends, the data were analyzed using
Student’s unpaired t test, one-way ANOVA or two-way
ANOVA, followed by the post hoc test recommended by
the software; p < 0.05 was considered statistically signifi-
cant. Lower case letters were used to indicate groups
found to be significantly different by the post hoc analysis.
We also followed the journal’s recommendations in terms
of data representations and estimation statistics (Ho et
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Figure 1. A, A loxP-flanked transcription-blocking cassette was inserted between exons 2 and 3 of the TIr4 gene to generate mice
lacking TLR4. B, Genotyping analysis of tail genomic DNA from WT, TIr4“>"® and TIr4->*™® X Zp3-Cre mice. C, D, Plasma TNFa
levels were measured in WT, TIr4-°*T8 and TIr4->*T® X Zp3-Cre mice (n=3-5) 1.5 h after intraperitoneally injection of LPS with the
concentration of either 1 mg/kg BW (C) or 0.5mg/kg BW (D). In C, data were analyzed using one-way ANOVA for genotype
(0 =0.0013), followed by Dunnett’s test (WT vs TIr4“>"™® p =0.0017). In D, data were analyzed using one-way ANOVA for genotype
(0 =0.0004), followed by Dunnett’s test (WT vs TIr4->*™® p=0.0003). For cytokines, letters denote significant differences between
columns with p < 0.05, compared with corresponding TIr4“*T® mice. E, Graphs of 1-h cumulative food intake in response to saline
or LPS (100 ug/kg, i.p.) in control ZP3Cre (white), TIr4“XT® (black), and Zp3-Cre-reactivated mice (gray). Groups consisted of n=5.
Data are expressed as mean = SEM and were analyzed using two-way ANOVA for genotype (p = 0.0116), treatment (p =0.0002),
and interaction (p = 0.001), followed by Sidak’s post hoc test. For each genotype, letters denote significant differences between col-
umns with p <0.05, compared with corresponding saline-treated mice. Estimation statistics was calculated in LPS-treated mice.

Estimation statistics are included in Extended Data Figure 1-1.

al., 2019). Estimation statistics are included in the legends
of our main figures or Extended Data.

Results

Validation of a novel reactivable TLR4 mouse model
We designed and generated a novel Tir4 null (TIr4-><T5)
mice whose TIr4 expression is globally disrupted by a
loxP-flanked TB cassette (LoxTB) that was inserted into
the coding region of the TIr4 gene (Fig. 1A). Crossing
TIr4'*™® mice with Zp3-Cre mice produced mice in which
expression of endogenous TIr4 was globally reactivated in
all cells (Fig. 1A,B). As a result, the LPS-induced inflam-
matory response in these mice was identical to WT mice
(Fig. 1C,D). Specifically, the administration of LPS pro-
duced a not significantly different increase in circulating
TNF-a in WT and reactivated animals. However, TIr4-2xT8
mice (without Cre) behaved like global TLR4 knock-out
mice and failed to respond to LPS (Fig. 1C,D). In a sepa-
rate cohort, we tested the anorectic effects of a small
dose of LPS (Fig. 1E). As anticipated, LPS suppressed
food intake in Zp3-Cre mice, but not in TIr4**™® mice
(without Cre). The anorectic effect of LPS (100 pg/kg, i.p.)
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was fully restored in mice with TIr4 reactivated in all cells
that normally express it (Fig. 1E). This is because the ex-
pression of TIr4 remains driven by its endogenous pro-
moter. These studies demonstrate the validity of our
reactivable model.

Tir4-expressing vagal afferents do not initiate LPS-
induced anorexia

To test for functional TLR4 signaling in vagal afferents in
vivo, we used the previously described Na,1.8-Cre line
(Stirling et al., 2005) to generate cohorts of mice that en-
dogenously express TIr4 only in Na,1.8 neurons. By
gPCR, we show that TIr4 mRNA expression in the no-
dose-jugular ganglion was 15-fold higher in control mice
than in TIr4=>™ mice (without Cre; Fig. 2A). In Na,1.8-re-
stricted TIr4 animals, TIr4 expression in the nodose-jugu-
lar ganglion was ~8-fold higher than in TIr4->*™ mice
(Fig. 2A). Tlr4 was selectively re-expressed in Na, 1.8 neu-
rons, but not other TIr4-expressing cell types. For exam-
ple, Tlr4 was not reactivated in the liver, a tissue with high
endogenous expression of Tir4, but without Na,1.8-Cre
cells (Fig. 2B). Lastly, the administration of LPS (2 mg/kg,
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Figure 2. A, TIr4 mRNA expression in the nodose-jugular ganglionic mass of control, TIr4=>*™® and Tlr

4-°XT8 crossed with Na,1.8-

Cre mice (Na,1.8-restricted TLR4). Our qPCR demonstrated the re-expression of TIr4 in vagal afferents of reactivated animals.
Groups consisted of n=8-15 mice. B, Restoration of TIr4 expression was not observed in the liver of reactivated mice, demonstrat-
ing the specificity of the Cre-reactivated allele. Groups consisted of n=3-7 mice. C, Expression of Nfkbia mRNA in saline-treated
and LPS-treated mice (2mg/kg, i.p.) of each respective genotype. Groups consisted of n=4-7 mice. Data were all obtained by
qPCR, and 18S was used as a control gene. Data were analyzed using two-way ANOVA (treatment and genotype factors) followed
by Sidak’s post hoc test. Letters denote significant differences between columns with p <0.05. NG-JG: nodose-jugular ganglia;
Nfkbia, NF«B inhibitor . Estimation statistics are included in Extended Data Figure 2-1.

i.p.) stimulated the expression of Nfkbia, a well-known
TLR4 target gene (Quan et al., 1997), in the nodose-jugu-
lar ganglion of control animals (Fig. 2C). As anticipated,
LPS did not elicit a transcriptional response in Tlr4-°xT8
mice (Fig. 2C). LPS also failed to significantly increase
Nfkbia expression in the ganglia of Na,1.8-restricted Tir4
mice (Fig. 2C). This result is consistent with the view that
TLR ligands and cytokines are generally poor inducers of
the NF-«B pathway in neurons compared with other cell
types (Listwak et al., 2013). Overall, our data established
the successful re-expression of Tlr4 in vagal afferents.

Early LPS-induced anorexia was investigated in control
Na,1.8-Cre mice with intact TIr4 expression. As antici-
pated, they showed rapid anorexia, starting ~15 min fol-
lowing LPS injection (Fig. 3A). The total amount of food
that LPS-treated mice ate over 1 h was also significantly
reduced (Fig. 3B). Weight gain was significantly reduced
in LPS-treated mice (Fig. 3C). In contrast, LPS did not
elicit anorexia or weight loss in mice that completely
lacked TLR4 expression (Fig. 3D-F). In mice expressing
TLR4 only in Na,1.8 cells, LPS similarly failed to trigger
anorexia or weight loss (Fig. 3G,H). We concluded that
TLR4-bearing vagal Na,1.8 neurons do not contribute to
the anorectic and cachectic actions of LPS at this particu-
lar dose and time point.

TLR4 is selectively enriched in CGRP-positive
afferents

Although TIr4 mRNA has previously been described in
the nodose ganglion (Hosoi et al., 2005), little information
is available regarding its exact cellular distribution.
Chromogenic ISH allowed us to detect the signal for the
Tlr4 transcript as a red precipitate (FastRed) visible under
brightfield and fluorescent illuminations. The majority of
the cellular profiles in the nodose and jugular ganglia was
Tlr4-negative or contained very few TIr4 signals (Fig. 4A-
D). Diffuse and weak Tlr4 signals were seen in both neu-
rons and non-neuronal cells in the nodose-jugular ganglia
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and the vagal trunk itself. However, a subset of cells re-
sembling neurons contained moderate to high levels of
TIr4 signals (Fig. 4A-D). Notably, neurons with high ex-
pression levels were not uniformly distributed but were
concentrated in the jugular ganglion and the rostral pole
of the nodose ganglion (Fig. 4A-D). The caudal nodose
ganglion itself, which contains a large population of vagal
neurons including gastrointestinal afferents, was largely
devoid of TIr4-positive neurons. Based on our estimates,
<12% of vagal afferents located in the rostral nodose
ganglion proper contained moderate to high levels of Tir4
signals (Fig. 4D). Considering that the boundary between
the nodose and jugular-petrosal ganglia is ambiguous,
many TlIr4-positive neurons observed in the nodose gan-
glion may have been part of the jugular ganglion. Indeed,
over 50% (n=23) of vagal afferents in the jugular ganglion
were Tlr4-positive and close to 25% (n=3) of them con-
tained moderate to high levels of Tir4.

Our next studies sought to confirm the neuronal identity
of TIr4-expressing cells. Specifically, Na,1.8-Cre®"R2-YFP
was used to identify the cell bodies of vagal Na,1.8 neu-
rons. Chromogenic ISH was combined with GFP immuno-
histochemistry to visualize neurons co-expressing Na, 1.8
and TIr4 (Fig. 5A-F). When combined with the detection of
ChR2-labeled cells, it became evident that Tlr4 mRNA
was expressed by Na,1.8 neurons (Fig. 5D,E). In the no-
dose-jugular ganglia, ~84% (n=4) of Tlrd-expressing
cells were also Na,1.8-positive. Conversely, ~9% (n=4)
of Na,1.8-positive neurons expressed TIr4. The jugular
ganglion and rostral nodose ganglion are known to con-
tain vagal afferents producing CGRP (Helke and Niederer,
1990; Mazzone and Undem, 2016). Therefore, we next
performed double chromogenic ISH to simultaneously
detect TIr4 and either Calca (CGRP precursor gene) or
CGRP peptide. As anticipated, both TIr4 and Calca-ex-
pressing neurons were the most abundant in the jugular
ganglion and the most rostral portion of the nodose gan-
glion (Fig. 6A-D). TIr4 mRNA signals often accumulated in
Calca-expressing neurons (Fig. 68,C), with an estimated
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Figure 3. A, D, G, Graphs of the cumulative food intake in response to saline (white) or LPS (black; 100 ug/kg, i.p.) in control, TIr4-><TE,
and Na,1.8-restricted TLR4 littermates. Groups consisted of n=5-8 mice. Data were analyzed using two-way ANOVA (time and treatment)
separately for each genotype, followed by Sidak’s post hoc test. The small letter b indicates points that are different from the saline-treated
group. B, E, H, Graph representing food intake or body weight change (C, F, I) over the hour following LPS or saline treatment. Data were
analyzed using Student’s unpaired t test. Small letters indicate significant differences between columns. Data are all expressed as the mean
values = SEM over a period of 60 min. Estimation statistics are included in Extended Data Figure 3-1.

40% (n =4) of TIr4-expressing neurons also being Calca-
positive (Fig. 6E). In summary, our anatomic data estab-
lished that TIr4 was predominantly, but not exclusively,
expressed by a subset of vagal afferents producing
Calca, which are known to be mainly airways and facial
somatosensory and nociceptive afferents (Helke and
Niederer, 1990; Mazzone and Undem, 2016).

CGRP is an immunomodulatory peptide released from
peripheral afferents during bacterial infections (Lai et al.,
2017). Thus, we tested whether TLR4 signaling is
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sufficient and/or required for the release of CGRP from
cultured vagal afferents. As anticipated, the application of
LPS robustly raised CGRP release (Fig. 7A,B). In TIr4->xT8
mice, no significant changes in CGRP release were no-
ticed following LPS. In the ganglia of Na,1.8-restricted
TIr4d mice, the application of LPS raised CGRP release
to the same degree as in the ganglia of control mice (Fig.
7A,B). These data demonstrated that TLR4 signaling in
vagal afferents directly mediates CGRP release on LPS
exposure. Of note, the application of LPS did not alter the
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nation, scattered positive cells resembling neurons are observed mostly in the jugular portion of the ganglionic complex (white ar-
rows). Under bright-field illumination, representative neuronal profiles were labeled as expressing TlIr4 signals at high (H), medium
(M), or low levels (L). Cells with no signals were also apparent (N). Black arrows indicate putative non-neuronal cells surrounding
neuronal profiles. Tissues were counterstained with hematoxylin (purple) to facilitate the identification of cellular profiles. The scale
bars in B applies to C. D, Graph showing the percentage of neuronal profiles with different ISH signal strengths for TIr4. Data are ex-
pressed as the mean percentage + maximal values of TIr4-expressing neurons in the nodose and jugular ganglia. The total number
of counted profiles is indicated above each bar graph. The Extended Data Figure 4-1 includes a control of specificity for the Tir4
probe. c, caudal; H, high intensity signal; HS, hematoxylin stain; M, medium intensity signal; N, no visible signal; cNG, caudal no-
dose ganglion; rNG, rostral nodose ganglion; JG, jugular ganglion; L, low intensity signal; r, rostral.

has made it particularly difficult to tease apart the cellular
and molecular determinants of TLR4 actions. Here, we
developed and validated a novel mouse model to manipu-
late TLR4 expression in a cell type-specific manner within

transcription of Tlr4 and Calca in sensory ganglia cultured
for 5d (see Extended Data Figure 7-1).

Discussion

Novel tools for the study of TLR4

LPS is a potent inducer of proinflammatory molecules,
a number of which share the same cellular targets and in-
tracellular signaling pathways as TLR4 (Miyamoto and
Verma, 1995; Muta et al., 2002; Skelly et al., 2013).
Combined with the redundancy of cells expressing TLR4
throughout the body (Poltorak et al., 1998a; Lin et al.,
2000; Laflamme and Rivest, 2001; Liu et al., 2002), this
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the context of intact animals. In the current study, we
used this model to investigate the role played by periph-
eral afferents in LPS-induced anorexia. In theory, this ap-
proach can be used to test TLR4 signaling in any
genetically-targeted cells provided that a Cre line is avail-
able. It has also been difficult to study TLR4 actions be-
cause of the lack of validated anti-TLR4 antibodies. While
radioisotopic ISH has been used to detect TIr4-expressing
cells in the CNS (Laflamme and Rivest, 2001; Chakravarty

eNeuro.org


https://doi.org/10.1523/ENEURO.0254-20.2020.f7-1
https://doi.org/10.1523/ENEURO.0254-20.2020.f4-1

~Meuro

A Tird mMRNA [
X NG
cNG I_
: L
40 um -

F
3100
(]
3
s
E 50
(O]
c T 1 1 1 T 1 T 1
2 7 12 17 2 7 12 17
um um
F YFP  Doubles Tir4
135 22

Research Article: New Research 10 of 16

Nav1.8-Cre-ChR2-YFP

.~ N&V1.8-Cre=@hR2-YFP

Figure 5. A, B, Chromogenic ISH for TlIr4 mRNA (red) in the rostral nodose ganglion of the Na,1.8-Cre®"*>YF" mouse.
Immunolabeling for GFP (green) was used to label the cell bodies of Na,1.8 neurons. C, D, At higher magnification (digital z-stack
acquired by confocal microscopy), three large cells profiles with high intensity TIr4 signals can be seen. The white arrowhead indi-
cates scattered TIr4 signal interpreted as a putative non-neuronal cell. E, Plot profiles of the distribution across two cells repre-
sented in D. The red and green lines correspond to the fluorescence intensity for TIr4 and YFP, respectively. Notably, TIr4 signals
strongly accumulated within the boundary of ChR2-YFP-labeled neurons. F, Absolute numbers of counted cell profiles. From these
data, it was concluded that TIr4 was primarily co-expressed by Na, 1.8 neurons. cNG, caudal nodose ganglion; rNG, rostral nodose

ganglion; JG, jugular ganglion; X, vagus nerve trunk.

and Herkenham, 2005), the present study has refined these
techniques to specifically analyze TIr4 gene expression in
vagal afferents. In particular, we used a highly sensitive ISH
procedure called RNAscope (Advanced Cell Diagnostic;
Wang et al., 2014; Grabinski et al., 2015). The latter tech-
nique allowed us to detect TIr4 mRNA with virtually no back-
ground. It also allowed us to easily detect TIr4 in
combination with other transcripts or GFP.

Role of vagal afferents during inflammatory anorexia

It is likely that peripheral afferents can rapidly convey in-
formation to the brain relevant to a potentially lethal
threat, such as a Gram-negative bacterial infection. This
phenomenon might possibly exist throughout the animal
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kingdom because sensory neurons in Aplysia sea slugs
have been reported to be sensitive to bacterial LPS
(Clatworthy and Grose, 1999). In rodents, numerous stud-
ies have suggested the ability of both vagal and spinal
sensory neurons to respond to a broad range of inflam-
matory stimuli (Goehler et al., 1997; Ek et al., 1998; Ross
et al., 2003; Eijkelkamp et al., 2010; La and Gebhart,
2011; Chiu et al., 2013). Prior studies have established
that rodents with bilateral subdiaphragmatic surgical va-
gotomy showed diminished anorexia in response to LPS
(Bret-Dibat et al., 1995; Sergeev and Akmaev, 2000).
However, despite all of the evidence implicating periph-
eral afferents in sensing LPS, the requirement of vagal af-
ferents in mediating LPS-induced anorexia has been
difficult to demonstrate. For instance, other studies have
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Figure 6. A, Camera lucida drawing of one vagal ganglionic complex processed for double chromogenic ISH for TIr4 and Calca
mRNAs. Each symbol represents one individual neuronal profile identified as positive for TIr4 (red dots), Calca (open circles), or both
signals (circles filled with red). Note that both TIr4-positive and Calca-positive cells preferentially accumulated in the rostral pole of
the ganglionic mass. B-D, Representative bright-field images of doubly labeled neurons for TIr4 (red) and Calca (blue) in the gangli-
onic mass of C57BI6/J mice. Overall, these data indicate that TIr4 and Calca were frequently co-expressed in the same neurons.
The numbers are meant to indicate four examples of profiles co-expressing Calca and TIr4 mRNAs. Ganglia were counterstained
with hematoxylin. E, Quantification of TIr4 signals (dots) in cell profiles negative (left) or positive (right) for Calca. Individual cell pro-
files are displayed as black circles. A total of 923 cell counterstained profiles were counted, n =4 mice. Using ImageJ, the circumfer-
ence of each profile was determined and further used to categorize cell profiles into small or large/medium cells. Absolute numbers
of tir4-positive profiles is also indicated above each graph. Scale bar in C applies to D. cNG, caudal nodose ganglion; rNG, rostral
nodose ganglion; JG, jugular ganglion; X, vagus nerve trunk.

reported identical degrees of LPS-induced anorexiainan- et al., 2016). However, our data reinforced the view that
imals with capsaicin-mediated or surgery-mediated deaf-  anorexia is initiated rapidly after intraperitoneal LPS expo-
ferentation (Schwartz et al., 1997; Porter et al., 1998b;  sure. This observation led us to hypothesize that first, LPS
Wieczorek et al., 2005). To our knowledge, prior in vivo  may directly act on vagal afferents to suppress feeding;
studies have rarely examined LPS-induced anorexia be-  and second, that prior studies may have missed the early
fore the 1-h postinjection time point (Kent et al., 1992; Liu  anorectic response to LPS. Contrary to expectation, our
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Figure 7. A, LPS-induced CGRP production from TIr4-expressing vagal afferents. CGRP ELISA from nodose-jugular ganglia orga-
notypic cultures isolated from WT (controls), Tir4LoxTB (KO), and TIr4">™® X Na,1.8-Cre (restricted) animals and treated with LPS
(500 ng/ml) or vehicle (sterile saline). Groups consists of ganglia from n = 5-7 animals. Data were analyzed using one-way ANOVA followed
by Tukey’s post hoc test. Different letters indicate significant differences between columns. Data are all expressed as the mean values +
SEM. B, Estimation statistics we included as the mean difference for three comparisons are shown in the Cumming estimation plot. The
raw data are plotted on the upper axes; each mean difference is plotted on the lower axes as a bootstrap sampling distribution. Mean differ-
ences are depicted as dots; 95% confidence intervals are indicated by the ends of the vertical error bars. In Extended Data Figure 7-1, we
further assessed the expression levels for Tr4 and Calca in dorsal root ganglia cultured for 5d.

findings indicate that TLR4 signaling in peripheral affer-
ents alone is not sufficient to initiate anorexia. As ex-
plained below, we believe these findings can be explained
by the fact that TLR4 signaling occurs mostly in rostral no-
dose and jugular vagal afferents supplying the airways,
rather than those involved in feeding. Instead, it is likely
that LPS-induced anorexia is initiated by the de novo pro-
duction of cytokines and prostaglandins within the brain
(Yao et al., 1999; Layé et al., 2000; Sachot et al., 2004;
Chakravarty and Herkenham, 2005; Ching et al., 2007;
Elander et al., 2007; Rummel et al., 2008; Skelly et al.,
2013). A recent single-cell sequencing study determined
that the molecular make-up of jugular afferents is reminis-
cent of that of spinal nociceptors rather than vagal affer-
ents of the nodose ganglion (Kupari et al., 2019). Thus,
the difference of expression of TIr4 mRNA in the nodose
versus jugular ganglion is not completely surprising.
Considering that the jugular and nodose ganglia are fused
in rodents, one prior report of Tlr4 expression in the whole
nodose ganglion may have been because of a jugular
contamination (Hosoi et al., 2005).

TLR4 signaling and vagal CGRP

In the CNS, TLR4 is enriched in non-neuronal cells,
most notably including microglial cells (Lacroix et al.,
1998; Laflamme and Rivest, 2001; Lehnardt et al., 2002;
Olson and Miller, 2004; Chakravarty and Herkenham,
2005; Kigerl et al., 2007; Madore et al., 2013; Larochelle
et al., 2015). Several laboratories also reported TLR4 ex-
pression in neurons (Rolls et al., 2007; Yoo et al., 2011;
Leow-Dyke et al., 2012; Calvo-Rodriguez et al., 2017).
However, the latter studies relied on in vitro data and/or
unvalidated antibodies against TLR4. In contrast, high re-
solution ISH mapping studies have established that TLR4
expression was restricted to non-neuronal cells in normal,
inflamed, and injured CNS (Laflamme and Rivest, 2001;
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Chakravarty and Herkenham, 2005; Kigerl et al., 2007).
Hence, a general agreement is that CNS neurons do not
express TLR4, or they do at very low levels. In contrast,
TLR4 expression was found to be relatively high in a small
subset of vagal afferents. Notably, we found that LPS did
not significantly increase Nfxkbia expression in Tlr4-ex-
pressing Na, 1.8 neurons. This result is in agreement with
the fact that LPS is a poor inducer of the NF-«xB pathway
in neurons compared with other cell types (Quan et al.,
1997; Stern et al., 2000; Laflamme and Rivest, 2001;
Chakravarty and Herkenham, 2005; Kigerl et al., 2007;
Listwak et al., 2013). In addition, NFxB-independent sig-
naling mechanisms may account for LPS actions on sen-
sory neurons (Li et al., 2014; Meseguer et al., 2014; Allette
et al., 2017; Boonen et al., 2018). This putative non-ge-
nomic effect of TLR4 on peripheral afferents differs from
its canonical NFxB-dependent actions on immune, endo-
crine, and glial cells. Thus, additional studies are war-
ranted in our Na,1.8-restricted TLR4 mice to elucidate
LPS sensing mechanisms in vagal afferents. Considering
the large amount of LPS that is constitutively contained
within the gut lumen (Hersoug et al., 2016), we anticipated
that TLR4 would be expressed by vagal afferents supply-
ing the intestines. Based on our data, we cannot rule out
entirely that certain vagal afferents innervating the gut ex-
pressed TLR4. In fact, a small subset of CGRP-positive
vagal afferents was reported to supply the rodent stom-
ach (Bai et al., 2019). Nonetheless, it must be stressed
that TIr4 mRNA was rarely seen in neurons of the caudal
nodose ganglion, where reside vagal afferents innervating
the gut. Thus, the common proposition that LPS signaling
in vagal afferents sense gut microbial communities is not
supported by our findings. Instead, we found abundant
expression of TLR4 in CGRP-producing vagal afferents, a
subgroup of vagal afferents supplying the upper airways,
meninges, and facial skin (Mazzone and Undem, 2016).
Moreover, our in vitro data indicate that TLR4 signaling is
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required and sufficient to mediate LPS-induced CGRP re-
lease. Interestingly, bacterial infections in the respiratory
tract are common and can lead to sepsis more often than
in any other primary sites of infection. CGRP is a well-
known immuno-modulatory peptide released from vagal
and spinal C-fiber endings (Myers et al., 1996; Abbadie et
al.,, 2002; Abrahamsen et al., 2008; Chiu et al., 2013).
Vagal afferents play a key role in airways defenses and
coughing (Prescott et al., 2020; Ruhl et al., 2020).
Therefore, it is tempting to speculate that the stimulation
of TLR4 in vagal airway afferents plays an important im-
muno-modulatory role in the airways and lungs. For in-
stance, a recent study demonstrated that the release of
CGRP from respiratory vagal afferents is critical to bacte-
rial clearance in lungs (Baral et al., 2018). Therefore, fur-
ther studies in TLR4 reactivated mice are warranted to
verify their susceptibility to respiratory infections. Our pre-
diction is that the stimulation of TLR4-bearing vagal (and/
or spinal) neurons supplying the airways during a Gram-
negative bacterial infection would trigger an efferent re-
sponse, probably involving the release of CGRP, aimed at
containing inflammation and favoring bacterial clearance.
It is without saying that molecules other than TLR4 may
also be involved in mediating CGRP release during a bac-
terial infection, as suggested by several studies (Diogenes
etal., 2011; Meseguer et al., 2014; Boonen et al., 2018). In
particular, Meseguer and colleagues showed that the re-
lease of CGRP from isolated tracheas is a TRPA1-de-
pendent phenomenon. However, based on data obtained
with a Trpal global knock-out, it cannot be certain that
neuronal TRPA1 was involved in the observed effects.
Indeed, CGRP is also released from immune cells (Baliu-
Piqué et al., 2014) and TRPA1 itself has been reported in
immune and epithelial cells (Khalil et al., 2018). Moreover,
the high dose of LPS used in this prior TRPA1-related
study is believed to cause TLR4-independent effects be-
cause of LPS interacting with the membrane itself
(Redeker and Briscoe, 2019; Yin et al., 2020). Using a
lower dose of LPS, other authors have shown TRPA1 to
be dispensable for LPS calcium imaging response in sen-
sory neurons (Diogenes et al., 2011; Boonen et al., 2018).
Once again, the advantage of our model is that we manip-
ulated TLR4 only in Na,1.8 neurons of the nodose gan-
glion. In other words, it is likely that TLR4 and TRP
channels are synergistically involved in the release of
CGRP from neuronal endings, but TRP channels do not
mediate this response alone. Lastly, it must be noted that
the transcriptional profile of jugular vagal afferents resem-
bles that of spinal and trigeminal nociceptors (Kupari et
al., 2019). It is therefore likely that our findings may be ex-
trapolated to other TIr4-expressing peripheral nerves in-
cluding spinal and trigeminal CGRP-positive afferents.
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