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The ability of metabolic engineers to conceptualize, implement, and evaluate strain designs has dra-
matically increased in the last decade. Unlike other engineering fields, no centralized, open-access, and
easily searched repository exists for cataloging these designs and the lessons learned from their con-
struction and evaluation. To address this issue, we have developed a repository for metabolic engineering
strain designs, known as LASER (Learning Assisted Strain EngineeRing, laser.colorado.edu) and a formal
standard for disseminating designs to metabolic engineers. Curation of every available genetically-de-
fined E. coli and S. cerevisiae strain from 310 metabolic engineering papers published over the last 21
years yields a total of 417 designs containing a total of 2661 genetic modifications. This collection has
been deposited in LASER and represents the known bibliome of genetically defined and tested metabolic
engineering designs in the academic literature. Properties of LASER designs and the analysis pipeline are
examined to provide insight into LASER capabilities. Several future research directions utilizing
LASER capabilities are discussed to highlight the potential of the LASER database for metabolic
engineering.
& 2015 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, metabolic engineers have made substantial
progress in the engineering of cellular biofactories (Woolston
et al., 2013) that address critical economic and health needs, such
as the production of fuels and chemicals (Gronenberg et al., 2013;
Jones et al., 2015), pharmaceuticals (Nielsen, 2013; Marienhagen
and Bott, 2013; Martin et al., 2003), and many other compounds
(Keasling, 2010). These efforts have been supported by a multitude
of recent experimental and computational advances (Fisher et al.,
2014). However, similar advances in the storage and analysis of
these innovative designs have not been forthcoming, making it
increasingly difficult to build upon these successful examples to
further improve yields, strain robustness, and other characteristics.
Given the continuing expansion of the metabolic engineering lit-
erature (Fig. 1), storage and analysis of published designs is more
important than ever. Previous efforts to impose standardization on
genetic part and design information have attempted to tackle this
issue in a variety of ways (Endy et al., 2005; Andrianantoandro
et al., 2006; Galdzicki et al., 2014; Bilitchenko et al., 2011).
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Formalizing key facets of design will allow metabolic engineers to
better harness past experience to develop novel, improved bioca-
talysts for the future (Canton et al., 2008) and to enable the “sci-
ence” of metabolic engineering (Bailey, 1991).

Rule and knowledge codification is an integral part of more tradi-
tional engineering fields (e.g. electrical, mechanical, and civil en-
gineering). Engineers in these fields routinely make use of extensive
databases of standardized process units, empirical and theoretical
design laws, and other data that help newcomers and experts alike to
use the current best design practices in their field (Sinnott, 2009).
Having codified design rules, such as removing corrosives from pro-
cess units quickly, and empirical laws to guide design allows for the
development of fully automated process design software that has
massively increased engineering productivity and reliability. These
resources both reduce human error (as engineers adhering to a rela-
tively fixed process flow are less likely to miss critical errors in their
designs) and improve productivity, as there is less need to re-discover
previous engineering innovations that were discovered empirically.
Chemical engineers have developed comprehensive bodies of em-
pirical relations to describe critical fluid dynamics, thermodynamics,
reaction kinetics, and other natural phenomenon that critically influ-
ence unit operations (Green and Perry, 2007), in addition to formalized
design methodologies to minimize human error (Towler and Sinnott,
2013). Mechanical, civil, and electrical engineers have done much the
ineering Society. This is an open access article under the CC BY-NC-ND license
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Fig. 2. The essential LASER analysis cycle. First, tested (experimentally validated) de-
signs are deposited into LASER, followed by any necessary curation steps to standardize
the model data representation. These data are then fed into the LASER analysis pipeline,
where their mutations are implemented into the corresponding metabolic and reg-
ulatory models to enable various types of downstream analyses. Design data, such as
probable chassis strains and potentially advantageous novel combinations of gene ma-
nipulations are then used to generate a new set of designs for testing.

Fig. 1. Publications captured over time alongside the number of mutations per design.
The majority of curated papers were published between 2008 and 2014. Papers
published earlier tend to include less information about the precise genotypes of their
designs due to the comparatively higher cost of genome sequencing or other forms of
strain analysis. The average number of mutations per designs appears to increase fairly
steadily over time (excluding the small sample size for designs published in 2015).
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same, with the latter group focusing on reducing errors that endanger
human life or property resulting from the hazards uniquely associated
with each field (Shigley, 2011; Choi, 2004). In all of these cases, these
approaches and underlying software are based on decades of physical
modeling, process design experience, and failures that have been co-
dified over the years, something that is lacking in the metabolic en-
gineering field.

Software engineering, which is broadly similar to metabolic en-
gineering in terms of its current rapidly changing state and relatively
nascent attempts at imposing standards on development practices
(Shaw and Garlan, 1996), now includes a range of intricate design
philosophies with various goals: reducing number of bugs per kilo-
line of code (Mills and Linger, 1991), enabling rapid shifts in features
(Highsmith and Cockburn, 2001), or real-time responsiveness and
extreme reliability for critical applications (Bush, 1990). Programming
languages have also been designed to minimize or eliminate certain
practices that result in frequent implementation errors, such as direct
memory manipulation (Gosling and McGilton, 1995) or race condi-
tions in parallel computing (Armstrong, 2007). While efforts to im-
prove software engineering practices are still on-going, they have
reduced the frequency of errors with substantial impacts on safety
and profitability (Leveson and Turner, 1993; Easley et al., 2011).
Pursuing the same type of metabolic engineering methodology and
tool development to better incorporate empirical design rules and
reduce errors promises to increase strain performance and experi-
mental reproducibility.

Despite these past examples of standardization improving en-
gineering practices, metabolic engineers have not yet benefitted
from similar developments in our field. While there are powerful
enzyme, species, and part databases, like those developed under
the Biocyc aegis (Caspi et al., 2014), SGD (Costanzo et al., 2014),
BRENDA (Schomburg et al., 2013), and others (Ham et al., 2012;
Hesselman et al., 2012), these databases were not originally meant
to encapsulate this type of metabolic engineering design in-
formation. The Biocyc databases, for example, contain a plethora of
gene and pathway information; generally focused on the effect of
individual gene mutations. BRENDA is principally concerned with
enzyme properties, rather than the chassis strains hosting these
enzymes. Other databases focus on different aspects of strain en-
gineering, but similarly lack an overall emphasis on the tested
designs. The fundamental issue with attempting to collate ME
designs from these sources is that the desired data (mutations,
products of interest, growth conditions, etc.) are scattered among
many, disparately organized databases, or the data was not ever
recorded. A database explicitly constructed to contain this in-
formation would therefore expedite storage and analysis of ME
designs, avoiding the problem of adapting already existing spe-
cialist databases for entirely new purposes.

To address the dual problems of standardization and access
that metabolic engineers currently face, we present the LASER
(Learning Assisted Strain EngineeRing) database, a publicly-ac-
cessible, consistent platform for recording ME strain designs and
supporting strain engineering (Fig. 2). In this paper, we introduce
the concept of a formal metabolic engineering design, data sources
used to construct LASER, and analyses of design properties. The
public user interface for LASER is also described in detail and
available at laser.colorado.edu. The discussion subsequently ex-
amines three possible downstream applications for LASER as ap-
plied to strain design that will be explored in future work.
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2. Methods and materials

2.1. Implementation details

The LASER database and pipeline are designed to permit
extensibility and interoperability with other software packages to
the maximum extent possible. LASER records are stored as plain,
human-readable XML or key-value files. All software tools are
currently implemented in Python (version 2.7, python.org), and
the web-server used for the public-facing user interface is based
on Tornado (version 4.1, tornadoweb.org). Cobrapy, a Python im-
plementation of the COBRA Toolbox (Ebrahim et al., 2013), is
currently used for the manipulation of metabolic models in the
LASER matching pipeline. Biocyc flat-files (Caspi et al., 2014) were
downloaded and converted into queryable PostgresSQL databases
for the matching pipeline as well. Visualizations were generated
using Matplotlib (Hunter, 2007) and Escher (http://escher.github.
io/). All calculations were performed on a Thinkpad T61 running
Windows 7 with a Core Duo 2.2 GHz processor and 3 GB RAM.

2.2. Data sources and curation

All designs deposited in LASER so far have been curated from
the peer-reviewed literature published in 43 different journals.
The majority of curated designs were published recently (2008–
2014) with a gradually increasing number of mutations per design
over time (Fig. 1). This trend may reflect the power of inexpensive
DNA synthesis combined with improved genome engineering
techniques (Doudna and Charpentier, 2014; Pál et al., 2014; War-
ner et al., 2010; Lynch et al., 2007; Zeitoun et al., 2015). Only Es-
cherichia coli or Saccharomyces cerevisiae chassis strains are in-
cluded due to the availability of the corresponding metabolic and
regulatory models; however, there is no technical limitation in
LASER preventing the addition of designs based on other species,
and other designs from other common metabolic engineering
platforms (e.g. Corynebacterium glutamicum) will be added in the
future. The curation process was entirely manual; automation via
natural language processing was considered but not yet pursued
given the heterogeneity of data representation in the ME litera-
ture. Given the continuing advancements in NLP (Cambria and
White, 2014), it is possible that automatic curation could augment
or entirely supplant manual data extraction in the future. Strain
patents may also serve as an additional source of designs due to
their inclusion of focused detail concerning genetic modifications
and performance as well. We are currently evaluating ways to
crowd-source data entry to expand the LASER database more
rapidly.

In order to enforce standardization to the maximum extent
possible, data entry for LASER is performed using the web inter-
face described in Section 2.3 with client-side validation of user
inputs. Depending on the number of designs and mutations in-
volved, and how the paper is organized, curating a paper requires
between 20 and 45 min. One of the principal challenges in ana-
lyzing LASER data is the lack of consistent representations of
genes, media types, yield and titer values, and other design char-
acteristics presented in the studies themselves. Metabolic and
regulatory models also tend to use different naming schemes for
their genes, along with their associated reactions and metabolites,
so substantial effort has been dedicated to building a software
pipeline capable of harmonizing these inconsistencies (see Section
3.3). Some manual re-curation is often required to convert author-
supplied gene and target molecule names into version that can be
identified in the corresponding Biocyc database or cellular model.
The required additional effort is minimal, in most cases, and can
often be performed en masse due to consistent usage of non-
systematic gene and product names. Sequences for parts
(promoters, CDSs, and so on) are not included in LASER, but will be
extracted from part databases using the Synthetic Biology Open
Language (SBOL) in the future (Galdzicki et al., 2014). Domain
specific languages such as Eugene (Bilitchenko et al., 2011) may be
especially useful for expanding LASER designs to include precise
descriptions of their constituent parts.

2.3. Accessing LASER

The LASER database is publically accessible at laser.colorado.
edu. Currently, the web app is equipped with two major features
that allow users to submit their own designs using the data entry
interface and perform simple queries to identify designs that have
specific characteristics, such as the use of a particular feedstock or
engineering methodology. Designs will be assigned a unique ac-
cession code to facilitate their identification and sharing in the
future. Users can contribute designs to LASER through the “de-
posit” link provided on the navigation pane on the left side of the
home page. A short form opens, and users are prompted to enter
required information about the referenced article or patent, pro-
ject metadata including the project difficulty as well as high-level
design strategy (e.g. ad hoc design proposal or exhaustive model
proposal/testing), and the specific strain design characteristics.
General information includes the paper title, digital object iden-
tifier (DOI), publication year, corresponding author, publication
journal, and a keyword identifier describing the project goal. In-
formation regarding the perceived difficulty and project manage-
ment styles are also requested in order for LASER developers to
crowd-source information collection that may be useful for cal-
culating project complexity. The user is required to enter specific
information on each engineered organism being reported, allow-
ing experimental reproducibility between labs as well as improved
accuracy of prediction algorithms. Strain specific information in-
cludes but is not limited to details pertaining to growth media,
oxygenation state, culturing system, and method for creating the
mutation. The database search function allows users to access any
reference in LASER that is attached to query key words. For ex-
ample, the user can select to recover all records that contain the
exact match to the keyword ‘anaerobic’ in the associated ‘oxyge-
nation state’ table of the database. The number of return records
can be capped at an arbitrary threshold as determined by the user,
and the search can be generalized.
3. Results

3.1. Defining a metabolic engineering design

We have developed the LASER schema to address storage, ex-
change, and analysis issues and to establish a formal representa-
tion of a ME design (Fig. 3). A design is divided into four hier-
archical categories: the paper level, containing information about
the original study and its design methodology; the mutant level,
detailing the host strain, the techniques used for genetic en-
gineering, growth conditions, target metabolite, production levels,
and the number of mutations; the mutation level, including the
modified or inserted gene and their genetic modifications, fol-
lowed by the annotation level, including information such as RBS
sequences, promoters, and plasmid copy numbers. There is no
limit on the number of mutations per design, or on the number of
designs per paper, patent or other unit of published work, al-
though most papers only contain two strain designs on average,
each harboring approximately seven mutations. Quantitative sta-
tistics concerning several design properties are presented in Sec-
tion 3.2.

The complete list of descriptors for each level is shown in
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Fig. 3. The anatomy of a LASER record storing a metabolic engineering design.
(A) General features concerning the study are stored at the paper level, while the
mutant level (B) contains information about the strain used, growth conditions,
yield and titer information, and the engineering approach. The mutation level
(C) focuses on how and why specific genes are mutated, along with any necessary
annotations.
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Supplementary Table 1; we captured all of the information needed
for experimental reproduction, balanced with the need for simple
and accurate data curation. The complete definition is formalized
using a standard XML schema (Supplementary File 1) that also
enumerates the allowable data types and entries for each data
field to enforce consistency for supplied textual data, and to per-
mit additions to the schema in light of new developments in the
metabolic engineering field. In addition to specifying the “what” of
a metabolic engineering design, the LASER XML schema also per-
mits users to write and read LASER designs without the need for
specialized software tools beyond commonly available XML par-
sers. Text editors can also be used to edit LASER records directly, as
they are stored in a human-readable format. All LASER records are
stored in this format to simplify their distribution and analysis.

3.2. Properties of LASER designs

A total of 417 designs from 310 papers are currently contained
within LASER; Table 1 summarizes the key statistics for the current
iteration of the database. Published papers contain an average of
two designs (μ¼1.35, s¼1.06), with each design harboring seven
modifications (μ¼6.34, s¼4.39). Overexpression, plasmid cloning,
deletion, and genomic integration of genes are by far the most
common implemented modifications (Fig. 6). As tools for manip-
ulating genomes continue to expand (e.g. recombineering and
CRISPR), it is expected that this distribution will change.

LASER records also contain substantial data regarding design
methodologies, and so it is also possible to broadly survey the
design techniques employed by the ME field (Fig. 5). Despite the
increasing use of computational methods (FBA Antoniewicz, 2015
Table 1
LASER summary statistics.

Parameter Value Comments

Records 310 Curated from literature
Designs 417 279 E. coli, 138 yeast
Journals 43 Includes papers with genotyped strains
Project methodologies 7 Design approaches for entire project
Mutant design methods 38 Design approaches for strain engineering
Gene sources 216 Sources of heterologous genes
Products 149 Number of unique target metabolites

Basic statistics concerning designs deposited in LASER.
and elementary mode analysis Trinh et al., 2009), the use of hu-
man intuition remains the most common approach to defining and
implementing ME designs. This result may indicate that metabolic
engineers find these tools somewhat difficult to use or too com-
putationally intensive for their projects, or believe that inferences
derived from their past experiences are more effective in produ-
cing the desired level of strain performance. Other approaches
relying on random evolution or genome-wide forward-engineer-
ing libraries comprise a relatively small proportion of the LASER
database, but they have also revealed unexpected modifications to
increase production or growth (Alper et al., 2005; Hayashi and
Tabata, 2013) that cannot be detected using purely rational ap-
proaches. Continuing interest in using these techniques for en-
hancing strain traits (Lynch et al., 2007; Warner et al., 2010;
Winkler and Kao, 2012) indicates that their proportion of applied
methodologies may increase in the future. Perhaps not surpris-
ingly, protein engineering is performed infrequently despite its
potential utility in circumventing issues with enzyme performance
and specificity, most likely due to the difficulties in rational pro-
tein design (Frushicheva et al., 2014; Khoury et al., 2014) and the
need to laboriously screen mutant libraries. We expect this dis-
tribution to change dramatically in the future as usability en-
hancements for various computational and experimental tools
along with increased automation are developed.

Visualizing the complete set of metabolic alterations in E. coli
(Fig. 4) reveals that mutations predominantly affect only a few
main pathways in the strain, which makes sense given the rela-
tively small number of metabolic branch points that control flux
for the synthesis of various metabolites of interest. Manipulation
of the pentose phosphate pathway is also common, most likely as
an attempt to modulate levels of NADPH in the cell for redox
balancing. Although this map only includes modifications to the
native metabolic network, certain types of heterologous mod-
ifications are also common, such as expression and modulation of
the mevalonate pathway genes in E. coli. The frequent alterations
of these pathways suggest that core designs could be standardized
and easily reused.

3.3. The LASER analysis pipeline

Due to the standardized LASER design representation, software
tools can be developed to automatically implement the genetic
modifications specified in a LASER record in the corresponding
metabolic (COBRA Schellenberger et al., 2011; Ebrahim et al., 2013)
or regulatory model (Salgado et al., 2013; Teixeira et al., 2014).
Comprehensive E. coli and yeast metabolic models are used in this
pipeline (Orth et al., 2011; Heavner et al., 2012). This process is
conceptually simpler than other types of automated model gen-
eration that have been explored in the literature (Henry et al.,
2010), since the base models for the organisms in question already
exist. We have made substantial progress in developing an entirely
automated pipeline, as depicted in Fig. 7 for generating modified
cellular (metabolic and regulatory) models using LASER records
and various Biocyc databases. The essential process involves
identification of the systematic name for a LASER entry, its cor-
responding reactions, and the addition of the gene, reactions, and
metabolites to the final model. Once this pipeline is publicly in-
troduced, users will be presented with a report detailing the
model generation results, including any failures to associate LASER
entries to the model or Biocyc entries. Currently, only mutations
resulting in deletion, repression, and overexpression are im-
plemented by the pipeline due to the difficulty in representing
more complex types of genetic alterations in these simplified
cellular models. Descriptive statistics identifying both problematic
genes and reactions can be generated by processing the entirety of
LASER through this pipeline, a process that requires approximately



Fig. 4. Map of iJO1366 central metabolism with frequently modified reactions highlighted. Less commonly manipulated reactions are colored in blue, while reactions in
purple and red are more frequently altered. Manipulated genes not involved in central carbon metabolism are not included. This visualization was produced using Escher
(http://escher.github.io/). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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1 h on inexpensive hardware.
The analysis pipeline is relatively accurate for both metabolic

and regulatory model generation. Of the 2601 (non-unique) mu-
tated genes in the entire set of LASER records, 2116 can be mutated
in the corresponding metabolic model (80% success rate) resulting
in changes to a total of 4700 metabolite or reactions nodes.
The remaining 485 genes either cannot be associated with a
standardized gene accession or lack associated reactions (409), or
are mutated in ways that cannot be represented in the metabolic
model (76). The majority of LASER genes can be associated with
the correct species or genus in Biocyc (71% success), although this
metric is biased by the fact that modification of native genes is
quite common and are much simpler to match as a result. The
matching process adds a total of 963 reactions from Biocyc
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Fig. 5. Distribution of methods used for engineering biocatalysts or improving
production. All methods that were employed fewer than 10 times were grouped
into the ‘Other’ (OTH) category. HUM: human designed or inferred, LIB: random or
exhaustive library screening, FBA: flux balance analysis, EVO: evolutionary en-
gineering, RAND: random mutagenesis and screening, PREN: protein engineering,
TRANS: transcriptomic profiling, LL: liquid–liquid product extraction, COMP:
computational (generally elementary mode or non-FBA modeling).

Fig. 6. Distribution of mutations implemented by metabolic engineers. All muta-
tions made less than 20 times are combined into the ‘Other’ (OTH) category. OE:
overexpression, PLA: plasmid, DEL: deletion, INT: genomic integration, TER: gene
termination, AA*: amino acid changes, C-OPT: codon optimization, AMP: gene
amplification, TRC: gene truncation, SNP: nucleotide changes, UNK: an unspecified
mutant allele, COMP: protein compartmentalization.
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databases into the COBRA model, with 3960 of the involved me-
tabolites being converted to their COBRA equivalents and 1360
automatically generated from their Biocyc compound information.
The regulatory model generation is comparatively more straight-
forward: 1471 native genes (56%) can be matched and modified in
the supplied regulatory networks, with the remainder being genes
not present in the network (884 genes) or those with unim-
plemented mutations that cannot be represented in regulatory
network (246 genes).

The sources of these inaccuracies are numerous, but the main
cause is that it is often difficult to uniquely pair curated gene
names with those existing in external databases. This same ob-
stacle extends to identifying the correct reactions and metabolites
to insert into a COBRA model. Error rates in pairing LASER muta-
tion entries to elements in Biocyc and the COBRA models are not
unacceptably high, but manual curation is being applied to better
link these databases and to improve COBRA-Biocyc metabolite
mapping. A similar issue also exists with implementing mod-
ifications to regulatory networks, as gene pairing based on in-
consistent naming schemes can often be difficult. In both model
types, it can also be challenging to implement mutations that are
not deletions, repression, or overexpression, such as residue or
nucleotide changes in coding sequences due to model simplifica-
tions. It may be necessary to examine the stated effect of these
modifications (which must be provided during the initial sub-
mission in adherence to the LASER schema) and modify the un-
derlying models accordingly. Overall, we expect continual im-
provements in the accuracy of model generation as LASER is
updated.
4. Discussion

The formal LASER design is a key part of the transition from
“bespoke” design efforts to more consistent approaches used by
other engineering fields (Martin and Ishii, 2002), and would fa-
cilitate far more efficient design exchange, evaluation, and archival
storage than what is currently possible in the ME field. This need is
well known, as Woodruff and colleagues recently highlighted the
need to facilitate sharing of validated designs (Woodruff et al.,
2013), as others have done on various levels (Keasling, 2008;
Shetty et al., 2008). A recent successful effort to formalize meta-
bolic models using the Systems Biology Markup Language (Hucka
et al., 2003) and the resulting proliferation of easily read and
modified metabolic models demonstrates the potential utility of
this approach in the broader metabolic engineering field. Part
specification is also becoming increasingly systematic due to the
introduction of the related SBOL standard (Galdzicki et al., 2014).
LASER designs are easily defined, transferred, and should be easily
re-implemented in the laboratory, providing an initial foundation
to extend the benefits of standardization to the metabolic en-
gineering field.

The combination of design standardization and automated
model generation using LASER enables the development of novel
engineering tools. Our efforts to extend LASER are focused on
three principal areas: complexity, the difficulty in implementing a
given ME design or the feasibility of new ones, forecasting, iden-
tifying new targets for research effort in the metabolic engineering
field, and finally synthesis, inferring empirical design rules from
the database and applying them to develop new strains.

4.1. Complexity

A key question facing metabolic engineers in academia and
industry is how to design the simplest strain, usually in terms of
the number and type of modifications required to achieve a spe-
cified design goal. As detailed above, these judgments are often
based on prior experience with a strain, product, or product class
as well as assumptions about what genetic modifications will be
required to achieve the desired strain performance. Metrics to
quantify the complexity of a proposed or existing design are cur-
rently lacking, so it is not possible to rank designs according to
their difficulty of implementation except using pure empiricism.
The LASER corpus can be used to convert conventional wisdom in
this area to empirical “laws” of complexity by developing topolo-
gical metrics that can be correlated to human-perceived com-
plexity. Defining such ME complexity and then using this to pre-
dict the feasibility of new projects is an area under active in-
vestigation in our lab.



Fig. 7. Schematic representation of the LASER-model conversion process. LASER records are fed into a Python-based pipeline to uniquely identify genes, locate any new
reactions and metabolites associated with heterologous genes, and manipulate the corresponding metabolic and regulatory models according to the specified mutation lists
associated with each gene.

Fig. 8. Pairwise association between commonly mutated genes. Many E. coli de-
signs rely on manipulation of redox balancing to improve production of particular
compounds (organic acids, ethanol, n-butanol, and others) via growth essentially or
reduced flux diversion, with these genes representing the most common routes for
acetate, ethanol, pyruvate, and lactate dissimilation and hence, redox manipulation.
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4.2. Forecasting

The majority of LASER designs are associated with experi-
mental performance data, such as final product titer or yield from
the substrate of interest. Combining this data with the generated
metabolic models allows users to calculate key metabolic perfor-
mance parameters (% of theoretical yield achieved, for example)
automatically, and then compare their results to the literature
without the need for laborious manual curation. It will therefore
be possible to infer trends in metabolic engineering subfields in
order to identify areas where new technological developments
have been brought to bear and those in which progress is com-
paratively lagging behind. These data can also be used, for ex-
ample, to calculate the variability in strain performance associated
with different design parameters or culture conditions, check
consistency with theoretical pathway calculations, and identify
key loci associated with improved titers or yields. These quality
assurance tools already exist in other fields to aid engineers, and
they will likely significantly improve the reproducibility and
completeness of published designs once in wider use.

4.3. Synthesis

It is not sufficient to simply analyze past designs; one of the
principal goals of LASER is to combine the empirical knowledge we
have accumulated as metabolic engineers with current modeling
tools to identify new routes for strain improvement. Initially, we
will focus on selecting common chassis strains based on the LASER
models, followed by combining metabolic modeling and previous
empirical results to improve yields. Subsequent analyses will aim
to develop data-driven tools that can propose designs from a user-
provided product, medium, and host strain that will represent the
best possible synthesis of experimental and modeling-guided de-
sign. A simple example of this approach is to analyze LASER and
extract the frequency at which specific genes are modified, and
their association probability as shown in Fig. 8. This exercise, while
purely statistical, generates results pointing to the common need
to balance redox metabolism and hints at reasonably standard
designs involving a limited set of permutations of ldhA, pta,
frdABCD, adhE, and ackA deletions. The effect of individual mod-
ifications can also be imputed by comparing distances between
designs (e.g. number of genetic modifications separating them) to
see how product yield and titer were effected, all else being equal.
This type of mutation effect analysis will be explored in future
work.

5. Conclusions

In LASER, we have developed a database of curated metabolic
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engineering designs, alongside a definition for what constitutes a
metabolic engineering design. Over 300 papers and 417 designs,
representing the known bibliome of papers containing genetically
defined yeast and E. coli designs, have been curated thus far, pro-
viding an immense resource of metabolic engineering knowledge.
However, this collection is certainly not complete, and we welcome
metabolic engineers and synthetic biologists to deposit their de-
signs into LASER from past research and current projects. A public
interface for the database has been setup at laser.colorado.edu to
facilitate this effort and provide a public platform for design storage
and analysis. We anticipate that the LASER database and its asso-
ciated tools will enable new types of strain design, analysis, and
improved project management hereto thought to be impractical.
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