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Radiation-induced heart disease (RIHD) is a potentially severe side effect of radiotherapy of thoracic and chest wall tumors if all
or part of the heart was included in the radiation field. RIHD presents clinically several years after irradiation and manifestations
include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves.
There is no method to prevent or reverse these injuries when the heart is exposed to ionizing radiation. This paper presents
an overview of recent studies that address the role of microvascular injury, endothelial dysfunction, mast cells, and the renin
angiotensin system in animal models of cardiac radiation injury. These insights into the basic mechanisms of RIHD may lead to
the identification of targets for intervention in this late radiotherapy side effect.

1. Introduction

The worldwide number of long-term cancer survivors is
growing fast with ongoing improvements in cancer therapies
[1, 2]. However, long-term cancer survivors may suffer from
late side effects of cancer therapy. One of these late side
effects is radiation-induced heart disease (RIHD), which
may occur after radiotherapy of thoracic and chest wall
tumors whenever all or part of the heart is situated in
the radiation field. RIHD has been described to occur, for
instance, among survivors of Hodgkin’s Disease [3, 4] and
breast cancer [5, 6]. Radiotherapy planning has undergone
many improvements over the last decades, with modalities
such as Intensity-Modulated Radiation Therapy (IMRT),
image-guided radiation therapy, and proton therapy, leading
to reduced exposures of the heart. Nonetheless, recent studies
indicate that problems may persist. For instance, patients
with Hodgkin’s Disease, lung cancer, and esophageal and
proximal gastric cancer may still receive either a high dose
of radiation to a small part of the heart or a lower dose
to the whole heart [7–11]. In addition, although there is
increasing use of concomitant therapies, the extent to which
these therapies affect radiotherapy side effects such as RIHD
is largely unknown.

Manifestations of RIHD include accelerated atheroscle-
rosis, pericardial and myocardial fibrosis, conduction abnor-
malities, and injury to cardiac valves [4, 12]. The disease
is progressive and both incidence and severity increase
with a higher radiation dose volume, younger age at the
time of radiotherapy, a greater time elapsed since treat-
ment, and concomitant use of cardiotoxic chemotherapeutic
agents such as anthracyclines. Although RIHD is widely
acknowledged as an impediment to quality of life for certain
long-term cancer survivors, from a clinical perspective the
only current way to reduce RIHD is through efforts to
improve radiotherapy treatment planning, as other methods
to prevent or reverse RIHD are not yet available. Hence,
pre-clinical studies seek to unravel basic mechanisms of
RIHD, with the ultimate goal to identify potential targets for
intervention.

2. Pre-Clinical Models of
Radiation-Induced Heart Disease

Pre-clinical animal models have long been used to study
RIHD [13–18]. While transgenic mouse models are being
used in investigations of radiation-accelerated atherosclerosis
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[19, 20], wild type rodents are usually not atherosclero-
sis prone. Hence, studies that use rodents to investigate
radiation-induced coronary artery disease are limited in
number [21, 22]. On the other hand, many laboratory
animals, including rodent, have been used successfully as
models of radiation-induced cardiomyopathy [16, 23–27].
Common doses used in these pre-clinical models of localized
heart irradiation are either a single dose between 5 Gy and
25 Gy, or fractionated schedules of, for instance, 5 daily
fractions of 9 Gy. Some of the histopathological changes in
pre-clinical models, such as myocardial degeneration and
fibrosis, are also commonly described in human cases of
RIHD, mainly after exposure to doses of ∼30 Gy and above
[3, 4, 28–30]. Although clinical and pre-clinical data on the
cardiovascular effects of lower radiation doses are growing
[11, 31], the focus of this review will be on myocardial injury
and cardiac function changes after exposure to higher doses
of radiation. Table 1 summarizes some of the main pre-
clinical studies reviewed.

3. Vascular Injury and Endothelial Dysfunction

Previous paper indicate the important role of vascular injury
and endothelial dysfunction (loss of thromboresistance and
increased expression of adhesion molecules and cytokines) in
the pathogenesis of normal tissue radiation injury [42, 43].
Endothelial dysfunction may contribute to profibrotic and
proinflammatory environments, which are common aspects
of normal tissue radiation injury [42, 44]. Although the role
of endothelial dysfunction in RIHD has not been studied
in detail, experimental RIHD is known to be associated
with reduced myocardial capillary density [32, 33], focal
loss of endothelial alkaline phosphatase [14, 34], and
increased expression of von Willebrand factor [35]. Hence,
microvascular injury and the resulting local ischemic injury
are considered to be some of the underlying mechanisms of
RIHD.

Radiation-induced vascular injury and endothelial dys-
function are mediated in part by Transforming Growth
Factor-β (TGF-β) [45, 46], a pluripotent growth factor that
is part of many normal tissue radiation responses [47–49].
Previous studies have shown cardiac upregulation of TGF-
β in rat models of RIHD after localized heart irradiation
with 20 Gy or 5 fractions of 9 Gy [36–38]. A TGF-β-
inducing compound was used to investigate the role of TGF-
β in RIHD in the rat. Cardiac radiation fibrosis was more
severe in animals that had been administered the TGF-β-
inducing compound during the 6-month followup time after
irradiation (unpublished data). Pre-clinical studies involving
TGF-β receptor inhibition are being undertaken.

4. Mast Cells

Mast cells, cells that belong to the hematopoietic myeloid
lineage, reside in many organs and tissues including the
heart. Although best known for their role in hypersensitivity
reactions, mast cells are also intimately involved in wound
healing and tissue remodeling [50–52]. Mast cells store

and release a wide range of cellular mediators, both via
degranulation and via constitutive pathways that do not
involve degranulation [53]. Increased mast cell numbers are
commonly found in coronary atherosclerosis, myocardial
fibrosis [54, 55], and also in animal models of RIHD [40, 56],
where mast cell numbers correlate with myocardial radiation
injury.

The development and maturation of mast cells depend
on the c-kit receptor, which is specific for stem cell factor.
Several mast cell deficient animal models, based on a
mutation in the c-kit receptor or stem cell factor, are
available [57–59]. Our laboratories have made use of a
rat model that is homozygous for a 12-base deletion in
the c-kit receptor gene [60, 61]. Both mast cell-deficient
rats and their mast cell-competent wild type litter mates
were exposed to localized heart irradiation with a single
dose of 18 Gy. Although mast cell-deficiency was associated
with reduced radiation-induced myocardial inflammation
and degeneration, other manifestations of cardiac radiation
injury such as myocardial fibrosis and ex vivo measures of
myocardial stiffness were exacerbated in the absence of mast
cells [41]. These studies suggest that mast cells, in contrast
to what had been the prevailing assumption but similar to
what has been found in some other cardiac disease models
[62, 63], play a predominantly protective role in RIHD.

5. Mast Cell Interactions

Mast cells interact with many cellular and molecular systems
in the heart. Mast cell-derived proteinases, for instance,
have been shown to contribute to both the formation and
degradation of endothelin-1 (ET-1) [64–68]. ET-1 is a 21-
amino acid peptide that was first discovered as a potent vaso-
constrictor but also has proinflammatory and pro-fibrotic
properties [69, 70]. The role of ET-1 in cardiovascular
pathology has been studied extensively [71, 72]. Both ET-
1 receptors, ETA and ETB are expressed by a wide variety
of cell types in the heart [70, 73]. Short-term upregulation
of ET-1 and its receptors may serve as a mechanism to
maintain cardiac function in certain cardiovascular diseases
[74, 75]. Long-term up-regulation of the endothelin system,
on the other hand, may have detrimental effects due to the
vasopressor, prohypertrophic, and pro-fibrotic properties of
ET-1 [73, 76].

Mast cells express the receptor ETA, which upon acti-
vation by ET-1 induces mast cell degranulation [77], a
pathway by which ET-1 may enhance the activity of matrix
metalloproteinases (MMPs) in the heart [78, 79]. Dual
inhibition of ETA and ETB prevented mast cell degranulation
and the associated increase in cardiac MMP levels, interstitial
collagen degradation, and ventricular dilatation in a rat
model of chronic volume overload [80]. On the other
hand, in a preliminary study of a rat model of RIHD, dual
inhibition of ETA and ETB did not alter radiation-induced
functional or structural cardiac changes [81]. Moreover, vas-
cular injury seemed aggravated by selective ETA inhibition in
a rat model of localized intestine irradiation [82]. Dosing of
receptor antagonists and opposing cardiovascular effects of
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Table 1: Summary of pre-clinical studies into basic mechanisms of RIHD.

Main Observation or Study Outcome References

Reduced myocardial capillary density, focal loss of endothelial alkaline phosphatase, and increased
expression of von Willebrand factor indicate vascular injury in rat models of RIHD.

[14, 32–35]

Coronary artery disease has been observed after localized heart irradiation in hypertensive rats or rats on
a high-fat diet.

[21, 22]

Increased myocardial levels of TGF-β1, Ang II, and aldosterone have been found after localized heart
irradiation in rats.

[36–39]

ACE inhibitor captopril reduced myocardial fibrosis and prevented left ventricular capillary density loss
after localized heart irradiation in rats.

[40]

Mast cell-deficient rats showed reduced radiation-induced myocardial inflammation and degeneration,
but increased myocardial fibrosis when compared to mast cell-competent rats.

[41]

the ETA and ETB,receptors [83, 84] warrant further studies
to clarify the role of ET-1 and its two receptors in RIHD.

Mast cells are one of the main cell types involved in
neuroimmune interactions [85]. They are found in close
proximity to nerve terminals or axons in many organs,
including the heart [86, 87], and interact with nerves on
the molecular level in many ways [85, 88, 89]. Mast cells
express α- and β-adrenergic receptors [90, 91]. In normal
rat myocardium, β-blockade is associated with increased
mast cell degranulation and decreased collagen deposition
[92]. Some sensory neuropeptides such as calcitonin gene-
related peptide (CGRP), substance P, and neuropeptide Y
are able to induce or enhance mast cell degranulation [93–
100] while others have been shown to inhibit mast cell
degranulation [101, 102]. Mast cells, in turn, affect neuronal
growth and function by producing nerve growth factor [103]
and by activating proteinase-activated receptor-2 on the
surface of neurons [104, 105]. Cardiac sensory nerves play
a protective role in the heart via the release of nitric oxide
and CGRP [106, 107]. For instance, CGRP plays a protective
role in myocardial injury such as from ischemia reperfusion
and the cardiotoxic chemotherapeutic agent doxorubicin
[108, 109]. CGRP is a potent vasodilator but also has
beneficial effects in the heart by local downregulation of
tumor necrosis factor-alpha (TNF-α) and upregulation of
insulin-like growth factor-1 (IGF-1) [110, 111]. Interestingly,
both downregulation of TNF-α and upregulation of IGF-1
are associated with reduced normal tissue radiation injury
[112, 113]. In line with this evidence, CGRP has been shown
to protect in a rat model of radiation enteropathy [114]. Its
role in RIHD has not yet been studied extensively.

6. The Renin-Angiotensin System

The role of the renin angiotensin system (RAS) in normal
tissue radiation injury has been well defined [115, 116].
Inhibitors of angiotensin-converting enzyme (ACE) and
antagonists of angiotensin type 1 receptors reduce injury
in animal models of localized kidney, lung, and brain
irradiation [117–119]. Although the role of RAS in RIHD
is less well defined, RAS mediators may be upregulated in
the heart after irradiation [39]. However, while the ACE
inhibitor captopril reduced radiation injury in kidney, lung,
and skin of rats [119–121], captopril did not prevent cardiac

function loss after localized heart irradiation with 20 Gy
in a rat model. Captopril, on the other hand, did reduce
myocardial fibrosis and prevented left ventricular capillary
density loss after local heart irradiation. It is not known
whether these effects were due to properties of captopril
other than its inhibition of ACE [40].

Inhibition of ACE is considered to be cardioprotective
in part by suppressing the breakdown of bradykinin by
ACE [122]. Bradykinin, a small peptide hormone that is
sometimes considered to aggravate cardiac disease with a
significant inflammatory component such as myocardial
infarction [123], is also known to mediate cardioprotection
via induction of nitric oxide and prostacyclin [124–126].
Bradykinin is formed in the kallikrein-kinin system by
proteolytic cleavage of both high- and low-molecular weight
kininogen by kallikrein enzymes, but also by the mast cell-
derived enzyme tryptase [127, 128]. Interestingly, the mast
cell proteinases chymases are one of the main converters
of angiotensin I into angiotensin II [129]. Mast cells seem
to hereby provide a particularly large contribution to local
extravascular generation of Ang II [130]. The roles of RAS
and bradykinin in cardiac radiation injury and the potential
influence of mast cells herein need further investigation.

7. Conclusions

Radiotherapy planning has undergone many improvements
over the last decades, leading to improved targeting and
reduced normal tissue radiation exposure. Nonetheless,
some patients with Hodgkin’s Disease, lung cancer, and
esophageal and proximal gastric cancer may still receive
either a high dose of radiation to a small part of the heart
or a lower dose to the whole heart, which may lead to late
manifestations of RIHD. Some of the basic mechanisms of
RIHD have begun to emerge from recent pre-clinical studies
and include the involvement of vascular injury, mast cells,
and the RAS. Future studies will elucidate the significance of
these mechanisms for clinical RIHD and their usefulness as
targets for intervention in RIHD.
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