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The complementarity relations of 
quantum coherence in quantum 
information processing
Fei Pan, Liang Qiu & Zhi Liu

We establish two complementarity relations for the relative entropy of coherence in quantum 
information processing, i.e., quantum dense coding and teleportation. We first give an uncertainty-
like expression relating local quantum coherence to the capacity of optimal dense coding for bipartite 
system. The relation can also be applied to the case of dense coding by using unital memoryless noisy 
quantum channels. Further, the relation between local quantum coherence and teleportation fidelity 
for two-qubit system is given.

Quantum coherence, which arises from quantum superposition, is a fundamental feature of quantum mechanics, 
and it is also an essential ingredient in quantum information and computation1. Furthermore, in some emergent 
fields, such as quantum metrology2,3, nanoscale thermodynamics4–8 and quantum biology9–12, quantum coher-
ence plays a central role.

The information-theoretic quantification of quantum coherence is a successful application of quantum 
resource theory13. Baumgratz et al. proposed the basic notions of incoherent states, incoherent operations and 
a series of necessary conditions any measures of coherence should satisfy. In this sense, coherence is defined as 
the resource relative to the set of incoherent operations. According to the postulates in the framework, relative 
entropy of coherence13, l1-norm of coherence13 and other coherence metrics14–18 have been put forward. Based on 
coherence measures, the relations between quantum coherence and other resources14,19,20, the complementarity 
relations of quantum coherence21 and other properties of quantum coherence22,23 have been investigated. Mainly 
due to the interest aroused by the resource theory of quantum coherence, there are several attempts at under-
standing the role of coherence as a resource for quantum protocols. For example, in the incoherent quantum 
state merging, which is the same as standard quantum state merging up to the fact that one of the parties has free 
access to local incoherent operations only and has to consume a coherent resource for more general operations, 
the entanglement-coherence sum is non-negative, and no merging procedure can gain entanglement and coher-
ence at the same time24. Perfect incoherent teleportation of an unknown state of one qubit is possible with one 
singlet and two bits of classical communications25. Here, the incoherent teleportation is the same as standard 
teleportation up to the fact that local operations and classical communications are replaced by local incoherent 
operations and classical communications. Furthermore, the notion of coherence as a symmetry relative to a group 
of translations naturally shows up in the context of quantum speed limits because the speed of evolution is itself a 
measure of asymmetry relative to time translations26.

As we know, both quantum coherence and entanglement closely relate to quantum superposition. Moreover, 
many quantum information protocols, such as dense coding27 and teleportation28, would be impossible without 
the assistance of entanglement. Therefore, inspired by work on entanglement, we want to directly relate quan-
tum coherence with the protocols of quantum information. Specifically, we want to give the quantitative relation 
between quantum coherence and the dense coding capacity or teleportation fidelity.

In a realistic scenario, the inevitable interactions between the system and the environment always lead to deco-
herence of the system and the rapid destruction of quantum properties. The dynamics of quantum coherence has 
been extensively investigated29–32. Dense coding in the presence of noise has also attracted much attention33–39,  
as well as teleportation40–46. In particular, dense coding for the case that the subsystems of the entangled resource 
state have to pass a noisy unital quantum channel between the sender and the receiver is considered in ref. 33. We 
try to apply the quantitative relation between quantum coherence and the dense coding capacity to this special 
case. Moreover, we will explore whether the quantitative relations between quantum coherence and the dense 
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coding capacity, and that between quantum coherence and teleportation fidelity can be generalized to the general 
noisy maps.

In the present work, we will establish a complementarity relation between quantum coherence and the optimal 
dense coding capacity, and also relate quantum coherence to teleportation fidelity in the form of a complementa-
rity relation. Here, quantum coherence is measured by the relative entropy of coherence.

Results
Relating quantum coherence to optimal dense coding and teleportation. In this section, we will 
investigate the relation between quantum coherence and the optimal dense coding, and that between quantum 
coherence and teleportation.

The definition of relative entropy of coherence Cre
13 is


ρ ρ δ=

δ∈
C S( ) min ( ), (1)re

where ρ δ ρ ρ δ= −S ( ) tr (log log )2 2  is the relative entropy,   is the set of all incoherent states and all density 
operators δ ∈  are of the form13

∑δ δ=
=

i i ,
(2)i

d

i
1

with {|i〉 }i = 1,…,d being a particular basis of the d-dimensional Hilbert space I . In the definition of relative entropy 
of coherence, the minimum is attained if and only if δ =  ρdiag with ρdiag being the diagonal part of ρ. Cre satisfies the 
four postulates given in ref. 13 which are the conditions that a measure of quantum coherence should satisfy. 
Based on the definition, we can establish the complementarity relation between local quantum coherence and the 
optimal dense coding.

Relating quantum coherence to optimal dense coding. For a bipartite quantum state ρAB on two d-dimensional 
Hilbert spaces ⊗A

d
B
d   with ρB =  trA(ρAB) being the reduced density matrix of the subsystem B, we have the 

following theorem.

Theorem 1 The sum of the optimal dense coding capacity of the state ρAB and quantum coherence of the reduced 
state ρB is always smaller than 2log2d, i.e.,

χ ρ ρ+ ≤C d( ) ( ) 2 log , (3)AB Bre 2

where χ(ρAB) is the optimal dense coding capacity of the state ρAB.

Proof. The d2 signal states generated by mutually orthogonal unitary transformations with equal probabilities will 
yield the maximal χ47,48. The mutual orthogonal unitary transformations are given as

π
=







 +U j i

d
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where integers m and n range from 0 to d −  1. The ensembles generated by the unitary transformations with equal 
probabilities pm,n can be denoted as ε ρ= ⊗ ⊗ = =
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Here, Id
B is the d-dimensional identity matrix in the subsystem B. Accordingly, the capacity of the optimal dense 

coding can be given as47

χ ρ ρ ρ= − .⁎S S( ) ( ) ( ) (6)AB AB AB

Based on the result in ref. 47, i.e., ρ ρ= ⊗⁎ I d/AB d
A

B , we have

ρ ρ ρ
ρ ρ

ρ= − = −






 = + .⁎ ⁎ ⁎S I

d d
S d( ) tr( log ) tr( )tr log ( ) log

(7)AB AB AB d
B B

B2 2 2

For the reduced state ρB of the subsystem B, ρ ρ ρ= −C S S( ) ( ) ( )B B Bre
diag , and ρ ≤S d( ) logB

diag
2 . Therefore, 

ρ ρ≤ −C d S( ) log ( )B Bre 2 , from which we have

ρ ρ+ ≤ .C S d( ) ( ) log (8)B Bre 2

Now, we consider the sum of the optimal dense coding capacity of the whole system AB and quantum coher-
ence of the subsystem B
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χ ρ ρ ρ ρ ρ
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where the first inequality is attained because of the fact given in Eq. (8), and the second inequality is obtained due 
to S(ρAB) ≥  0. This completes the proof.           ☐

For the particular case that the shared entangled state is the Bell state, χ(ρAB) =  2 and Cre(ρB) =  0, and the sum 
of them equals to 2, which just equals to the right hand side of Eq. (3).

The inequality given in Eq. (3) indicates that the greater local quantum coherence is, the smaller capacity of 
the optimal dense coding will be. In other words, if the system AB is used to perform dense coding as much as 
possible, quantum coherence of the subsystem B would pay for the dense coding capacity of the whole system. 
The physical reason is that dense coding is based on entanglement, and would be impossible without the assis-
tance of entangled states. The results given in ref. 20 show that entanglement of the whole system and quantum 
coherence of a subsystem are complementary to each other. That is, an increase in one leads to a decrease in the 
other. For example, for a Bell state, an incoherent state of the subsystem B will be acquired if qubit A is traced 
over. On the contrary, creating a superposition on a subsystem to have maximum coherence on it will exclude 
entanglement between subsystems.

In ref. 25, the task of incoherent quantum state merging is introduced and the amount of resources needed 
for it is quantified by an entanglement-coherence pair. It is found that the entanglement-coherence sum is 
non-negative, in other words, no merging procedure can gain entanglement and coherence at the same time. 
From the results given in this paper, the sum of the optimal dense coding capacity and quantum coherence is 
upper bounded by a definite value, i.e., there is a trade-off between the dense coding capacity and quantum coher-
ence. It should be noted that dense coding is based on entanglement, and the former would be impossible when 
the latter is absent. In this sense, the result given in Eq. (3) is consistent with those presented in ref. 25.

The result given in Theorem 1 can also be extended to the case of dense coding by using unital memoryless 
noise quantum channels. The unital noisy channels acting on Alice’s and Bob’s systems are described by the com-
pletely positive map ρ ρΛ = ∑ †K K( ) i i i , where ∑ =†K K Ii i i  corresponds to trace preservation, and ∑ =†K K Ii i i  
guarantees the unital property, i.e., Λ (I) =  I. Here, Ki denotes the Kraus operators. In ref. 33, the authors found 
that the encoding with the equally probable operators Um,n, as given in Eq. (4), is optimal for the states of which 
the von Neumann entropy after the channel action is independent of unitary encoding. In other words, the states 
satisfy

∑ρ ρΛ = Λ
=

−
S

d
S( ( )) 1 ( ( )),

(10)
AB
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where ρ ρ= ⊗ ⊗†U I U I( ) ( )m n m n
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, , , . The corresponding dense coding capacity can also be given by 
χ ρ ρ ρΛ = − ΛS S( ( )) ( ) ( ( ))AB AB AB AB AB , where ρAB is the average of the ensemble after encoding with the equally 
probable unitaries Um,n and after the channel action. That is, ρAB  is the average state of the ensemble 
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.  B a s e d  on  t h e  f a c t  t h at  ρ ρ= ⊗ ΛI d( / )AB A B B

3 3, 

χ ρ ρ ρΛ = + Λ − Λd S S( ( )) log ( ( )) ( ( ))AB AB B B AB AB2 . Following the proof process of Theorem 1, one can easily 
obtain χ ρ ρΛ + Λ ≤C d( ( )) ( ( )) 2 logAB AB B Bre 2 , which indicates our result in Eq. (3) applying to the case of dense 
coding by using unital memoryless noise quantum channels.

Now, we consider an example of two-sided depolarizing channel33. Alice firstly prepares the bipartite state ρAB, 
and sends one part of it, i.e., B, via a noisy channel Λ B to the receiver, Bob, so as to establish the shared state for 
dense coding. Subsequently, Alice does the local unital encoding and then sends her part of the state, i.e., A, via 
the noisy channel Λ A to Bob. The two-sided d-dimensional depolarizing channel is defined as

∑ρ ρΛ = ⊗ ⊗
µ ν µ

µν µ µν µ µν µ
=

−





 





 

† †( )q q V V V V( ) ( ) ,
(11)

AB AB
v

d

v v AB v
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1

with the probability parameters qμν =  1 −  (d2 −  1)p/d2 for μ =  ν =  0, otherwise qμν =  p/d2. The operators Vμν read

∑ π ν
µ=







 + .µν

=

−
V i k

d
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(12)k

d

0

1

It is proved that the von Neumann entropy of a state, which is sent through the two-sided depolarizing chan-
nels, is independent of any local unitary transformations that were performed before the action of the channel, 
i.e., the condition given in Eq. (10) is satisfied33.

Specific to the case that Alice and Bob have the two-sided 2-dimensional depolarizing channel for the transfer 
of the qubit states, the initial resource state is chosen as |φ〉 AB =  cos θ|Φ +〉 AB +  sin θ|Ψ +〉 AB, where θ ∈  (0, π), and 
Φ = ++ ( 00 11 )1

2
, Ψ = ++ ( 01 10 )1

2
 are the Bell states. After sending the qubit B to Bob via the 

depolarizing channel, Alice implements the local unital encoding and then sends the qubit A to Bob via the depo-
larizing channel too. The dense coding capacity χ(Λ AB(ρAB)) and the relative entropy of coherence Cre(Λ B(ρB)) can 
be straightforwardly calculated, however, the expressions of them are analytically messy, and thus we have chosen 
to simply plot the exactly numerical results. In Fig. 1, we plot the evolutions of χ(Λ AB(ρAB)) +  Cre(Λ B(ρB)),  
χ(Λ AB(ρAB)) and Cre(Λ B(ρB)) as functions of the state parameter θ and the noise parameter p. From Fig. 1(a), it is 
found that χ(Λ AB(ρAB)) +  Cre(Λ B(ρB)) ≤  2 is always satisfied, which indicates the result given in Theorem 1 is 
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validated. This can be appreciated in Fig. 1(b,c), where χ(Λ AB(ρAB)) reaches its maximum value while Cre(Λ B(ρB)) 
gets its minimum value, or vice versa. The underlying physical mechanism is that the dense coding capacity is 
much greater when the two-qubit state is much more entangled, while the coherence of the subsystem is much 
smaller. This physical explanation is verified in Fig. 2, where we plot χ(Λ AB(ρAB)) +  Cre(Λ B(ρB)), χ(Λ AB(ρAB)) and 
C r e (Λ  B(ρ B) )  v e r s u s  θ  f o r  p  =   0 .  F o r  t h e  p a r t i c u l a r  c a s e s  o f  θ  =   π / 4  a n d  3π / 4 , 
φ = + ⊗ +( 0 1 ) ( 0 1 )AB A B

1
2

1
2

 and − ⊗ −( 0 1 ) ( 0 1 )A B
1
2

1
2

, respectively. The subsystem 
B has the maximum value of coherence Cre(ρB) =  1 when the two-qubit state is the product state and is useless for 
dense coding. On the contrary, for the cases of θ =  0 and π/2, |φ〉 AB =  |Φ 〉 AB and |Ψ 〉 AB, respectively, and the dense 
coding capacity gets its maximum value χ(ρAB) =  2 for both of them. At these points, the two-qubit states are 
maximally entangled, and the subsystem has no coherence.

The relation between quantum coherence and dense coding has been given in Eq. (3), and in the following, we 
will relate quantum coherence to teleportation.

Relating quantum coherence to teleportation. For an arbitrary two-qubit mixed state ρAB with ρA =  trB(ρAB) being 
the reduced state of the subsystem A, we have the following theorem.

Theorem 2 For any two-qubit state

ρ
ρ







+ − − 




+ ≤h

F
C

1 1 [3 ( ) 2]

2
( ) 1,

(13)

AB
A

2

re

where = − − − −h x x x x x( ) log (1 )log (1 )2 2  is the binary entropy, F(ρAB) is the teleportation fidelity of the 
state ρAB and Cre(ρA) denotes quantum coherence of the subsystem A. Here, we just consider the case where the 
state ρAB is useful for teleportation, which means F(ρAB) ≥  2/3.

Figure 1. (a) The sum of the relative entropy of coherence for subsystem B Cre(Λ B(ρB)) and the dense coding 
capacity χ(Λ AB(ρAB)), (b) Cre(Λ B(ρB)), and (c) χ(Λ AB(ρAB)) as functions of the state parameter θ and the noise 
parameter p.

Figure 2. The sum of the relative entropy of coherence for subsystem B Cre(ρB) and the dense coding 
capacity χ(ρAB) (Red line), Cre(ρB) (Black line), and χ(ρAB) (Blue line) versus the state parameter θ for a 
fixed value of p = 0. 



www.nature.com/scientificreports/

5Scientific RepoRts | 7:43919 | DOI: 10.1038/srep43919

Proof. In the proof, the subscripts are omitted in the case that it does not cause confusion. For a two-qubit 
state, the relation between the teleportation fidelity F(ρ) and negativity N(ρ) is 3F(ρ) −  2 ≤  N(ρ)49, while 
negativity is related to concurrence C(ρ) as N(ρ) ≤  C(ρ)50. Combining the two relations, one can obtain 
3F(ρ) −  2 ≤  N(ρ) ≤  C(ρ). F(ρ) ≥  2/3 leads to all of them being larger than 0, so the square of them also obey the 
rules, i.e., [3F(ρ) −  2]2 ≤  N2(ρ) ≤  C2(ρ). Subsequently, the following expression exists

ρ ρ ρ+ − −
≥
+ −

≥
+ −

≥ .
F N C1 1 [3 ( ) 2]

2
1 1 ( )

2
1 1 ( )

2
1
2 (14)

2 2 2

The last inequality can be acquired based on the fact that concurrence C(ρ) for two-qubit state runs from  
0 to 1.

As known to all, h(x) is a monotonically decreasing function in the interval [1/2, 1], thus one can obtain

ρ ρ ρ
ρ







+ − − 




≤






+ − 




≤






+ − 




=h

F
h

N
h

C
E

1 1 [3 ( ) 2]
2

1 1 ( )
2

1 1 ( )
2

( ),
(15)

F

2 2 2

where EF(ρ) is the entanglement of formation of the state ρAB.
For any bipartite state ρAB, entanglement of formation and quantum coherence obey the relation20

ρ ρ+ ≤ .E C d( ) ( ) log (16)F AB A Are 2

Combining Eq. (15) with (16), and specializing to the two-qubit state, i.e., dA =  2, it is easy to complete the 
proof.              ☐

The inequality given in Eq. (13) indicates that the greater the teleportation fidelity is, the smaller local quan-
tum coherence will be. That is to say, quantum coherence of the subsystem should pay for teleportation fidelity 
of the whole system. The reason for this result is that teleportation relies on entanglement. However, quantum 
coherence of the subsystem and entanglement of the whole system are complementary to each other.

For the particular case that the Bell state is utilized to perform teleportation, F(ρAB) =  1 leads to 











=

ρ+ −  − h 1
F1 1 3 ( ) 2

2
AB

2

 while Cre(ρA) =  0. Thus, ρ











+

ρ+ −  − h C ( )
F

re A

1 1 3 ( ) 2

2
AB

2

 equals to 1.

Now, we investigate the example of two-qubit state |φ〉 AB =  cos θ|Φ 〉 AB +  sin θ|Ψ 〉 AB with θ ∈  (0, π), which is 
distributed to Alice and Bob through the 2-dimensional depolarizing channels. According to the Eq. (11), one can 
obtain the output state Λ AB(ρAB), which will be considered as the resource state for implementing teleportation. 
The unknown state of qubit a to be teleported is assumed to be |ψ〉 a =  cos(α/2)exp(iβ/2)|0〉  +  sin(α/2)exp 
(− iβ/2)|1〉 , where α ∈  (0, π), β ∈  (0, 2π). Bob can get the teleported state ρout after a series of teleportation proce-
dures, and ρout can be expressed as ρ ψ ψ ρ= ⊗ Λ †U Utr [ ( ) ]a A t a AB AB tout , . In the expression, tra,A is the partial 
trace over the qubits a and A, and both of them are in Alice’s side. C C H C=Ut aB

Z
AB
X

a aA
X  is the unitary operator51, 

and  = =ij aB AB aA k Z X( , , ; , )ij
k  denotes the controlled-k operation with i being the controlled qubit and j 

being the target qubit. The Hadamard operation on qubit a is denoted as a. The teleportation fidelity F(α, β) is 
the overlap between the unknown input state |ψ〉  and the teleported state ρout

α β ψ ρ ψ= .F ( , ) (17)out

In order to get rid of α and β on the teleportation fidelity, the average teleportation fidelity is given

∫ ∫π
β α α β α=

π π
F F1

4
d sin ( , )d , (18)0

2

0

where 4π is the solid angle. Henceforth, it means the average teleportation fidelity as we refer to the teleportation 
fidelity. After straightforward calculation, the teleportation fidelity reads

ρ θΛ = + − + + − + .F p p p( ( )) 1
6

[4 ( 2 ) 2( 1 ) cos (2 )] (19)AB AB
2

However, the expression of relative entropy of coherence Cre(trB[Λ AB(ρAB)]) is analytically messy. Alternatively, 
we plot the evolution of h(F) +  Cre(ρA), h(F) and Cre(ρA) as functions of the state parameter θ and the noise param-

eter p in Fig. 3. In this paragraph, 












ρ+ −  Λ − 
h

F1 1 3 ( ( ) ) 2

2
AB AB

2

 and Cre(TrB[Λ AB(ρAB)]) are denoted by h(F) and 

Cre(ρA) for the sake of simplicity in the case that it does not cause confusion. From the figure, it is found that h(F) 
and Cre(ρA) compensate each other. For a fixed value of p, the relative entropy of coherence Cre(ρA) increases when 
h(F) decreases with the increasing of θ, or vice verse. These results can be observed much more clearly from Fig. 4, 
where the evolutions of h(F) +  Cre(ρA), h(F) and Cre(ρA) versus θ for a fixed value of p =  0 are plotted. The under-
lying physical mechanism for these results is that the resource state changes from the maximally entangled state 
|Φ 〉 AB to the product state + ⊗ +( 0 1 ) ( 0 1 )A B

1
2

1
2

 when θ ranges from 0 to π/2. The maximally entan-
gled state can be used for teleportation with the fidelity getting the maximum value 1, however, the relative 
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entropy of coherence of the subsystem A equals to zero. On the contrary, the product state cannot be used for 
teleportation while Cre(ρA) =  1.

As proved in ref. 20, the relative entropy of coherence is unitary invariant by using the different bases, the 
results given in Eqs (3) and (13) hold for all local bases.

From the results given in Eqs (3) and (13), it is found that there is trade-off between local quantum coherence 
and the optimal dense coding capacity or the teleportation fidelity. In general, the relation among coherence, dis-
cord and entanglement has been given by use of quantum relative entropy, where quantum coherence is found to 
be a more ubiquitous manifestation of quantum correlations19. For two-qubit states with maximally mixed mar-
ginals, the pairwise correlations between local observables are complementary to the coherence of the product 
bases they define52. Furthermore, the results in refs 19,52 also indicate that the existence of correlations, particu-
larly entanglement, together with the purity of the global state, implies that the reduced states are highly mixed, 
and thus have low coherence in any basis. Combing with the fact that dense coding and teleportation rely on 
quantum correlations, especially entanglement, our complementarity relations between local quantum coherence 
and dense coding capacity or teleportation fidelity can be easily understood. Therefore, our results in the present 
paper are harmonious with those given in refs 19 and 52.

Discussion
In this paper, we relate the relative entropy of coherence to quantum dense coding and teleportation. Firstly, we 
establish a complementarity relation between the optimal dense coding capacity of a bipartite system and local 
quantum coherence. The inequality indicates that smaller local quantum coherence will bring about the greater 
capacity of optimal dense coding. It is also found that the relation can be applied to the case of dense coding by 
using unital memoryless noisy quantum channels. Secondly, an inequality in the form of complementarity rela-
tion between teleportation fidelity for a two-qubit system and local quantum coherence of its subsystem is given. 
From the inequality, it is found that the greater the teleportation fidelity is, the smaller local quantum coherence 
will be. Our results in this paper give a clear quantitative analysis between quantum coherence and some specific 
quantum information protocols.

In the subsection of relating quantum coherence to optimal dense coding, it is found that the result given in 
Theorem 1 can also be extended to the case of dense coding by using unital memoryless noise quantum channels. 
In general, our results given in Eqs (3) and (13) can be generalized to general noisy maps. A noisy map can be 

Figure 3. (a) The sum of h(F) and the relative entropy of coherence for the subsystem A Cre(ρA), (b) h(F), and 
(c) Cre(ρA) as functions of the state parameter θ and the noise parameter p. In the plot, we only consider the case 
of F >  2/3.

Figure 4. The sum of h(F) and the relative entropy of coherence for the subsystem A Cre(ρA) (Red line), h(F) 
(Blue line), and Cre(ρA) (Black line) versus the state parameter θ for a fixed value of p = 0. In the plot, we only 
consider the case of F >  2/3.
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described by a completely positive trace preserving linear map ρ ρΛ = ∑ †K K( ) i i i  with the Kraus operators Ki 
satisfying ∑ =†K K Ii i i . If ρAB, ρA and ρB are respectively substituted by Λ AB(ρAB), trB(Λ AB(ρAB)) and trA(Λ AB(ρAB)), 
the results given in Eqs (3) and (13) are still tenable. Actually, in the subsection of relating quantum coherence to 
teleportation, we have considered the distribution of two-qubit state through 2-dimensional depolarizing chan-
nels, and found that the Eq. (13) is still satisfied.
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