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Summary

Monocyte chemoattractant protein 1 (MCP-1) is a CC chemokine that attracts monocytes,
memory T lymphocytes, and natural Killer cells. Because other chemokines have similar target
cell specificities and because CCR2, a cloned MCP-1 receptor, binds other ligands, it has been
uncertain whether MCP-1 plays a unique role in recruiting mononuclear cells in vivo. To ad-
dress this question, we disrupted SCYAZ2 (the gene encoding MCP-1) and tested MCP-1—-defi-
cient mice in models of inflammation. Despite hormal numbers of circulating leukocytes and
resident macrophages, MCP-1-/~ mice were specifically unable to recruit monocytes 72 h af-
ter intraperitoneal thioglycollate administration. Similarly, accumulation of F4/80+ monocytes
in delayed-type hypersensitivity lesions was impaired, although the swelling response was nor-
mal. Development of secondary pulmonary granulomata in response to Schistosoma mansoni
eggs was blunted in MCP-1-/~ mice, as was expression of IL-4, IL-5, and interferon -y in sple-
nocytes. In contrast, MCP-1~/~ mice were indistinguishable from wild-type mice in their abil-
ity to clear Mycobacterium tuberculosis. Our data indicate that MCP-1 is uniquely essential for
monocyte recruitment in several inflammatory models in vivo and influences expression of cy-

tokines related to T helper responses.

hemokines are low molecular weight secreted pro-

teins that play a variety of roles in intercellular signal-
ing (1). Most chemokines exert their effects on leukocytes
and were first purified on the basis of their ability to attract
specific leukocyte subsets in vitro. For example, monocyte
chemoattractant protein 1 (MCP-1)! was identified as a
monocyte-specific chemoattractant (2—4) that was later shown
to attract memory T lymphocytes and NK cells (5-7). Be-
cause of its target cell specificity, MCP-1 was postulated to
play a pathogenetic role in a variety of diseases character-
ized by mononuclear cell infiltration, including atheroscle-
rosis, rheumatoid arthritis, and multiple sclerosis (8-11).
Support for MCP-1's importance in the physiology of in-
flammation comes from demonstrations in transgenic mice
that it functions as a monocyte chemoattractant in vivo
(12-15).

1Abbreviations used in this paper: DNFB, 2,4-dinitro-1-fluorobenzene;
DTH, delayed-type hypersensitivity; MCP, monocyte chemoattractant
protein; MIP, macrophage inflammatory protein; SEA, Schistosome egg
antigen.

However, MCP-1’s role may be neither essential nor
unique because of the potential for functional redundancy.
Among the known CC chemokines, MCP-1, MCP-2,
MCP-3, MCP-4, MCP-5, macrophage inflammatory protein
(MIP)-1a,, MIP-1B, 1309, and HCC-1, all have monocyte
chemoattractant activity in vitro. Furthermore, monocytes
express at least three cloned CC chemokine receptors, namely
CCR1, CCR2, and CCRY5, and even though MCP-1 binds
only CCR2 with high affinity, CCR2 also binds MCP-3
and MCP-5 (16-18). With this profusion of monocyte-
active chemokines and monocyte-expressed receptors, as well
as ligand-receptor promiscuity in vitro, it can be legiti-
mately asked whether a single chemokine such as MCP-1
could have an essential effect in inflammatory disease. Anti-
body neutralization experiments indicate that MCP-1 might
play a unique role in models of granuloma formation and
pulmonary inflammation (19, 20). However, these studies
suffer from the usual shortcomings of antibody specificity
or secondary effects of exogenously administered antibody.
Therefore, to address the question of whether MCP-1 plays
a unique role in inflammation in vivo, we constructed an
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MCP-1—-deficient mouse by targeted gene disruption.
Analysis of this mouse indicates that despite functional re-
dundancy with other chemokines in vitro, MCP-1 alone is
responsible for mononuclear cell infiltration in several in-
flammatory models in vivo.

Materials and Methods

Targeted Disruption of MCP-1. A 6600-bp genomic DNA
fragment containing SCYA2 (the gene encoding MCP-1) (21,
22) was modified by introducing an Xhol linker in an Hpal site
in the second exon, and the 3’ portion of the gene was cloned
into the Notl-Xhol sites of pPNT (23). To modify the 5" por-
tion of the gene, the genomic fragment was digested with Nael
and Pmll (in the coding region of exon 1) and religated with an
Nhel linker to create a small deletion and an in-frame stop
codon. The modified 5’ portion was then ligated into the Xbal
site. of pPNT to yield the targeting construct pJEKO-9, dia-
grammed in Fig. 1 A(ii).

pJEKO-9 was introduced into J1 embryonal stem cells (24) by
electroporation and cells were selected in G418 and gancyclovir
as previously described (25). 2 out of 60 clones showed evidence
for homologous recombination, and were injected into blasto-
cysts using standard techniques. After reimplantation in foster
mothers, only one clone resulted in chimeric mice that transmitted
the disrupted allele to offspring. Mice were genotyped by South-
ern blot analysis of DNA extracts from tail snips using standard
techniques (26). In all experiments, control wild-type mice were
the same strain as MCP-1-deficient mice, namely (129Sv/] X
C57BI/6)F, raised in identical specific pathogen-free conditions.

Immune Precipitation. To activate peritoneal macrophages,
mice were administered 1.5 ml of 4% thioglycollate broth intra-
peritoneally. After 72 h, cells were harvested by peritoneal lavage
with 5 ml cold HBSS with 10 U/ml heparin, and plated in RPMI
1640 medium supplemented with 10% bovine calf serum. After
2 h, nonadherent cells were removed by washing and adherent
cells were stimulated with 10 wg/ml LPS (Sigma Chemical Co.,
St. Louis, MO) for 4 h. Cells were radiolabeled with 2 mCi/ml
[35S]methionine (NEN-DuPont, Boston, MA) in the presence of
10 wg/ml LPS for an additional 4 h. Medium was collected, di-
luted with an equal volume of RIPA buffer, and precleared with
normal rabbit serum and protein A-Sepharose beads (Bio-Rad
Laboratories, Hercules, CA). Immune precipitations were then
performed sequentially with anti-murine MCP-1 (21) and anti-
KC (27). Anti-MCP-3 (28) (a gift from R. Bravo, Bristol-Myers
Squibb, Princeton, NJ) was used in a separate experiment. Similar
results were obtained without thioglycollate treatment, although
the levels of chemokine synthesis were much lower in wild-type
and MCP-1/- mice, suggesting that thioglycollate priming is
necessary for a full response to LPS in resident peritoneal mac-
rophages.

Thioglycollate Challenge.  8-9-wk-old male mice were admin-
istered 1 ml of 4% thioglycollate broth intraperitoneally, and 72 h
later were killed by CO, asphyxiation. Cells were recovered by
peritoneal lavage and counted using a hemocytometer. Cells were
applied to microscope slides using a cytospin centrifuge, stained
with Diff-Quik (Baxter Healthcare Corp., McGaw Park, IL), and
differential counts were obtained by morphological analysis.

Contact Hypersensitivity. 8-12-wk-old wild-type and MCP-
1-/= mice were sensitized by placing 0.1 ml of 0.5% 2,4-dinitro-
1-fluorobenzene (DNFB) (in 4:1 acetone/olive oil) on the shaved
skin of one flank. 6 d later, naive and sensitized mice were challenged

by placing 0.02 ml of 0.2% DNFB on the dorsal surface of one ear.
24 h later, thickness of treated and untreated ears was determined
by an investigator blinded to treatment group using a Peacock dial
gauge. Some ears were fixed in formalin, embedded in paraffin,
and stained with F4/80 (Serotec, Oxford, UK) or rat 1gG. 200
nucleated cells were counted in random fields of dermis and F4/80*
cells were scored by an investigator blinded to treatment group.

Tuberculin-type Hypersensitivity. 8-12-wk-old wild-type and
MCP-1-/~ mice were sensitized by injecting 0.05 ml of a 3% so-
lution of the O-succinimide ester of 4-hydroxy-3-nitrophenyl
acetyl (NP-O-Su) in DMSO in two sites on the ventral flank, fol-
lowed by 0.1 ml of borate buffered saline (pH 8.6) in the dorsal
midline. 7 d later, naive and sensitized mice were challenged by
injecting 0.025 ml of 3% NP-O-Su freshly diluted at 1:20 in PBS
(pH 7.8) into one footpad. 24 h later, thickness of treated and un-
treated footpads were determined by an investigator blinded to
treatment group using a Peacock dial gauge.

Schistosoma mansoni Egg—induced Pulmonary Granulomata.  Mice
were sensitized by intraperitoneal injection of 3,000 viable Schisto-
soma mansoni eggs. 2 wk later, synchronous pulmonary granulomata
were induced by intravenous injection of 3,000 viable eggs as
previously described (20). At 2, 4, and 8 d after embolization,
lungs were inflated with formalin and embedded in paraffin. Sec-
tions were stained with hematoxylin and eosin, and granuloma
area was measured by an investigator blinded to treatment group
using a computerized morphometer (The Morphometer; Woods
Hole Educational Associates, Woods Hole, MA).

Cytokine Production by Splenocytes. Mice were sensitized by
injection with Schistosome egg antigen (SEA). 2 wk later, spleno-
cytes were isolated and cultured in RPMI 1640 with 10% fetal
calf serum alone or with 10 ng/ml SEA. 24 h later medium was
collected and concentrations of 1L-2, IFN-v, IL-5, and IL-10 were
determined using specific ELISAs (Genzyme Corp., Boston, MA).

Infection with Mycobacterium tuberculosis.  Mice were injected
intravenously with 10° CFU of the H37Rv strain of Mycobacte-
rium tuberculosis. Four wild-type and four MCP-1~/~ mice were
killed at days 10, 20, 50, and 80 after infection, and homogenates
of spleen, lung, and liver were plated on enriched agar (Middle-
brook 7H11; Difco Laboratories, Detroit, MI). Colonies were
counted after 3-4 wk of growth.

Results and Discussion

Gene Targeting and MCP-1 Expression.  Fig. 1 A de-
scribes the gene targeting strategy for MCP-1. The fre-
quency of homologous recombination in embryonic stem
(ES) cells was ~3% and resulted in an MCP-1 allele that
was disrupted by a neomycin resistance cassette in the sec-
ond exon (in a transcriptional orientation opposite to that
of MCP-1) and a linker with an in-frame stop codon in the
first exon. Two targeted ES clones were injected into blas-
tocysts, but only one resulted in a live birth after transfer to
foster mothers. This chimera passed the disrupted allele to
its progeny which were intercrossed to produce mice ho-
mozygous for the disrupted allele (Fig. 1 B) in the expected
Mendelian proportion.

To test whether MCP-1 expression had been disrupted,
peritoneal macrophages were isolated from wild-type mice
and from mice heterozygous or homozygous for the disrupted
allele. Fig. 1 C shows that LPS-stimulated macrophages
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from wild-type mice secreted MCP-1 protein, a 25-35 kD
microheterogeneous glycoprotein (21, 29), while macro-
phages from homozygous mice secreted no detectable
MCP-1. Macrophages from heterozygous mice secreted in-
termediate amounts. The absence of MCP-1 secretion by
macrophages from homozygous mice was not due to ab-
sence of peritoneal macrophages since the resident mac-
rophage population was similar in number to wild-type
mice (see below). In addition, stimulated macrophages from
homozygous mice secreted wild-type amounts of other
chemokines such as GRO-a/KC and MCP-3 (Fig. 1 C),
as well as MIP-1« (data not shown).

Phenotype of Unchallenged MCP-1—deficient Mice.  Litter size
and sex distribution of MCP-1-/~ mice were indistin-
guishable from wild-type mice. MCP-1-/~ mice devel-
oped normally and had the same life span as wild-type mice.
Their hematologic profiles were also similar. In addition,
MCP-1-deficient mice had normal numbers of Kipffer
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Figure 1. (A i) Wild-type SCYA2 locus. The three exons encoding

MCP-1 are shown as hatched boxes; the positions of BamHI and Sstl re-
striction endonuclease sites are indicated in relation to the 5" BamHI site;
the Nael-Hpal fragment used as a probe in Southern blotting is indicated
as the open box. (ii) Targeting construct indicating the transcriptional ori-
entation of the PGK-neo cassette inserted in the second exon of MCP-1.
Asterisk denotes the site of an in-frame stop codon engineered in the first
exon (see Materials and Methods). (iii) Disrupted allele. (B) Southern blot
analysis of wild-type and MCP-1-deficient mice. DNA was extracted
from tails of wild-type mice (+/+), and mice heterozygous (+/-) or
homozygous (—/—) for the disrupted MCP-1 allele. DNA was digested
using Sstl and analyzed by Southern blotting using the probe indicated in
A. (C) Chemokine expression in wild-type and MCP-1-deficient mice.
Peritoneal macrophages from wild-type mice (+/+), and mice heterozy-
gous (+/—) or homozygous (—/—) for the disrupted MCP-1 allele were
treated with LPS and radiolabeled using [®*S]methionine as described in
Materials and Methods. Conditioned medium was analyzed by immune
precipitation using anti-MCP-1 antiserum and the precipitates were ana-
lyzed by SDS-PAGE (left gel). The supernatants from the anti-MCP-1
precipitation were then subjected to immune precipitation using anti—
murine GRO-a/KC, and these precipitates were analyzed by SDS-
PAGE (middle gel). In a separate experiment, conditioned medium was
analyzed by immune precipitation using anti-murine MCP-3 antiserum
(right gel). Arrow indicates position of MCP-3. A small amount of cross-
reactivity with MCP-1 can be discerned at ~30 kD in supernatants from
wild-type macrophages.
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cells and alveolar macrophages as determined by immuno-
histochemical staining with F4/80 (data not shown).

Monocyte Recruitment in Response to Nonspecific Stimuli.
In response to intraperitoneal thioglycollate instillation, wild-
type mice develop peritonitis that, after 72 h, consists pri-
marily of monocytes and macrophages. Fig. 2 shows that
before challenge, peritoneal lavage of wild-type and MCP-1-
deficient mice recovered ~5 X 10° cells/mouse, of which
~95% were macrophages. This indicates that, similar to
resident macrophage populations in liver and lung, MCP-1
is not required for the establishment of resident peritoneal
cells.

72 h after thioglycollate administration, wild-type mice
were observed to have a sixfold increase in the number of
cells in their peritoneal cavities (Fig. 2). These cells con-
sisted of a small number of neutrophils and eosinophils elic-
ited over days 1-3, but most of the increase was due to
monocytes and macrophages. In contrast, MCP-1-/~ mice
experienced only a doubling of total intraperitoneal cell
number due to an increase in neutrophils and eosinophils
that was statistically similar to the increase seen in wild-type
mice. However, the MCP-1-/~ mice showed essentially
no recruitment of monocytes or macrophages to their peri-
tonea.

In this model of peritonitis, both neutrophil and mono-
cyte accumulation depend on the expression of selectins
(30, 31), B, integrins (32), LFA-1 (33, 34), intracellular ad-
hesion molecule-1 (ICAM-1) (35), and platelet-endothelial
cell adhesion molecule-1 (PECAM-1) (36). Although the
absence of elicited monocytes in MCP-1-/~ mice could be
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Figure 2. Thioglycollate elicitation in wild-type and MCP-1—-deficient
mice. Total and differential leukocyte counts were obtained on the resi-
dent peritoneal cells of six wild-type and six MCP-1~/~ mice. An addi-
tional six wild-type and six MCP-1—/~ mice were challenged with intra-
peritoneal thioglycollate. After 72 h, elicited cells were collected by
lavage and analyzed for total cell and differential leukocyte count. Essen-
tially no lymphocytes or mast cells were seen in either genotype. R, resi-
dent cells; E, elicited cells. Error bars indicate SEM. Differences in num-
bers of elicited neutrophils and eosinophils between wild-type and MCP-
1=/~ mice were not statistically significant by Student’s t test.
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mice was not statistically significant. Similar results were observed in males and females. (B) Tuberculin-type hypersensitivity. 10 wild-type and 11 MCP-
1-/~ mice were sensitized with NP-O-Su as described in Materials and Methods. 7 d later, sensitized mice as well as nine naive wild-type and nine naive
MCP-1-/~ mice were challenged by injecting NP-O-Su in one footpad. 24 h later, the difference in thickness between injected and noninjected foot-
pads was determined. Annotations are the same as in A. Similar results were observed in males and females. (C) F4/80+ cells in contact hypersensitivity
lesions. Contact hypersensitivity challenges were performed as described in A, and ears from sensitized mice were harvested 24 h after challenge. Sections
were stained and the proportion of F4/80+ cells from two animals in each group were determined. Error bars indicate SEM. These results are typical of

two independent experiments.

due to deficient adhesion molecule expression, elicitation of
neutrophils and eosinophils in numbers identical to those in
wild-type mice suggest that adhesion molecule expression
was intact. We did not test for monocyte accumulation af-
ter 72 h, and it is possible that other chemokines might com-
pensate for MCP-1 at later time points. However, at 72 h,
when maximal monocyte recruitment normally occurs,
monocyte accumulation clearly depends on MCP-1.

Delayed-type Hypersensitivity Responses.  To test the role
of MCP-1 in a contact hypersensitivity response, mice
were sensitized with DNFB, then challenged by applica-
tion of the hapten on the skin of the ear. Fig. 3 A shows
that sensitized wild-type and MCP-1-/~ mice experienced
the same increase in ear swelling compared to nonsensitized
mice of matched genotype. Similarly, in a tuberculin-type
delayed-type hypersensitivity (DTH) model, sensitized mice
were challenged by footpad injection of NP-O-Su. Again,
as shown in Fig. 3 B, sensitized wild-type and MCP-1-/-
mice had the same amount of footpad swelling compared
to nonsensitized mice. These results indicate that MCP-1 is
not required for the component of the DTH response that
produces edema.

However, examination of infiltrates in contact hypersen-
sitivity responses showed that the proportion of F4/80+
cells in the lesions of MCP-1-/~ mice was decreased three-
fold compared to wild-type mice (Fig. 3 C). Furthermore,
while the total number of elicited cells per unit area ap-
peared to be lower in MCP-1-/~ mice, the number of
neutrophils appeared to be the same (data not shown).
Thus MCP-1 is required for eliciting a full complement of
mononuclear cells in a DTH response but not for generat-
ing edema, suggesting that other cell types, such as neutro-
phils, may be responsible for this manifestation of DTH
(37). This may be particularly relevant in the mouse where
neutrophils comprise a much larger proportion of the infil-
trate compared to humans. A similar dissociation between

cell recruitment and vascular leak has been observed in
P-selectin—deficient mice (38).

The presence of DTH-associated swelling in MCP-1-/~
mice indicates that sensitization occurred without MCP-1.
This may mean that MCP-1 is not necessary for activation
of dendritic cells or for their migration into draining lymph
nodes, which is a notable finding because of the evidence
from some laboratories that MCP-1 can attract dendritic
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Figure 4. Secondary granuloma formation in response to Schistosoma
mansoni eggs in wild-type and MCP-1-/~ mice. Synchronous pulmonary
granulomata were induced in chronically infected wild-type (+/+) or
MCP-1-/= (—/-) mice as described in Materials and Methods. At the
indicated time after egg injection, lungs from five to six mice were col-
lected and the granuloma area was determined. Differences between
wild-type and MCP-1-/~ mice were significant at day 2 (P <0.01) and
day 8 (P <0.001) by Student’s t test. Error bars indicate SEM. At least 20
granulomata were measured per mouse.
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Table 1.

Cytokine Secretion by Splenocytes Challenged with SEA (pg/ml)

IL-4 IL-5 IL-10 IL-2 IFN-vy
MCP-1*/+ (4) 58 + 12 2100 = 540 276 * 88 492 = 96 1953 * 544
MCP-1-/- (4) 11*+16 1000 = 190 288 * 43 510 * 63 820 = 176
P value 0.028 0.048 NS NS 0.08

Mice were sensitized with SEA and spleens were harvested 2 wk later. Splenocytes were challenged in vitro with SEA and the concentration of in-
dicated cytokine in conditioned medium was determined 24 h later by ELISA. Numbers in parentheses indicate the number of mice tested. P values

were determined by Student’s t test.

cells (15, 39). Our data suggest that this property of MCP-1
may not be relevant in the two models of DTH used in this
study.

Response to Schistosoma mansoni Eggs.  To examine MCP-1's
role in a different hypersensitivity system, we challenged
sensitized mice by intravenous administration of Schistosoma
mansoni eggs to elicit the synchronous formation of second-
ary granulomata around eggs embolized to the pulmonary
vasculature. It had been previously demonstrated that ad-
ministration of anti-MCP-1 antibodies reduced the size of
secondary pulmonary granulomata in this model by ~40%
(20). Consistent with that finding, Fig. 4 shows that the size
of secondary granulomata 8 d after challenge in MCP-1-/~
mice was also ~40% smaller than granulomata in wild-type
mice, thereby genetically confirming the importance of
MCP-1 in this process.

Secondary granulomatous responses have been suggested
to be predominantly controlled by Th2 cells (40-42). To
examine the effect of MCP-1 on the development of T
helper cells in this model, splenocytes from sensitized mice
were tested for cytokine secretion in response to SEA in
vitro. As shown in Table 1, IL-4 and IL-5 production were
significantly reduced in MCP-1-/~ splenocytes compared
to wild-type splenocytes. However, IFN-vy secretion was
also 59% lower in MCP-1-/~ mice (but with a P value of
only 0.08), whereas IL-2 and IL-10 expression were un-
changed (as were the proliferative responses of splenocytes
to SEA [data not shown]). Thus the absence of MCP-1 al-
tered patterns of cytokine expression in sensitized mice, al-
though the defect was not restricted to Th2 cytokines.

It remains to be determined whether this phenotype re-
flects a direct influence of MCP-1 on Th development (43)
or an indirect influence of other abnormalities that may be
present in MCP-1-/~ mice. For example, NK cells are a
likely source of IFN-+y in splenocytes of sensitized mice (44),
and there may be fewer NK cells in MCP-1-/~ spleens. It
is not inconceivable that MCP-1 has important influences
on the basal population of lymphoid tissues.

Response to Mycobacterium tuberculosis.  The preceding ex-
periments demonstrated that lack of MCP-1 causes defi-
ciencies in cellular recruitment to DTH and granulomatous
lesions. This raised the question of whether MCP-1 also
plays a role in systemic inflammatory challenges. To test
this idea, we intravenously inoculated mice with 105 CFU
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of the virulent Mycobacterium tuberculosis strain H37Rv. At
various times after challenge, CFU in lung, liver, and spleen
were counted. Fig. 5 shows that MCP-1-/~ mice cleared
organisms from spleen and lung slightly less efficiently than
wild-type mice at early time points, but by 80 days after in-
oculation the two genotypes were indistinguishable. Thus
macrophages in these organs are capable of suppressing in-

A 7

Days

Days

0 10 20 30 40 50 60 70 80
Days

Figure 5. CFU in organs of wild-type and MCP-1-deficient mice in-
oculated with Mycobacterium tuberculosis. 16 wild-type and 16 MCP-1-/~
mice were injected intravenously with 105 CFU of Mycobacterium tubercu-
losis. At the indicated days after infection, 4 mice from each group were
sacrificed and homogenates of liver (A), spleen (B), and lung (C) were
plated. CFU are indicated from wild type (black square) and MCP-1-/-
(gray circle) mice. Error bars indicate SEM. *P <0.05, **P <0.025 by Stu-
dent’s t test.



fection by this systemically administered pathogen even in
the absence of MCP-1.

It is possible that this resistance to mycobacteria reflects
intact Thl-like responses in MCP-1-/~ mice. This inter-
pretation would be consistent with results from an experi-
mental model in which intravenously injected SEA-coupled
beads, but not purified protein derivative (PPD)-coupled
beads, elicited MCP-1 expression in pulmonary granulomata,
and anti-MCP-1 treatment decreased the size of the SEA-
induced, but not the PPD-induced, granulomata (45). These
results differ from responses in transgenic mice expressing
MCP-1 under the control of the mouse mammary tumor
virus LTR (46). Those mice had high serum levels of
MCP-1 and were deficient in clearing intravenously admin-
istered mycobacteria. Thus, persistent ambient MCP-1 may
cause defects in macrophage function that are distinct from
those caused by absence of MCP-1. For example, high se-
rum levels of MCP-1 may downregulate another receptor
on monocytes in addition to CCR2.

However, in vitro ligand binding experiments suggest
that MCP-1’s sole cloned receptor is CCR2 (an early as-
signment of MCP-1 to CCR4 [47] has not been reliably
reproduced [48]). Recently, two models of CCR2-defi-
cient mice constructed by gene targeting have been de-
scribed, and both share several features with the MCP-1-
deficient model reported here, including a selective defect
in macrophage elicitation in response to intraperitoneal thio-
glycollate (49, 50). This suggests that CCR2 is probably
MCP-1’s sole receptor in vivo as well. Interestingly, one of
these models (49) demonstrated a relatively selective defect

in Th1l responses, which differs from suggestions using anti-
body neutralization or TCR transgenic T cells in vitro that
MCP-1 influences Th2 responses (43, 45). However, those
CCR2-deficient mice also showed defects in 1L-4 and IL-5
secretion as well as IFN-y secretion, similar to our mice.
This indicates, again, that MCP-1’s role as an immunoreg-
ulatory molecule is complex and not restricted to type 1 or
type 2 helper T cells. When examined in vivo, MCP-1’s
influence on acquired immunity may be due to its attrac-
tion of specific leukocyte subsets to secondary lymphatic
organs rather than a direct effect on T lymphocyte differen-
tiation.

In summary, the major finding from our work concerns
chemokine redundancy. In spite of the existence of many
CC chemokines that attract monocytes in vitro, our data
show that loss of MCP-1 alone is sufficient to impair mono-
cyte trafficking in several different models at the times we
examined. In addition, absence of MCP-1 results in pro-
found alterations in cytokine secretion by splenocytes sensi-
tized to SEA. This suggests that chemokine redundancy as
defined by receptor binding in vitro may not be relevant in
vivo, where specificity is achieved by timing and levels of
expression. For example, while many CC chemokines can
attract monocytes, only MCP-1 appears to be expressed at
high levels in the peritoneum in response to thioglycollate.
Thus, strategies designed to disrupt a single chemokine—
receptor pair may be beneficial. This will depend on dem-
onstrating an essential role for a specific chemokine in dis-
ease models, an approach that is now feasible using MCP-
1=/~ mice.
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