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Previously, we demonstrated that a submerged fermentation culture of Antrodia camphorata (AC) promotes cell-cycle arrest and
apoptosis in human estrogen receptor-positive/negative breast cancer cells. However, whether AC is effective against HER-2/neu-
overexpressing breast cancers has not been thoroughly elucidated. In the present study, we showed that AC exhibited a significant
cytotoxic effect against HER-2/neu-overexpressing MDA-MB-453 and BT-474 cells. Inmunoblot analysis demonstrated that HER-
2/neu and their tyrosine phosphorylation were inhibited by AC in a dose-dependent manner. An increase in intracellular reactive
oxygen species (ROS) was observed in AC-treated cells, whereas antioxidant N-acetylcysteine (NAC) significantly prevented AC
induced HER-2/neu depletion and cell death, which directly indicates that AC-induced HER-2/neu depletion and cell death was
mediated by ROS generation. Also, AC significantly downregulated the expression of cyclin D1, cyclin E, and CDK4 followed by
the suppression of PI3K/Akt, and their downstream effectors GSK-3f and f3-catenin. Notably, AC-treatment induced apoptotic cell
death, which was associated with sub-G1 accumulation, DNA fragmentation, mitochondrial dysfunction, cytochrome c release,
caspase-3/-9 activation, PARP degradation, and Bcl-2/Bax dysregulation. Assays for colony formation also confirmed the growth-
inhibitory effects of AC. This is the first report confirming the anticancer activity of this potentially beneficial mushroom against
human HER-2/neu-overexpressing breast cancers.

followed by treatment with drugs that exploit the hormone
dependence of these tumors, including aromatase inhibitors

Breast cancer is the most common cancer among women in
the Western world and is the second leading cause of cancer-
related death worldwide [1]. Sporadic breast cancer is the
most common solid tumor and kills nearly 40,000 women
per year in the United States alone [2]. The current treatment
of estrogen-receptor (ER-) positive tumors (>60% of breast
cancers) primarily relies on surgery to remove gross tumors

and antiestrogens such as tamoxifen [3]. However, those
drugs have a moderate effect against certain types of breast
cancer cells, such as HER-2/neu-overexpressing breast can-
cers.

The HER-2/neu protooncogene is the second member
of the epidermal growth factor receptor (HER, also known
as ErbB) family, which consists of four receptors: EGFR
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(HER-1/ErbB1), HER-2 (ErbB2), HER-3 (ErbB3), and HER-
4 (ErbB) [4]. More than 30% of breast cancers were found
to have HER-2/neu overexpression, which is considered a
negative prognostic factor and a predictive marker of resis-
tance to tamoxifen therapy. Aberrant activation of the HER-2
receptor is closely associated with the development and
severity of many cancers, including human breast cancers |5,
6]. HER-2/neu expression is associated with increased meta-
static potential and resistance to chemotherapeutic agents,
suggesting that the enhanced tyrosine kinase activity of HER-
2/neu may play a critical role in the initiation, progression,
and outcome of human breast tumors [7, 8]. Activation of
receptor tyrosine kinases (185kDa), which are transmem-
brane receptors with an intrinsic ability to phosphorylate
tyrosine residues in their cytoplasmic domains, such as PI3K
and Akt, results in the activation of nuclear transcription fac-
tors that induce cell growth and inhibit apoptosis [7]. There-
fore, targeting HER-2/neu has been the main focus in breast
cancer treatment, although the inhibition of HER-2/neu has
become an increasingly important therapeutic target for
human breast cancers.

Antrodia camphorata (AC), an indigenous medicinal
mushroom that is popularly known as “Niu Cheng Zhi” in
Taiwan, is a newly discovered basidiomycete of the family
Polyporaceae that only grows in the inner sap of the native
Taiwanese tree Cinnamomum kanehira Hay (Lauraceae) [9].
AC has been used in traditional Chinese medicine for the
treatment of food poisoning, drug intoxication, diarrhea,
abdominal pain, hypertension, skin irritation, and cancer
[10]. A wide range of biological activities have been ascribed
to AC, including anticancer, antioxidant, hepatoprotective,
antihypertensive, antihyperlipidemic, immunomodulatory,
and anti-inflammatory activities [11-13]. AC has low tox-
icity and is a nonmutagenic beneficial mushroom that ef-
ficiently reduces the risk of various cancers. Notably, AC has
been shown to inhibit antiproliferation and/or induce
apoptosis in hormone-dependent MCF-7 and hormone-
independent MDA-MB-231 breast carcinoma cell lines [13—
17]. However, MCE-7 and MDA-MB-231 express only basal
levels of HER-2/neu. In this study, we investigated the effec-
tiveness of the fermented broth of AC harvested from sub-
merged cultures against two human breast cancer cell lines
with high levels of HER-2/neu expression. We demonstrated
the AC-mediated growth inhibition and apoptotic induction
of HER-2/neu-overexpressing MDA-MB-453 and BT-474
cells through intracellular ROS generation, suppression of
the HER-2/neu signaling cascade, and disruption of the
PI3K/Akt-dependent pathway.

2. Materials and Methods

2.1.  Reagents. Dulbecco’s Modified Eagle’s medium
(DMEM), nutrient mixture F-12, fetal bovine serum (FBS),
glutamine, and penicillin/streptomycin were obtained from
GIBCO BRL (Grand Island, NY). 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT), N-acetyl-
cysteine (NAC), p-iodonitrotetrazolium violet, FITC, and
NH,CI were purchased from Sigma-Aldrich Chemical Co.
(St. Louis, MO). Antibodies against p-tyrosine, cyclin E,
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p27XIP p21€P " CDK1, CDK2, cytochrome ¢, Bcl-2, Bax,
PARP, and f-actin were purchased from Santa Cruz Bio-
technology, Inc. (Heidelberg, Germany). Antibodies against
HER-2/neu (p185), p-PI3K, PI3K, p-Akt, Akt, -catenin,
GSK-3p, caspase-3, caspase-9, cyclin D1, and CDK4 were ob-
tained from Cell Signaling Technology, Inc. (Danvers, MA).
4',6-diamidino-2-phenylindole dihydrochloride (DAPI) and
the Akt inhibitor LY294002 were purchased from Calbio-
chem (La Jolla, CA). The proteasome inhibitor MG132 was
purchased from Bio Vision, Inc. (Mountain View, CA). All
other chemicals were reagent grade or HPLC grade and were
supplied by either Merck & Co., Inc. (Darmstadt, Germany)
or by Sigma-Aldrich (St. Louis, MO).

2.2. Preparation of the Fermented Culture Broth of AC from
Submerged Cultures. The AC culture was inoculated onto
potato dextrose agar and incubated at 30°C for 15-20 days.
The whole colony was subsequently added to a flask con-
taining 50 mL sterile water. After homogenization, the frag-
mented mycelial suspension was used as an inoculum. The
seed culture was prepared in a 20L fermenter (BioTop)
agitated at 150 rpm with an aeration rate of 0.2 vvm at 30°C.
A five-day culture of 15 L mycelium inoculum was inoculated
into a 250 L agitated fermenter (BioTop). The fermentation
conditions were the same as those used for the seed fermen-
tation, but the aeration rate was 0.075 vvm. The fermentation
product was harvested at hour 331 and poured through a
nonwoven fabric on a 20-mesh sieve to separate the deep-red
fermented culture broth and the mycelia; the culture broth
was centrifuged thereafter at 3000 g for 10 min followed
by passage through a 0.22 ym filter. The culture broth was
concentrated under vacuum and freeze-dried to a powder.
The yield of dry matter from the culture broth was 18.4 g/L.
The experiments were performed with 2~4 different batches
of AC fermented culture [18]. To prepare the stock solution,
the powder samples were solubilized with DMEM containing
1% FBS (pH 7.4). The stock solution (1.6 mg/mL) was stored
at —20°C before its anticancer properties were evaluated. We
refer to the fermented culture broth of A. camphorata as AC
throughout the paper.

2.3. Cell Culture. The human breast cancer cell lines MDA-
MB-453 and BT-474, which endogenously overexpress the
HER-2/neu oncogenes, were used in this study. The cell lines
were obtained from the American Type Culture Collection
(ATCC, Manassas, VA), and cells were grown in DMEM/F12
supplemented with 10% heat-inactivated FBS, 2mM glu-
tamine, and 1% penicillin-streptomycin-neomycin at 37°C
in a humidified incubator with 5% CO,. Cultures were har-
vested and monitored for changes in cell number by counting
cell suspensions using a hemocytometer with a phase con-
trast microscope.

2.4. Cell Viability Assay. Cell viability was monitored by the
colorimetric MTT assay. Briefly, cells (2.5 x 10° cells/well in a
24-well plate) were treated with AC (40-240 ug/mL) for 24 h.
Next, 0.5mg/mL MTT in phosphate-buffered saline (PBS,
400 yL) was added to each well and incubated at 37°C for 4 h.
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The MTT-generated violet farmazan crystals were dissolved
in 10% SDS (400 uL/well), and the absorbance was measured
at 570 nm (Aso). Cell viability (%) was calculated as (As7 of
treated cells/As7q of untreated cells) x 100.

2.5. Determination of Apoptosis. Apoptotic cell death was
measured using terminal deoxynucleotidyl transferase-
mediated dUTP-fluorescein nick end-labeling (TUNEL)
with a fragmented DNA detection kit (Roche, Mannheim,
Germany). Cells (2 x 10* cells/well) were seeded on DMEM/
F-12 medium with 10% FBS in glass (eight-well) Tek cham-
bers (Nunc, Denmark) and treated with various concen-
trations of AC (40-240 ug/mL) for 24 h. After AC treatment,
cells were washed with PBS twice, fixed in 2% paraformalde-
hyde for 30 min, and permeabilized with 0.1% Triton X-100
for 30 min at room temperature. The cells were then incu-
bated with TUNEL reaction buffer in a 37°C humidified
chamber for 1h in the dark, rinsed twice with PBS, and
incubated with DAPI (1 mg/mL) at 37°C for 5min; stained
cells were visualized by fluorescence microscopy.

2.6. Western Blot Analysis. MDA-MB-453 or BT-474 cells
(1.5 x 10° cells/10 cm dish) were incubated with various con-
centrations of AC for 24 h. After incubation, the cells were
washed once in PBS, detached, pooled, and centrifuged
at 1500x g for 5min. The cell pellets were subsequently
suspended in 100 uL lysis buffer (10 mM Tris-HCI, pH 8.0,
320mM sucrose, 1% Triton X-100, 5mM EDTA, 2mM
dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride).
The suspensions were kept on ice for 20 min and centrifuged
at 15000 g for 30 min at 4°C. Total protein content was
determined with the Bio-Rad protein assay reagent (Bio-
Rad, Hercules, CA) using BSA as a standard. Protein extracts
were reconstituted in sample buffer (62 mM Tris-HCI, 2%
SDS, 10% glycerol, 5% [3-mercaptoethanol), and the mixture
was boiled at 97°C for 5 min. Equal amounts (50 ug) of dena-
tured protein samples were loaded into each lane, separated
by SDS-PAGE on an 8-15% polyacrylamide gradient gel and
transferred onto polyvinylidene difluoride membranes over-
night. The membranes were blocked with 5% nonfat dried
milk in PBS containing 1% Tween-20 for 1 h at room temper-
ature and subsequently incubated with primary antibodies
for 2h and either horseradish peroxidase-conjugated goat
anti-rabbit or anti-mouse antibodies overnight. Blots were
visualized on ImageQuant LAS 4000 mini (Fujifilm) system
with SuperSignal West Pico chemiluminescence substrate
(Thermo Scientific, IL).

2.7. Fluorescence Imaging of HER-2/neu. MDA-MB-453 and
BT-474 cells (2 x 10* cells/well) were cultured in DMEM/F-
12 medium with 10% FBS in glass eight-well Tek chambers.
After AC treatment, the cells were fixed in 2% paraformalde-
hyde for 15 min, permeabilized with 0.1% Triton X-100 for
10 min, washed and blocked with 10% FBS in PBS, and
incubated for 2 h with an anti-HER-2/neu primary antibody
in 1.5% FBS. The cells were subsequently incubated with a
FITC-conjugated secondary antibody for 1h in 6% bovine
serum albumin followed by staining with 1 yg/mL DAPI for

5 min. The stained cells were washed with PBS and visualized
using a fluorescence microscope at 400x magnification.

2.8. Colony Formation Assay. Anchorage-independent
growth was determined by colony formation in soft agar
[19]. The assay was performed in 6-well plates (1 x 10%
cells/well) with a base layer containing 0.5% agar in DMEM
containing 10% FBS, 1 mM glutamine, 100 units penicillin,
and 100 pg/mL streptomycin. This layer was overlaid with a
second layer of 1 mL 0.35% agar (in DMEM containing 10%
FBS, 1 mM glutamine, 100 units of penicillin, and 100 ug of
streptomycin) with a suspension of 1 x 10* cells/well. Fresh
medium with AC (40-240 yg/mL) was then added to the
plates every 72h. The plates were incubated at 37°C for 3
weeks, and the tumor colonies were analyzed with a micro-
scope. Colonies with a diameter greater than 0.2 mm were
counted.

2.9. Measurement of ROS Generation. Intracellular ROS
accumulation was detected by fluorescence microscopy with
2',7"-dihydrofluorescein-diacetate (DCFH-DA). Cells (1 X
10° cells/12 wells) were cultured in DMEM/F-12 supple-
mented with 10% FBS. To evaluate the generation of ROS in
a time-dependent manner, cells were treated with 160 ug/mL
AC for 0, 1, 5, 10, and 30 min. After treatment for the indi-
cated time points, the cells were then incubated with 10 uM
DCFH-DA in culture medium at 37°C for 30 min. The
acetate groups on DCFH-DA were removed by an intracel-
lular esterase, trapping the probe inside the MDA-MB-453
cells. After loading, the cells were washed with warm PBS
buffer. The production of ROS can be measured by changes
in fluorescence due to the intracellular accumulation of
dichlorofluorescein (DCF) caused by oxidation of DCFH.
Intracellular ROS, as indicated by DCF fluorescence, was
measured by fluorescence microscopy (Olympus 1 X 71 at
200x magnification).

2.10. Statistical Analysis. The results are presented as the
mean =+ standard deviation (mean + SD). All study data were
analyzed using analysis of variance followed by Dunnett’s
test for pairwise comparison. An asterisk indicates that the
experimental values are significantly different from those of
the control (*P < 0.05).

3. Results

3.1. AC Treatment Inhibits Proliferation of HER-2/neu-Over-
expressing Breast Cancer Cells. To evaluate the biological acti-
vity of AC in terms of cell proliferation, cells were treated
with various concentrations of AC for 24h. To varying
extents, a dose-dependent increase in the rate of growth inhi-
bition was observed with 40-320 yg/mL of AC (Figure 1).
AC treatment for 24 h resulted in a significant (P < 0.05)
cytotoxic effect on both HER-2/neu-overexpressing MDA-
MB-453 and BT-474 breast cancer cells with an ICsy of
220 and 240 pg/mL, respectively (Figures 1(a) and 1(b)). At
240 ug/mL for 24 h, AC inhibited >60% of growth in MDA-
MB-453 and >40% in BT-474 HER-2/neu-overexpressing
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FiGure 1: Inhibitory effect of AC on the proliferation of the HER-2/neu-overexpressing breast cancer cell lines MDA-MB-453 and BT-474.
After incubation with different concentrations of AC (40-320 ug/mL) at 37°C for 24 h, the effect on (a) MDA-MB-231 and (b) BT-474 cell
growth was examined by MTT assay. The number of viable cells after treatment is expressed as a percentage of the vehicle-only control, which
was arbitrarily assigned 100%. The results are presented as the mean + SD of three independent assays. * Significant difference in comparison

to the control group (P < 0.05).

breast cancer cells (Figures 1(a) and 1(b)). Therefore, treat-
ment of HER-2/neu-overexpressing breast cancer cells with
AC decreases their rate of proliferation.

3.2. AC Treatment Modulates HER-2/neu Protein Expression
through the Inhibition of Tyrosine Phosphorylation. Activa-
tion of the HER-2/neu network leads to autophosphorylation
of the C-terminal tyrosine and the recruitment to these sites
of cytoplasmic signal transducers that regulate cellular pro-
cesses, such as proliferation, inhibition of apoptosis, and
transformation. Therefore, we sought to examine whether
treatment with AC could reduce this basal tyrosine kinase
phosphorylation. MDA-MB-453 and BT-474 human breast
cancer cells were treated with 40, 80, 160, and 240 ug/mL
of AC for 24 h. The total cell lysates were isolated and sub-
jected to Western Blot analysis using HER-2/neu and phos-
photyrosine-specific HER-2/neu antibodies. As shown in
Figure 2(a), treatment of MDA-MB-453 and BT-474 cells
with 40-240 yg/mL AC for 24h resulted in a substantial
decrease in HER-2/neu tyrosine phosphorylation. AC treat-
ment similarly reduced basal HER-2/neu levels in both cell
lines (Figure 2(a)). Taken together, these findings indicate
that AC reduces the basal tyrosine kinase phosphorylation
and constitutive activation of HER-2/neu receptors in HER-
2/neu-overexpressing breast cancer cells.

To confirm the Western Blot data summarized in Figure
2(a), immunofluorescence images of HER-2/neu expression
were examined. Representative images of untreated MDA-
MB-453 and BT-474 cells compared with cells treated with
AC are shown in Figure 2(b). AC-treated cells exhibited lower
levels of immunofluorescence at the plasma membrane, and
fluorescence was replaced by diffuse cytoplasmic punctate
staining. At 160 yg/mL, AC caused a significant inhibition
(P < 0.05) and localization of membrane-bound HER-2/neu
in MDA-MB-453 and BT-474 cells (Figure 2(b)).

To delineate better the mechanism of AC-mediated HER-
2/neu downregulation, we examined the effect of AC on
HER-2/neu mRNA levels. When comparing protein and
mRNA levels, HER-2/neu protein levels decreased in a dose-
dependent manner after AC treatment, whereas HER-2/neu
mRNA levels in MDA-MB-453 and BT-474 cells were not
significantly decreased by AC treatment, even after 24 h (data
not shown). Moreover, addition of cycloheximide, a trans-
lation inhibitor, does not alter the effect of AC on the immu-
nofluorescence pattern of HER-2/neu protein levels (data not
shown), indicating that AC treatment did not affect HER-2/
neu mRNA levels or change the rate of de novo synthesis of
HER-2/neu. Taken together, the present data suggest that the
AC-associated reduction of HER-2/neu expression may not
involve a posttranscriptional mechanism.

3.3. AC Treatment Promotes HER-2/neu Proteasomal Degra-
dation in MDA-MB-453 Cells. To examine the role of prote-
olysis in AC-mediated HER-2/neu downregulation, we used
the proteasome inhibitor MG132 or the lysosome inhibitor
NH,CL. In the absence of MG132 or NH,Cl, AC treatment
significantly reduced HER-2/neu levels in the detergent (NP-
40)-soluble fractions (Figure 2(c)). Cotreatment with the
proteasome inhibitor MG-132 resulted in accumulation of
insoluble (aggregated) forms of Her-2/neu protein in cell
lysates (Figure 2(c)). Unlike MG-132, the lysosomal inhibitor
NH,CI did not prevent the downregulation of Her-2/neu
protein during treatment with AC. These data suggest that
proteasomal activity was critically involved in AC-induced
HER-2/neu degradation in human breast cancer MDA-MB-
453 cells.

3.4. AC-Induced Cell Death Was Mediated by Intracellular
ROS Generation. We have previously reported that AC treat-
ment caused ROS generation in human breast cancer MCF-7
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F1GURE 2: Inhibitory effect of AC on tyrosine phosphorylation and HER-2/neu depletion in HER-2/neu-overexpressing human breast cancer
cell lines. (a) MDA-MB-453 or BT-474 cells were incubated with or without AC (40-240 ug/mL) at 37°C for 6-24 h. Immunoblotting was
performed to measure levels of the HER-2/neu protein and tyrosine phosphorylation. The proteins (50 pg) in each sample were resolved
by 8-15% SDS-PAGE, with f-actin serving as a control. (b) Changes in the subcellular distribution of HER-2/neu after a 24-h exposure to
AC. MDA-MB-453 and BT-474 cells were grown on coverslips and treated with or without AC (40-240 yg/mL). Cells were fixed with 4%
paraformaldehyde and stained with a HER-2/neu antibody followed by a fluorescein isothiocyanate-conjugated secondary antibody (green).
The subcellular distribution was photographed by fluorescence microscopy. (c) MDA-MB-453 cells were pretreated with MG132 (5uM)
or NH,4CI (10 mM) for 30 min followed by AC (240 ug/mL) for 8 h, and the NP-40-soluble and NP-40-insoluble cell lysates were prepared
and assessed by immunoblotting with antibodies against HER-2/neu and f-actin. Relative changes in protein bands were measured using
densitometric analysis; the control was 1.0-fold, as shown immediately below the gel data. The results are presented as the mean + SD of
three independent experiments. *Significant difference in comparison to the control group (P < 0.05).

cells, which is proposed to be one of the early events in the ~ ROS accumulation in MDA-MB-453 cells. Incubation of cells
activation of apoptotic signaling. In this study, we also  with AC (160 ug/mL for 0, 1, 5, 10, 30, and 60 min) caused a
examined the involvement of AC in ROS generation in MDA-  significant increase in fluorescence, and the maximum level
MB-453 cells. Fluorescence microscopy with DCFH-DA asa  of ROS accumulation (P < 0.05) was observed at 5 min after
fluorescent probe was performed to estimate the intracellular ~ AC treatment (Figure 3(a)). To investigate further whether
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FIGURE 3: AC-induced ROS generation and its involvement in cell death. (a) MDA-MB-453 cells were treated with AC (160 ug/mL) for 0, 1,
5, 10, 30, and 60 min. The nonfluorescent cell-membrane-permeable probe DCFH-DA was added to the culture medium at a final concen-
tration of 10uM for 30 min before the end of each experiment. DCFH-DA penetrated the cells, reacted with cellular ROS, and was
metabolized into fluorescent DCE, as indicated by DCF fluorescence, which was measured by fluorescence microscopy (200x magnification).
The intracellular ROS level was expressed graphically as a relative fold increase of the control. (b)—(d) MDA-MB-453 cells were pretreated
with 2.5mM NAC, an antioxidant, for 1h followed by with or without AC (160 ug/mL) treatment and quantified intracellular ROS
generation (b), cell viability (c), and HER-2/neu and p-tyrosine protein levels (d). The photomicrographs shown in this figure are from
one representative experiment that was performed in triplicate with similar results. Each value is expressed as the mean = SD (n = 3).
*#Significant difference between the control and AC-treated group (P < 0.05).

AC-induced cell death could be linked to ROS generation,
N-acetylcysteine (NAC), a scavenger of ROS, was used in
MDA-MB-453 cells. Cells were simultaneously treated with
AC (160 ug/mL) and NAC (2.5mM) for 1h. As shown
in Figure 3(b), exposure of MDA-MB-453 cells to AC

(160 yug/mL) led to 3.7-fold and 5.2-fold increases in the
DCEF signal compared with control cells at 5 and 30 min,
respectively. NAC pretreatment significantly (P < 0.05) inhi-
bited the increase in DCF fluorescence by 2-fold at the
same time points (Figure 3(b)), which was concomitant with
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F1GURE 4: AC treatment suppressed the phosphorylation of PI3K/Akt and GSK-3/f-catenin in HER-2/neu-overexpressing breast cancer cell
lines. (a) MDA-MB-453, (b) BT-474, and (c) 2.5 mM NAC pretreated MDA-MB-453 cells were treated with or without AC (40-240 ug/mL)
for 24 h. The levels of phosphorylated PI3K (p-PI3K) and Akt (p-Akt, pSer 473 Akt) were evaluated using phosphorylated antibodies specific
to PI3K and Akt in an immunoblot analysis. The total PI3K and Akt levels were assessed as the loading control. The levels of indicated proteins
in the cell lysates were analyzed with specific antibodies, and the amount of $-actin was used as an internal control for sample loading. The
photomicrographs shown in this figure are from one representative experiment that was performed in triplicate with similar results. Relative
changes in protein bands were measured using densitometric analysis; the control was 1.0-fold, as shown immediately below the gel data.
The results are presented as the mean + SD of three assays. *Significant difference in comparison to the control group (P < 0.05).

the inhibition of AC-induced cell death in MDA-MB-453
cells (P < 0.05) (Figure 3(c)).

The results described above suggested that AC-induced
cell death was mediated by intracellular ROS generation in
MDA-MB-453 cells (Figure 3(c)). To confirm further the
effects of NAC on AC-induced ROS generation and cell
death in HER-2/neu-overexpressing breast cancer cells, the
protein levels of HER-2/neu were investigated. As shown in
Figure 3(d), AC (160 ug/mL for 24h) caused a significant
decrease in HER-2/neu and tyrosine phosphorylation levels
by 0.5-fold and 0.4-fold, respectively. However, pretreatment
of MDA-MB-453 cells with NAC for 1 h resulted in a signif-
icant protection against AC-induced HER-2/neu depletion,
as well as tyrosine phosphorylation (Figure 3(d)). Taken
together, NAC pretreatment downregulates AC-induced ROS
generation, cell viability, and HER-2/neu expression, which
was direct evidence that AC-induced cell death was mediated
by ROS generation and/or HER-2/neu inhibition.

3.5. AC Treatment Inhibited the Activation of PI3K/Akt in
HER-2/neu-Overexpressing Breast Cancer Cells. A key mech-
anism by which HER-2/neu-overexpression stimulates tumor
cell growth and renders cells chemoresistant involves the
HER-2/neu receptor. This mechanism involves the PI3K/Akt
signaling pathway, and human breast cancer cells with over-
expression and amplification of HER-2/neu have been shown
to make increased use of the PI3K/Akt signaling pathway [7].
We next sought to determine the involvement of HER-2/neu
in the activation of the PI3K/Akt signaling pathway in MDA-
MB-453 and BT-474 cell lines. AC treatment significantly
inhibited the phosphorylation of Akt in MDA-MB-453 HER-
2/neu-overexpressing breast cancer cells in a dose-dependent
manner (Figures 4(a) and 4(b)). In addition, we observed
that AC treatment significantly inhibited the expression
of the Akt upstream kinase, PI3K, in MDA-MB-453 cells
(Figure 4(a)). AC caused a similar dose-dependent reduction
in Akt phosphorylation in BT-474 cells, whereas the levels



of total Akt were unaffected by AC under the same treatment
conditions (Figure 4(b)). These data established that AC-
induced HER-2/neu depletion and growth inhibition may be
mediated by the inactivation of PI3K/Akt activity in HER-
2/neu-overexpressing breast cancer cells. In addition, pre-
treatment with NAC significantly augmented PI3K/Akt
expression, which was suppressed by AC in MDA-MB-453
cells (Figure 4(c)).

3.6. AC Treatment Downregulated GSK-3f3 and [-Catenin
Expression in HER-2/neu-Overexpressing Breast Cancer Cells.
When PI3K/Akt is active, a number of substrates are acti-
vated that involve apoptosis, cell-cycle regulation, and pro-
tein synthesis [7]. PI3K/Akt could potentially regulate cell-
cycle progression by phosphorylating and inactivating GSK-
33, thereby stabilizing nuclear translocation of 3-catenin and
increasing cyclin D1 and Cdk4 transcription [20]. In AC-
treated MDA-MD-453 cells, phosphorylated GSK-3p levels
decreased substantially, while total GSK-3p levels increased
(Figure 4(a)). This observation suggests that the treatment of
cells with AC augmented the activity of GSK-34. Levels of f3-
catenin, a key component of the Wnt signaling pathway that
is rapidly degraded via polyubiquitination upon phosphory-
lation by GSK-3, decreased substantially after AC treatment
(Figure 4(a)). In conclusion, our data demonstrated that AC
may inhibit cell proliferation and the induction of cell death
by suppressing GSK-3 and the f-catenin pathway in HER-
2/neu-overexpressing breast cancer cells.

3.7. AC Treatment Regulates Cell-Cycle Regulatory Proteins in
HER-2/neu-Overexpressing Breast Cancer Cells. To examine
the molecular mechanism(s) and underlying changes in cell-
cycle patterns caused by AC treatment, we investigated the
effects of various cyclins and Cdks involved in cell-cycle regu-
lation in MDA-MB-453 cells. AC treatment (40-240 yg/mL)
for 24 h caused a dose-dependent reduction of cyclin D1 and
cyclin E expression in HER-2/neu-overexpressing MDA-MB-
453 cells (Figure 5(a)). Cyclin D1 serves as the regulatory
subunit of Cdk4 and contributes to its stability. Therefore,
we assessed the effects of AC on Cdk expression; treatment
of MDA-MB-453 cells with AC resulted in a dose-dependent
decrease in Cdk4 expression (Figure 5(a)). Nevertheless,
there was no change in the Cdkl and Cdk2 protein levels
(Figure 5(a)). These results imply that AC inhibits cell-cycle
progression by reducing the levels of cyclin D1, cyclin E, and
Cdk4 in MDA-MB-453 cells. In addition, Akt may contribute
to the induction of cell-cycle progression by regulating the
Cdk inhibitors p27X"® and p21°™® [21]. Previous studies have
shown that the modulation of both p27X" and p21¢¥* is
required for oncogenic growth driven by HER-2 [22]. Both
p27X” and p21°™ protein levels increased dose-dependently
in response to AC treatment (Figure 5(a)). A similar pattern
of results were also observed in BT-474 cells; AC downregu-
lates cyclin D1 and upregulates p21©'? expression in a dose-
dependent fashion (Figure 5(b)).

3.8. AC Treatment Promoted Apoptotic Cell Death in HER-
2/neu-Overexpressing Breast Cancer Cells. A cell survival
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pathway involving PI3K/Akt is known to play an important
role in inhibiting apoptosis in HER-2/neu-overexpressing
breast cancer cells, which prompted us to examine whether
this pathway may play a role in AC-induced apoptosis.
Initially, to assess whether AC-induced cell death occurred
through apoptotic induction, the DNA fragmentation of an
apoptotic biomarker was examined by TUNEL assay. The
fragmented DNA was detected by 3'-OH end-labeling of
fragmented DNA with dUTP-fluorescein, and TUNEL-posi-
tive cells were counted as apoptotic cells. Figure 6(a) shows
the micrographs of characteristic populations of AC (40—
240 ug/mL for 24 h)-treated human breast cancer cells. AC
treatment initiated DNA fragmentation at 40 and 80 pug/mL
in MDA-MB-453 and BT-474 cells, respectively.

We further hypothesized that AC-induced apoptosis may
involve mitochondrial pathways. Therefore, mitochondria-
mediated apoptosis was evaluated by directly measuring the
release of mitochondrial cytochrome ¢ into the cytosol by
Western Blot analysis. AC significantly induced the aberrant
release of mitochondrial cytochrome ¢ into cytoplasm after
24 h of treatment (Figure 6(b)), while a decreased amount of
mitochondrial cytochrome ¢ was observed in the mitochon-
drial fraction, which was clear evidence that AC caused mito-
chondrial membrane damage. Cytochrome ¢ is reportedly
involved in the activation of caspases that trigger apoptosis
[15]. Therefore, we investigated the role of caspase-9 and -3
in the cellular response to AC. Immunoblotting showed
that treatment of MDA-MB-453 cells with AC significantly
induced the proteolytic cleavage of procaspase-9 and -3 into
their active forms (Figure 6(b)). PARP-specific proteolytic
cleavage by caspase-3 is considered a biochemical charac-
teristic of MDA-MB-453 cells (Figure 6(b)). Incubation of
MDA-MB-453 cells with AC caused a dramatic reduction in
the level of the antiapoptotic protein Bcl-2 and increased the
level of the proapoptotic Bax protein, which heterodimerizes
with Bcl-2 to inhibit Bcl-2 activity (Figure 6(b)). These
results strongly indicate that AC treatment induced apoptosis
through the dysregulation of Bax/Bcl-2. Notably similar
results were obtained in the BT-474 human breast cancer cell
line in which AC eventually induces apoptosis as evidenced
by DNA fragmentation (Figure 6(a)). Furthermore, the
AC-induced apoptosis in BT-474 cells was tightly associated
with the activation of caspase-9 and -3, and PARP cleavage
(Figure 6(c)). AC treatment also resulted in the dysregulation
of the Bcl-2/Bax ratio in BT-474 cells (Figure 6(c)). There-
fore, we believe that the induction of apoptosis could be a
major mechanism of AC-induced growth inhibition in HER-
2/neu-overexpressing breast cancer cells.

3.9. AC Treatment Inhibited Anchorage-Independent Growth
of HER-2/neu-Overexpressing Breast Cancer Cells. Previous
studies demonstrated that human breast cancer cells in which
HER-2/neu is overexpressed and activated have an increased
requirement for a PI3K/Akt-mediated signaling pathway for
anchorage-independent growth [7]. We determined whether
AC affected anchorage-independent colony growth in soft
agar, a property of transformed and tumor cells that is closely
correlated with tumorigenesis in vivo. Colony formation
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F1GURE 5: AC altered cell-cycle regulatory proteins in HER-2/neu-overexpressing breast cancer cells. (a) MDA-MB-453 and (b) BT-474 cells
were treated with or without AC (40-240 ug/mL) for 24 h. Cyclin D1, cyclin E, p21¢®, p27X?, Cdk1, Cdk2, Cdk4, and -actin protein levels in
MDA-MB-453 cells and cyclin D1, p21'?, and S-actin protein levels in BT-474 cells were analyzed by immunoblotting. The proteins (50 yg)
in each sample were resolved by 8-15% SDS-PAGE. Relative changes in protein bands were measured by densitometric analysis in which
the control was 1.0-fold, as shown immediately below the gel data. The photomicrographs shown in this figure are from one representative

experiment that was performed in triplicate with similar results.

of MDA-MB-453 cells, which are known to overexpress HER-
2/neu, was significantly (P < 0.05) suppressed (60—70%) by
AC relative to the control (Figure 7). Reductions in colony
number were accompanied by a reduction in colony size
in MDA-MB-453 cells. Therefore, the data indicate that AC
treatment suppressed the transformation ability of HER-
2/neu-overexpressing breast cancer cells.

4. Discussion

Our previous studies have shown that Antrodia camphorata
(AC), an indigenous medicinal mushroom, promoted cell-
cycle arrest and apoptosis in human estrogen-responsive
MCEF-7 and estrogen-nonresponsive MDA-MB-231 breast
cancer cells in vitro and in vivo and that both of these cell lines

express basal levels of HER-2/neu [13-16, 23]. These effects
were only observed in breast cancer cells and not in healthy
HBL100 breast cells [24]. This finding indicated that the AC
was differentially cytotoxic toward different breast cancer
cell lines without exerting harmful effects on normal cells at
higher concentrations.

In this study, AC-mediated inhibition of cell proliferation
and induction of apoptosis was observed in HER-2/neu-
overexpressing human breast cancer cells. We showed that
AC treatment efficiently inhibited the growth of MDA-
MB-453 and BT-474 cells with an ICsy value of 220 and
240 pg/ mL, respectively. We also demonstrated that exposure
of the HER-2/neu-overexpressing breast cancer cells to AC
resulted in the induction of apoptotic cell death mediated by
ROS generation, HER-2/neu depletion, and downregulation
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FiGure 6: AC induced apoptosis in HER-2/neu-overexpressing breast cancer cells. (a) TUNEL assay of MDA-MB-453 and BT-474 cells
exposed to AC (40-240 ug/mL for 24 h). The average number of apoptosis-positive cells in microscopic fields (magnification x400) from
three separate samples. (b) Western Blot analysis of apoptosis-related proteins in breast cancer cells exposed to AC (40-240 ug/mL for 24 h).
The effects of AC on the protein levels of procaspase-3 and -9, PARP, Bcl-2, Bax, and mitochondrial and cytosolic cytochrome ¢ in MDA-
MB-453 cells; (c) procaspase-3 and -9, PARP, Bcl-2, and Bax in BT-474 cells. The proteins (50 ug) in each sample were resolved by 8-15%
SDS-PAGE with f-actin as a control. Relative changes in protein bands were measured by densitometric analysis in which the control was
1.0-fold, as shown immediately below the gel data. The photomicrographs shown here are from one representative experiment repeated two

times with similar results.

of PI3K/Akt signaling cascades. These data indicate that the
beneficial mushroom may be used as a possible chemo-
preventive or chemotherapeutic agent against human breast
cancers.

Overexpression of human epidermal growth factor
receptor-2 (HER-2/neu), a 185-kDa transmembrane kinase,
was frequently observed in breast cancer cells and has a poor
clinical diagnosis. Indeed, agents that reduce HER-2/neu
activity may be a potential target for breast cancer treatment.
Among positive regulators of proliferation, HER-2/neu was
found to be a complement protooncogene that regulates
tumor progression in a variety of human cancers, includ-
ing breast cancer. Depletion of HER-2/neu in HER-2/neu-
overexpressing human breast cancer cells arrested cell proli-
feration and activated apoptosis [7]. Trastuzumab (Hercept-
in), a humanized antibody that targets the extracellular
domain of HER-2/neu, has become a commercialized drug
for the treatment of HER-2/neu-overexpressing early-stage
and metastatic breast cancers. However, when used as a single
agent, trastuzumab is beneficial only in 15-30% of HER-
2/neu breast cancer patients, which can be significantly
increased to 50-80% by the addition of chemotherapeutic
drugs [25]. The major observation reported in this study is
that AC treatment effectively downregulates HER-2/neu pro-
tein expression in HER-2/neu-overexpressing MDA-MB-453
and BT-474 human breast cancer cells. It has been previously

reported that quercetin, a tyrosine kinase inhibitor, eventu-
ally blocked HER-2/neu expression by inhibiting the phos-
phorylation of tyrosine kinase in HER-2/neu-overexpressing
SK-Br3 breast cancer cells [8]. AC, which has also been
reported to be a transmembrane tyrosine kinase inhibitor
[26], inhibits the tyrosine kinase activity of HER-2/neu and
induces HER-2/neu degradation by the proteasome when
inhibition of protein degradation by MG-132 leads to the
accumulation of the NP-40-insoluble form of HER-2/neu.
AC-induced growth inhibition increases the susceptibility of
HER-2/neu-overexpressing cancer cells. These data indicated
that AC may be a promising anticancer agent for human
breast cancers.

Many anticancer drugs have been suggested to generate
ROS by causing oxidative stress and induce apoptosis in
cancer cells, while many inhibitors of apoptosis have anti-
oxidant activity [27]. Indeed, factors that cause or promote
oxidative stress, such as ROS production, lipid peroxidation
and the downregulation of antioxidant genes, which is
characterized by reduced glutathione levels and the reduced
transcription of superoxide dismutase, catalase, and thiore-
doxin, have been shown to be involved in apoptotic processes
[27]. Moreover, ROS have also been reported to regulate the
activity of certain enzymes involved in the cell-death pathway
by inducing mitochondrial dysfunction [28]. The results are
consistent with the finding of this study that AC induced
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FIGURe 7: AC inhibits anchorage-independent growth of breast
cancer cells. MDA-MB-453 cells were assayed for their ability to pro-
liferate and form colonies in soft agar. Cells were seeded onto 6 cm
dishes in culture medium containing 0.35% low-melting agarose
over a 0.7% agarose layer in the presence of AC (40-240 ug/mL)
or vehicle control (PBS) and incubated for 3 weeks at 37°C. The
numbers of colonies >200ym in size were counted (at a 40x
magnification). Colonies were subsequently stained with p-iodoni-
trotetrazolium violet (1 mg/mL), and colonies larger than 200 ym
were counted. The percentage colony formation was calculated by
defining the number of colonies in the absence of AC as 100%. The
results are presented as the mean + SD of three independent assays.
*Significant difference in comparison to the control group (P <
0.05).

growth inhibition and ROS generation in HER-2/neu over-
expressing breast cancer cells, indicating that ROS produc-
tion was probably the major cause of cell death. Also, ROS
serve as modulators of proteins, lipid kinases, phosphates,
membrane receptors, and transcription factors [29]. Also,
ROS generation activates tyrosine kinase by generating
growth factors through the cleavage of matrix metallo-
proteinase [29]. By contrast, AC-induced ROS generation
significantly inhibited HER-2/neu receptor tyrosine phos-
phorylation, as evidenced by the inhibition of endogenous
HER-2/neu receptor tyrosine kinase phosphorylation by AC
treatment. Pharmacologically or genetically blocking ROS
generation with the antioxidant NAC significantly prevented
AC-induced HER-2/neu degradation and tyrosine phospho-
rylation, which was followed by cell growth inhibition.
Previous studies demonstrated that the dysregulation of
the PI3K/Akt signaling pathway leads to cancer progression
[30]. The PI3K/Akt signaling pathway and its downstream
transcription factors have been studied in detail to determine
their role in cell proliferation, survival, cell-cycle control, and
other cellular functions [31]. In numerous cell types, PI3K/
Akt induces survival and suppresses apoptosis induced by a
variety of stimuli, including growth-factor withdrawal and
loss of cell adhesion [32]. Zheng et al. reported that the over-
expression of the HER-2/neu gene can activate the PI3K/ Akt
pathway without exogenous ligand stimulation, and PI3K/
Akt pathway activation was also reported to delay apoptosis
[33]. We found that treatment with AC had an inhibitory
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effect on the steady-state levels of total PI3K protein, and
its downstream effector, Akt phosphorylation, was inhibited,
indicating that the disruption of Akt signaling/Akt inacti-
vation plays a functional role in AC-mediated apoptosis in
HER-2/neu-overexpressing breast cancer cells. Our present
data also suggested that AC-mediated inhibition of cyclin
DI1/E is directly proportional to the suppression of HER-
2/neu and PI3K/Akt in human breast cancer cells. Taken
together, these results suggest that HER-2/neu may regulate
cellular cyclin D1/E via the PI3K/Akt pathway, implying that
PI3K/Akt signaling predominantly contributes to cell-cycle
progression.

In the present study, we also demonstrated that AC
treatment remarkably downregulates -catenin expression
through the upregulation of its negative regulator, GSK-3p.
The AC-induced increase in GSK-3 may contribute to its
effects on Wnt/f3-catenin pathway inhibition. Akt kinase has
been shown to phosphorylate several key substrates that reg-
ulate protein translation [34] and the phosphorylation of
its substrate, GSK-3f, and nuclear S-catenin stabilization
and increased cyclin D1 transcription were demonstrated in
MDA-MB-453 cells [7]. GSK-3f acts as a key element in the
Wnt/f-catenin signaling pathway by dictating cell fate during
embryogenesis and tumorigenesis [35]. The Wnt/S-catenin
signaling pathway has been shown to play an important role
in the regulation of cyclin D1, which plays a crucial role in
cell-cycle regulation and progression in a variety of tumor
cells [20]. The two genes with particular significance for
breast cancer are HER-2/neu (erbB2) and cyclin D1. Both
genes have prognostic significance because they are fre-
quently overexpressed and implicated in experimental mod-
els of breast cancer [22]. Recent studies clearly described that
the interactions between HER-2/neu and cyclin D1 appear
to have therapeutic relevance because several phytochemical
or synthetic drugs reduced cyclin D expression through the
inhibition of HER-2/neu, and the anti-HER-2/neu mono-
clonal antibody trastuzumab (Herceptin) reduces cyclin D1
protein levels in human breast cancer cells [36, 37]. In addi-
tion, our results demonstrated that AC treatment signifi-
cantly inhibited MDA-M-453 proliferation, which was asso-
ciated with the suppression of GSK-3p and f3-catenin expres-
sion and decreased their transcriptional targets, including
cyclin D1 and Cdk4.

Eukaryotic cell-cycle progression is coordinated by the
sequential activation of Cdks (cyclin-dependent kinases),
the activation of which is dependent upon association with
cyclins. Our study proposed that the marked reduction of
cyclin D1 levels observed upon the inhibition of Cdk4 fol-
lowed by HER-2/neu supports a critical role for this Cdk4 in
HER-2/neu-mediated cell-cycle progression. The treatment
of HER-2/neu-overexpressing breast cancer cells with AC
downregulated Cdk4 without altering the Cdk1/2 protein.
Based on these results, we believe that AC-induced growth
inhibition occurred in the G1-S phase transition. A notably
similar result was observed in basal HER-2/neu-expressing
cell lines, such as MCF-7 and MDA-MB-231 [14, 16]. Cell-
cycle progression is also regulated by the relative balance
between the cellular concentrations of Cdk inhibitors,
including p27XP! and p21WAFL [16]. In fact, p27XP! was
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originally identified in cells arrested by transforming growth
factor-B. Subsequent studies showed that p27XiP! is a typical
Cdk inhibitor and a potential tumor suppressor gene [38].
Previous investigations demonstrated that the downregu-
lation of p27XiP! protein is frequently observed in human
cancers, including breast, lung, prostate, gastric, skin, colon,
and ovarian cancer, and is usually correlated with poor clin-
ical outcome [15]. Recent studies revealed that HER-2/neu
induces the downregulation of p27XiP! vig two independent
molecular mechanisms [23, 39]. HER-2/neu acted through
Akt and GSK-3p to reduce p27XiP! protein levels. GSK-3f
may phosphorylate cyclin D1 and induce the degradation
of the p27XiP! protein. The activation of Akt by HER-2/neu
inhibits GSK-3f activity and increases the formation of the
cyclin D1/Cdk4 complex, which may sequester p27Xi®! in the
cytoplasm to enhance its turnover [15]. Also, p21WAF! has
been shown to function as an apoptosis-promoting protein,
and the mechanisms by which p21WAF! promote apoptosis
may be related to its interaction with the DNA repair
machinery [40]. Results from the present study showed that
the protein expression levels of p27¥iP! and p21WA! are dose-
dependently augmented, whereas cyclin D/Cdk4 levels were
inhibited by AC treatment. Taken together, we believed that
the inhibition of cyclin D/Cdk4 activity may be associated
with the augmentation of p27KiP1/p21WAF1 In addition, we
hypothesized that the induction of apoptosis may also be
mediated by the activation of p27XiP!/p21WAF However, the
role of p21WAF! in apoptosis remains controversial and merits
further investigation.

Apoptosis-inducing agents are being investigated as tools
for the management of cancer treatment. Apoptosis is char-
acterized by a number of well-defined features, including cel-
lular morphological changes, chromatin condensation, inter-
nucleosomal DNA cleavage and the activation of a family
of cysteine-aspartic acid proteases (caspases) [41]. In the
present study, TUNEL assays demonstrated that treatment of
MDA-MB-453 and BT-474 cells with AC markedly induced
apoptotic cell death associated with internucleosomal DNA
fragmentation. Cells undergoing apoptosis were found to
have elevated levels of cytochrome ¢ in the cytosol with a
corresponding decrease in the mitochondria [14]. Cytosolic
cytochrome ¢ activates procaspase-9 by binding to Apafl in
the presence of dATP, leading to the activation of caspase-9
and, subsequently, downstream effector caspases (including
caspase-3), triggering apoptosis [42]. In mammalian cells,
the Bcl-2 gene family contains a number of antiapoptotic
proteins, including Bcl-2 and Bcl-xL, which is thought to
be involved in resistance to conventional cancer treatment.
However, proapoptotic proteins from the same gene family,
including Bax, can critically induce apoptotic cell death.
Therefore, apoptosis largely depends on the balance between
antiapoptotic and proapoptotic protein levels [43]. We have
previously demonstrated that the induction of apoptosis by
AC in human breast cancers is associated with Bax protein
expression [14, 15]. Similarly, the present study indicates a
dose-dependent inhibition of the antiapoptotic protein Bcl-2
and a concomitant increase in the expression of the proapop-
totic protein Bax. These data indicate that AC treatment
disturbs the Bcl-2/Bax ratio and thereby leads to apoptosis
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of HER-2/neu-overexpressing breast cancer cells. Therefore,
we strongly suggest that AC may enhance susceptibility to
apoptosis in HER-2/neu-overexpressing breast cancer cells.

Anchorage-independent growth is a characteristic of
many tumor cells that distinguishes them from their normal
counterparts [44]. In stratifying normal epithelium, prolifer-
ation is largely confined to the basal layer of cells attached to
the basement membrane, which undergo terminal differenti-
ation as they move to the suprabasal layers [45]. This anchor-
age-dependent growth requires integrin-mediated signaling
generated by cellular contact with extracellular matrix lig-
ands [46]. Normal cells, especially epithelial cells, undergo
apoptosis if they become detached from their underlying or
pericellular matrices, which are a process sometimes, termed
anoikis [44]. By contrast, many tumor and transformed
cells have escaped this requirement for survival and growth.
Moreover, the ability of HER-2/neu-overexpressing breast
cancer cells to grow in an anchorage-independent manner
has been linked to elevation of the PI3K/Akt cell survival
pathway [47]. In this study, we found that AC decreased
MDA-MB-453 cell proliferation and markedly reduced their
capacity to form colonies in soft agar. The loss of anchorage-
independent growth of HER-2/neu-overexpressing breast
cancer cells treated with AC indicates that these cells may
have reverted to a less transformed phenotype. This inhibi-
tion may also be mediated by the reduction of PI3K/Akt
activation.

There is a growing body of evidence that the compounds
identified from AC are predominantly polysaccharides, trit-
erpenoids, steroids, benzenoids, and maleic/succinic acid
derivatives [11-13]. The reported yields of polysaccharides,
crude triterpenoids, and total polyphenols in the fermented
AC broth were 23.2 mg/g, 47 mg/g, and 67 mg/g, respectively,
whereas no polysaccharides, crude triterpenoids, or polyphe-
nols were detected in the dry matter of the culture medium
[18]. Yeh et al. demonstrated that five lanostanes (dehydroe-
buricoic acid, 15a-acetyl dehydrosulfurenic acid, 24-triene-
21-oic acid, dehydrosulfurenic acid, and sulfurenic acid) and
three ergostane-type triterpenes (zhankuic acid, zhankuic
acid-A, and zhankuic acid-C) isolated from fruiting bodies
of AC exhibit in vitro antiproliferative effects against various
cancer cell lines, including MDA-MB-231 [48]. Zhankuic
acid and sulfurenic acid had significant cytotoxic effects
in the human breast cancer cells MDA-MB-231 and MCEF-
7, with ICsg values of 25.1 and 89.2 and 57.8 and
357.0 uM, respectively, being observed [48]. Antroquinonol,
an ubiquinone derivative that was isolated from the solid-
state fermented mycelium of AC, exhibits a cytotoxic effect
against MDA-MB-231 and MCF-7 human breast cancer cells
with an ICsy of 2.64 and 2.1 uM, respectively [49]. Fur-
thermore, chloroform extracts of the fruiting bodies of AC
significantly inhibited the growth of human breast cancer
(MCEF-7) cells with an ICsy of 65uM [50]. A notably simi-
lar result was obtained with another pure compound, antro-
cin, which was isolated from the fruiting bodies of AC and
exhibited the highest antiproliferative effect against MDA-
MB-231 and MCEF-7 cells [17]. Notably, nontumorigenic
breast epithelial MCF-10A cells were not affected by antro-
cin treatment. Previous studies have shown that naturally
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derived phytocompounds downregulate HER-2/neu expres-
sion at both the transcriptional and translational levels,
eventually suppressing tumor growth and dissemination [7,
8]. In this study, we demonstrated that the fermented culture
broth of AC exhibited significant growth inhibition that
was followed by the inhibition of HER-2/neu and tyrosine
phosphorylation in HER-2/neu-overexpression breast cancer
cells. It is reasonable to suggest, therefore, that AC metab-
olizes the culture medium and releases active components
during fermentation by submerged culture. Further bio-
assay-directed fractionations leading to the identification
and purification of the compounds responsible for the anti-
breast-cancer effect of AC are warranted.

In this study, we proposed that AC induced cellular
effects resulting from ROS generation and loss of HER-2/neu
expression with subsequent inactivation of PI3K and Akt in
cells that are dependent on this pathway for cell proliferation
and inhibition of apoptosis. Our results also highlight the
importance of HER-2/neu or PI3K/Akt components, includ-
ing GSK-3f, B-catenin, cyclin D1, Cdk4, p21WAFl, and
p27XP1 which may serve as future targets for the develop-
ment of therapeutic strategies against HER-2/neu-overex-
pressing breast cancer. To the best of our knowledge, this is
the first study to focus on the effect of Antrodia camphorata
on HER-2/neu signaling components in breast cancer. The
inhibition of cell proliferation and induction of apoptosis in
HER-2/neu-overexpressing breast cancer cells upon Antrodia
camphorata administration provides a new strategy for breast
cancer treatment. However, in vivo studies are needed to
confirm the pharmacological efficacy and safety of Antrodia
camphorata.
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