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MESSAGE
In this study, we aimed to develop an artificial 
intelligence clinical decision support solution to 
mitigate operator- dependent limitations during complex 
endoscopic procedures such as endoscopic submucosal 
dissection and peroral endoscopic myotomy, for example, 
bleeding and perforation. A DeepLabv3- based model 
was trained to delineate vessels, tissue structures and 
instruments on endoscopic still images from such 
procedures. The mean cross- validated Intersection over 
Union and Dice Score were 63% and 76%, respectively. 
Applied to standardised video clips from third- space 
endoscopic procedures, the algorithm showed a mean 
vessel detection rate of 85% with a false- positive rate 
of 0.75/min. These performance statistics suggest a 
potential clinical benefit for procedure safety, time and 
also training.

IN MORE DETAIL
Endoscopic submucosal dissection (ESD) is an estab-
lished organ- sparing curative endoscopic resection 
technique for premalignant and superficially inva-
sive neoplasms of the GI tract.1 2 However, ESD and 
peroral endoscopic myotomy (POEM) are complex 
procedures with an elevated risk of operator- 
dependent adverse events, specifically intrapro-
cedural bleeding and perforation. This is due to 
inadvertent transection through submucosal vessels 
or into the muscularis propria, as visualisation and 
cutting trajectory within the expanding resection 
defect is not always apparent.3 4 An effective miti-
gating strategy for intraprocedural adverse events 
has yet to be developed.

Artificial intelligence clinical decision support 
solution (AI- CDSS) has rapidly proliferated 
throughout diagnostic endoscopy.5–7 We there-
fore sought to develop a novel AI- CDSS for real- 
time intraprocedural detection and delineation of 
vessels, tissue structures and instruments during 
ESD and POEM.8

Sixteen full- length videos of 12 ESD and 4 POEM 
procedures using Olympus EVIS X1 series endo-
scopes (Olympus, Tokyo, Japan) were extracted 
from the Augsburg University Hospital database. A 
total of 2012 still images from these videos were 
annotated by minimally invasive tissue resection 
experts (ESD experience ≥500 procedures) using 
the computer vision annotation tool for the cate-
gories electrosurgical knife, endoscopic instrument, 

submucosal layer, muscle layer and blood vessel. 
A DeepLabv3+ neural network architecture with 
KSAC9 and a 101- layer ResNeSt backbone10 (online 
supplemental methods) was trained with these data. 
The performance of the algorithm was measured in 
an internal fivefold cross validation, as well as a test 
on 453 annotated images from 11 separate videos 
using the parameters Intersection over Union (IoU), 
Dice Score and pixel accuracy (online supplemental 
methods). The IoU and Dice Score measure the 
percentual overlap between the algorithm’s delin-
eation and the gold standard. The pixel accuracy 
measures the percentage of true pixel predictions 
per image and over all classes. The validation 
metrics were calculated by accumulating the per- 
fold outputs. The cross validation was done without 
hyperparameter tuning.

Three further full- length videos (1× POEM, 1× 
rectal ESD and 1× oesophageal ESD) were used for 
an evaluation of the algorithm on video. Thirty- one 
clips with 52 predefined vessels (online supple-
mental methods) were evaluated frame by frame 
with artificial intelligence (AI) overlay for true and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Recently, artificial intelligence (AI) tools 
have been developed for clinical decision 
support in diagnostic endoscopy, but so far, no 
algorithm has been introduced for therapeutic 
interventions.

WHAT THIS STUDY ADDS
 ⇒ Considering the elevated risk of bleeding and 
perforation during endoscopic submucosal 
dissection and peroral endoscopic myotomy, 
there is an apparent need for innovation and 
research into AI guidance in order to minimise 
operator- dependent complications. In this study, 
we developed a deep learning algorithm for the 
real- time detection and delineation of relevant 
structures during third- space endoscopy.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ This new technology shows great promise for 
achieving higher procedure safety and speed. 
Future research may further expand the scope 
of AI applications in GI endoscopy.

http://www.bsg.org.uk/
http://gut.bmj.com/
http://orcid.org/0000-0001-7765-035X
http://orcid.org/0000-0002-2255-7032
http://orcid.org/0000-0002-4536-0515
http://orcid.org/0000-0002-8745-8510
http://dx.doi.org/10.1136/gutjnl-2021-326470
http://dx.doi.org/10.1136/gutjnl-2021-326470
http://crossmark.crossref.org/dialog/?doi=10.1136/gutjnl-2021-326470&domain=pdf&date_stamp=2022-010-25
https://dx.doi.org/10.1136/gutjnl-2021-326470
https://dx.doi.org/10.1136/gutjnl-2021-326470
https://dx.doi.org/10.1136/gutjnl-2021-326470
https://dx.doi.org/10.1136/gutjnl-2021-326470
https://dx.doi.org/10.1136/gutjnl-2021-326470
https://dx.doi.org/10.1136/gutjnl-2021-326470


2389Ebigbo A, et al. Gut 2022;71:2388–2390. doi:10.1136/gutjnl-2021-326470

Endoscopy news

false vessel detection, and a vessel detection rate (VDR) was 
determined.

The cross- validated mean IoU, mean Dice Score and pixel 
accuracy were 63%, 76% and 81%, respectively. On the test 
set, the AI- CDSS achieved scores of 68%, 80% and 87% for the 
same parameters. The individual per class values and 95% CIs 
are shown in table 1. Examples of the original frames, expert 
annotations and AI segmentations are shown in figure 1.

The mean VDR was 85%. The VDR for rectal ESD, oesopha-
geal ESD and POEM were 70%, 95% and 92%, respectively. The 
mean false- positive rate was 0.75 /min. The algorithm spotted 
seven out of nine vessels, which caused intraprocedural bleeding. 
It also recognised the two vessels which required specific haemo-
stasis by haemostatic forceps for major bleeding.

To demonstrate the performance of the AI- CDSS without 
computing quantitative performance measures, we show an 
example of an internal POEM procedure with AI overlay. For 
visualisation of the experiment, we show six video clips, which 

were used for the evaluation of VDR in the same video (2× 
POEM, 2× rectal ESD and 2× oesophageal ESD; online supple-
mental video 1). For a test in robustness, the algorithm was also 
applied to a randomly selected highly compressed YouTube video 
of a gastric per- oral endoscopic myotomy procedure (ENDO-
CLUNORD 2020, https://www.youtube.com/watch?v=VKF-
HWOzYDGM; online supplemental video 2). The individual 
output is the result of an exponential moving average between 
the current and past predictions which smoothes the predictions 
and is a simple way to include temporal information.

COMMENTS
This preliminary study aims at investigating the potential role 
of AI during therapeutic endoscopic procedures such as ESD or 
POEM. The algorithm delineated tissue structures, vessels and 
instruments in frames taken from endoscopic videos with a high 
overlap to the gold standard provided by expert endoscopists. 
Analogous technology11 has been demonstrated for application 
in laparoscopic cholecystectomy to differentiate between safe 
and dangerous zones of dissection with a mean IoU of 53% and 
71%, respectively.

On video clips with standardised and predefined vessels, the 
algorithm showed a VDR of 85%. The lower performance of 
70% in rectal ESD compared with excellent detection of over 
90% in oesophageal ESD and POEM might be explainable by 
poorer visualisation of the structures and more intraprocedural 
bleeding, which is in agreement with clinical experience.

Numerous preclinical and clinical studies on AI in GI endos-
copy have been published, but until now, the application of AI 
has been limited largely to diagnostic procedures such as the 
detection of polyps or the characterisation of unclear lesions. In 
abdominal surgery, AI has been applied with promising results 
for various tasks, including the detection of surgical instru-
ments, image guidance, navigation and skill assessment (‘smart 
surgery’).12 The results of this study suggest that AI may have 
the potential to optimise complex endoscopic procedures such 
as ESD or POEM in analogy to the mentioned research (‘smart 
ESD’). By highlighting submucosal vessels and other tissue struc-
tures, such as the submucosal cutting plane, therapeutic proce-
dures could become faster and burdened with fewer adverse 
events such as intraprocedural or postprocedural bleeding and 

Table 1 Performance results of the AI- CDSS in the internal cross validation and the test data set: IoU and Dice Score for all categories as well as 
their means across all categories, pixel accuracy for complete frames and 95% CI in brackets

Internal cross validation

  Vessel detection Tissue differentiation Instrument detection

  Vessel Submucosa Muscularis Background Instrument Knife Mean

Dice Score 55.15
(54.10 to 56.18)

75.51
(74.88 to 76.12)

70.64
(69.32 to 71.88)

86.49
(85.99 to 86.99)

88.69
(87.57 to 89.83)

80.60
(79.61 to 81.49)

76.18
(75.73 to 76.57)

IoU 38.07
(37.08 to 39.07)

60.65
(59.85 to 61.44)

54.60
(53.05 to 56.10)

76.19
(75.43 to 76.98)

79.68
(77.89 to 81.54)

67.51
(66.13 to 68.77)

62.78
(62.18 to 63.31)

Pixel accuracy 80.99
(80.52 to 81.47)

Test

Dice Score 62.77
(60.08 to 65.12)

80.71
(79.50 to 81.82)

72.48
(69.40 to 74.99)

91.39
(90.45 to 92.10)

89.69
(87.09 to 91.96)

83.50
(82.06 to 84.87)

80.09
(79.14 to 80.92)

IoU 45.74
(42.94 to 48.28)

67.65
(65.97 to 69.24)

56.84
(53.14 to 59.99)

84.14
(82.56 to 85.36)

81.30
(77.14 to 85.11)

71.67
(69.58 to 73.72)

67.89
(66.61 to 69.04)

Pixel accuracy 86.89
(85.86 to 87.70)

AI- CDSS, artificial intelligence clinical decision support solution.

Figure 1 Examples of original images (left column) with 
corresponding expert annotations (middle column) and AI 
segmentations (right column). The muscle layer, submucosa, vessels and 
knife are segmented with a coloured overlay.
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perforation. In the future, AI assistance may have the potential 
to accelerate the learning curve of trainees in endoscopy.

The major limitation of this study is the small number of 
videos used for training and validation; however, every video 
contained a complete therapeutic ESD procedure with a full 
range of procedural situations. The study is further limited by 
the fact that the algorithm was not yet tested in a real- life setting. 
However, the AI model was tested on externally generated video 
sequences and was able to recognise submucosal vessels and the 
cutting plane. Furthermore, surrogate parameters such as the 
detection of vessels, which bled later during the procedures, 
give rise to the conclusion that these complications might have 
been preventable by the application of the AI- CDSS. This is a 
first preclinical report on a novel technology; further research 
is needed to evaluate a potential clinical benefit of this AI- CDSS 
in detail.
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