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2 Universidade Federal de Goiás, Departamento de Ecologia e Evolução, Goiânia, GO, Brazil, 3 Empresa
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Abstract

Root rots are a constraint for staple food crops and a long-lasting food security problem

worldwide. In common beans, yield losses originating from root damage are frequently

attributed to dry root rot, a disease caused by the Fusarium solani species complex. The

aim of this study was to model the current potential distribution of common bean dry root rot

on a global scale and to project changes based on future expectations of climate change.

Our approach used a spatial proxy of the field disease occurrence, instead of solely the

pathogen distribution. We modeled the pathogen environmental requirements in locations

where in-situ inoculum density seems ideal for disease manifestation. A dataset of 2,311

soil samples from commercial farms assessed from 2002 to 2015 allowed us to evaluate the

environmental conditions associated with the pathogen’s optimum inoculum density for dis-

ease occurrence, using a lower threshold as a spatial proxy. We encompassed not only the

optimal conditions for disease occurrence but also the optimal pathogen’s density required

for host infection. An intermediate inoculum density of the pathogen was the best disease

proxy, suggesting density-dependent mechanisms on host infection. We found a strong

convergence on the environmental requirements of both the host and the disease develop-

ment in tropical areas, mostly in Brazil, Central America, and African countries. Precipitation

and temperature variables were important for explaining the disease occurrence (from

17.63% to 43.84%). Climate change will probably move the disease toward cooler regions,

which in Brazil are more representative of small-scale farming, although an overall shrink in

total area (from 48% to 49% in 2050 and 26% to 41% in 2070) was also predicted. Under-

standing pathogen distribution and disease risks in an evolutionary context will therefore

support breeding for resistance programs and strategies for dry root rot management in

common beans.
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Introduction

The spatiotemporal distribution of plant diseases follow the changes undergone by agriculture,

attributed to climatic variation and technological shifts. Large monocultures are predomi-

nantly subjected to disease outbreaks or frequent disease occurrences, thus usually relying on

high-input technologies to sustain production and avoid yield losses. In these circumstances,

maps of disease risks are therefore safeguarded to prevent large-scale outbreaks or relevant

problems with crops and food security threats, supporting crop management in regular, well-

defined climatic conditions [1,2]. However, the dynamic nature of plant diseases brings new

uncertainties to crop management and to breeding programs required to ensure yields in the

future [3].

The climate requirements of soilborne pathogens, such as temperature and precipitation

[4], define disease favorability in specific regions where the host crop is present, and determine

the array of practices required for disease management. The unbalance in well-defined re-

quirements for disease occurrence [3,4] by the predicted changes in climate around the world

will therefore potentially change disease distribution and disease management in several crops

[5,6]. Therefore, overall disease modelling should be concerned about these complex interac-

tions that affect pathosystems, in order to estimate pathogen spread and disease risks in differ-

ent scenarios [7]. If we aim to prevent yield losses and improve food security, disease scouting

is crucial to adjust research and development efforts that will enhance disease management,

supporting decisions at the farm level and public policies [2].

Potential distribution models are commonly used in conservation biology and other

research topics to predict species distribution through climate (environmental) requirements

[8]. They are correlational approaches based on how environmental constraints may limit the

occurrence of specific “objects”—usually species or populations—at broad spatial scales [9]. By

modelling the environmental conditions associated with an object’s occurrence or abundance,

spatial projections of favorability can therefore be assessed. Such models highlight potentially

suitable regions for the event of interest, in the current scenario or in climate change forecasts

[8]. Although this framework has traditionally been used in conservation-related research, it

conceivably may be useful in plant disease epidemiology studies, with macro-ecological tools

[7].

It is possible to estimate both pathogen and disease geographical distribution because both

objects may coexist in regions where the climate is more or less favorable for them. Regarding

crop protection, potential distribution maps have been used to anticipate risks for vector-

borne plant diseases [10] and insect pests using species distribution models [11]. Thus, models

of potential distribution may shed light on unanswered epidemiological questions concerning

the spatial distribution of diseases, and the shifts in the intensity of disease episodes expected

with climate changes [8].

Disease scouting and risk mapping are especially important for staple foods, such as com-

mon beans (Phaseolus vulgaris L.), an essential protein source for developing countries in

Latin America and Africa [12]. Soilborne pathogens, such as the Fusarium solani species com-

plex (FSSC), regularly challenge common bean crops [13,14]. Broadly distributed in the world,

the FSSC is a generalist pathogen that is well adapted to a wide array of environmental condi-

tions and hosts [15]. The FSSC causes root rot and yield losses up to 100% [16], leading to

chronically lower yields in most regions [13].

In this study, we used the inoculum threshold approach represented by inoculum density, a

highly used measure for epidemiological studies [17], easily estimated in field-soil samples.

Although widely distributed in tropical regions of South America and Africa [18], no consen-

sus has been reached on the lower inoculum threshold associated with dry root rot occurrence
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in common beans. Moreover, the link between FSSC spatial distribution and dry root rot rec-

ords has not yet been spatiality investigated. Here, we have provided the first attempt to model

the worldwide geographical distribution of common bean dry root rot. Using an innovative

approach, we speculated if the propagule optimal threshold of the FSSC could be used as a

proxy of dry root rot occurrence in common beans in Brazil. That spatial proxy of the disease

occurrence was then examined to model its worldwide distribution. We therefore tested the

following hypotheses: 1) An optimal inoculum density threshold is spatially linked to disease

occurrence; 2) root rot risk areas coincide with the main regions for common bean cropping;

and 3) climate change will affect the current disease distribution.

Materials and methods

In this study, we modeled the potential distribution of common bean dry root rot, via species

distribution model/ecological niche model procedures, which required field records of the dis-

ease, referred to as the object of interest. Precise, geo-referenced records for dry root rot in

common beans are usually lacking. Governmental disease reports usually provide information

solely on the state or municipality where a disease was detected, from which GIS-based infor-

mation, i.e., coordinate references, cannot be accurately derived. To overcome such a limita-

tion, we derived a method for refining our disease occurrence dataset, by using a reliable

spatial dataset on the inoculum density of common bean dry root rot. We used the FSSC inoc-

ulum density that was most spatially correlated to disease occurrence (explained below),

assuming that the common bean is mostly a highly susceptible crop and that all isolates from

the main Brazilian common bean growing regions are pathogenic [19].

Spatial proxy calculation

The inoculum density of soilborne pathogens is dependent on the climate and cropping system

[14]. Even though some authors report favorable temperatures for the disease (e.g. above

18˚C) [14](e.g. between 22–32˚C) [18], and growth, survival and chlamydospore germination,

the adaptation to climatic variations in both temperate and tropical regions, turns the FSSC

into a cosmopolitan pathogen [15].Growing drivers, such as the temperature and soil mois-

ture, coupled with the nutrients and organic matter content in soil, directly affect the viability

of chlamydospores (the resistance structures of several Fusarium species) and the seasonality

of the FSSC [20]. The same variables affect directly host root development in different crop-

ping systems [14].

FSSC chlamydospores are broadly distributed in soil throughout the year, and growing

hyphae exhibit great saprophytic ability [21]. In this study, a database of FSSC inoculum den-

sity records managed by Embrapa Arroz e Feijão (Santo Antônio de Goiás, Brazil) supported

the pathogen spatial proxy estimate. That database was composed of 2,311 soil samples from

commercial farms that belonged to 103 municipalities in 10 Brazilian states assessed from

2002 to 2015. Common beans were always present in the cropping history of sampling sites. In

general, samples were taken at 0–10 cm topsoil from commercial farms where common bean-

maize-soybean is the main cropping sequence, chosen by farmers due to commercial demands.

Eventually, cropping sequences included sorghum, millet, vegetables, or forage crops. Each

soil sample was submitted to serial dilution and deep plating in Nash-Snyder semi-selective

medium. The FSSC colonies were identified and their colony forming units (CFUs) per soil

gram considered to estimate FSSC inoculum density. Former strain pathogenicity tests with

the inoculum layer method [22] showed that all isolates caused average or high dry root rot

severity to the common bean [19], supporting the modeling studies with feasible field records

of inoculum density (S1 Table).
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Disease data were retrieved from publications with field records of dry root rot on common

bean crops. Scientific papers, short communications, and technical documents were selected

according to the infestation histories of the sampling sites. Only those publications for which

experiments had been conducted in sites naturally infested with the FSSC or in sites with his-

torical records of dry root rot were kept. Ten publications sufficiently met the selection requi-

sites and the geographic coordinates of their experimental sites, and therefore, were registered

to support 46 disease occurrences (S1 Table).

To find the best spatial proxy for the disease, with a reliable spatial reference, we estimated

the Spearman’s correlation coefficient between the disease occurrence and FSSC inoculum

density records. Three inoculum densities were selected according to published data regarding

the disease severity/inoculum density relationship. The inoculum densities adopted were the

following: 1200 CFU/g of soil based on field experiments and controlled environment tests

with the common bean and FSSC [23]; 3700 CFU/g of soil in greenhouse experiments with the

same pathosystem as above [24]; and 4500 CFU/g of soil based on greenhouse tests to estimate

the dry root rot severity according to increasing concentrations of FSSC chlamydospores [17].

The inoculum density that most correlated with dry root rot records was then considered a

spatial proxy for the disease.

Climate and climate change information

Climate data, used here to calibrate models of potential distribution, were downloaded from the

WorldClim website (www.worldclim.org/current). This database was produced via the interpola-

tion of data from ground weather stations referring to the years of 1950–2000 [25]. On World-

Clim, climate data are available as raster files containing grid-based information at different spatial

resolutions. We upscaled the downloaded rasters to the resolution of 0.5 degrees of lat/long.

Although our inoculum dataset allowed a finer resolution analysis to be conducted, we opted for a

relatively coarser spatial resolution. Because the exact location of the sampling sites was not

known, the resolution of spatial data on disease occurrence (extracted from publications) was usu-

ally rough. Several papers indicated only the municipality and not the exact locations (and the

associated environmental conditions) of the experimental sites. However, most municipalities to

which studies usually referred were smaller than 50km2. Therefore, we assumed that a 0.5 lat/long

degree could adequately encompass the average enviromental conditions associated with all of the

possible locations where experiments could have been conducted. In this way, the loss of some

important local environmental information was compensated for by more accurate patterns on a

worldwide scale, due to more generalized relationships between climate and disease occurrence.

In addition to estimating the potential distribution of dry root rot in the present- day, we

also evaluated the potential impacts of climate change on disease spread. To do so, we pro-

jected the disease distribution models into future climate scenarios. Scenarios of climate

change were taken from two “Representative Concentration Pathways”—RCPs—from the

Intergovernmental Panel on Climate Change (IPCC). Each RCP is based on a greenhouse gas

concentration trajectory that the IPCC adopted for its Fifth Assessment Report (AR5) [26].

The RCP 2.6 estimates an increase of global warming of 1˚C by 2050 (average for 2041–2060),

whereas the RCP 8.5 projects an increase of 2˚C. The same scenarios are used for 2070 (average

for 2061–2080) with the RCP 2.6 (1˚C) and the RCP 8.5 (3.7˚C) [26]. Each RCP scenario is cal-

culated from monthly temperature and precipitation averages, which the climate forecasts

known as Atmospheric and Oceanic General Circulation Models (AOGCMs) generated [27].

Bioclimatic variables therefore are calculated from monthly temperature and precipitation val-

ues, representing annual climatic trends, seasonality, and extremes. Those climate parameters

are usually considered environmental constraints for biological species and systems [28].
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Although AOGCMs have been widely used to project the impacts of climate change on spe-

cies distribution, different forecasts may provide different outcomes [27]. Variation in the

AOGCMs chosen to project distribution models for the future can thus affect maps of poten-

tial distribution, creating a well-known source of uncertainty [29]. We therefore accounted for

that known source of uncertainty by selecting different AOGCMs and projecting the disease

distribution models onto all of them. The following climate forecasts were chosen: the Com-

munity Climate System Model (CCSM4) version 4 [30], the Hadley Centre Global Environ-

mental Model version 2 (HADGEM2) [31], and the Model for Interdisciplinary Research on

Climate (MIROC5) [32].

These climate forecasts are based on robust modelling algorithms, although each one has a

different bias in terms of temperature and precipitation estimates [27]. The CCSM4, for exam-

ple, has biases in average precipitation distribution in the tropical Pacific Ocean [30], and the

HADGEM2 shows some bias toward warmer temperatures in the continental Northern Hemi-

sphere and a colder bias in South America [31]. Lastly, MIROC5 also shows a cooling bias in

the North Atlantic [32]. Therefore, no AOGCM is efficient in everything [27]. Such biases

may, however, be ameliorated by considering different AOGCMs as a source of variation in

model outcomes to improve the predictions of distribution models [33].

Climate forecasts provide predictions for several environmental variables based on temper-

ature and precipitation—the bioclimatic variables. However, not all of these predictors are

used in modelling procedures, to avoid correlation and collinearity-related problems. We

therefore selected the predictors to be used in modelling procedures, by using logistic regres-

sions. Logistic regressions are meant here to evaluate which bioclimatic variables would be the

best disease predictors by calculating slopes without or with low collinearity and, at the same

time, showing satisfactory biological explanations. All bioclimatic variables were considered

as predictors. The response variable in such logistic regressions was disease occurrence (pres-

ence or absence), defined by the best spatial proxy, which was described earlier in the text.

Logistic regression was performed with the R function glm, the binomial family, and the logit
link. The binomial family is adequate for presence-absence data, and the logit link is the natural

log of the odds in which the response variable equals one of the categories (zero and one cate-

gories). Non-significant predictor variables were removed. Further, collinearity between pre-

dictor variables was avoided with a cutoff on Pearson’s correlation coefficient (r< 0.25),

which is considered statistically significant (p< 0.05) [34]. Those procedures led to the follow-

ing bioclimatic variables, to be used as predictors in subsequent distribution models: Isotherm-

ality (mean diurnal range/temperature annual range), maximum temperature of the warmest

month, precipitation seasonality (coefficient of variation), and precipitation of the warmest

quarter.

The bioclimatic variables were therefore selected to allow appropriate statistical analyses.

However, biological and ecological reasons also exist for justifying their choice as the best cli-

mate predictors [35]. Two chosen bioclimatic variables are based on the maximum and sea-

sonal temperature, which admittedly alters the occurrence of diaseases. The precipitation

seasonality is also a known driver of soilborne pathogen growth [4]. The rationale of modelling

disease distribution based on optimal temperature ranges may not be efficient for predicting

where disease does not occur [35]. Climatic constraints (maximum and minimum) may, how-

ever, lead to insights on the growth, development, and fitness of species over a period of time

[35]. Periods of drought and rain in regions that exhibit high climatic seasonality may there-

fore influence the FSSC. These climate constraints [36,37] are indeed known to affect chla-

mydospore and conidia germination, spore viability, and agressiveness in different cropping

systems [14].
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Distribution models for the Fusarium solani species complex

In this work, the study model comprised a soilborne pathogen (FSSC) and a host (common

bean), used here to assess dry root rot distribution. As explained before, we used a spatial proxy

defined by the inoculum threshold that best represented disease occurrence. Therefore, we

modeled the pathogen environmental requirements found at locations where in-situ inoculum

density seems ideal for disease manifestation. The environmental requirements of a pathogen

are usually linked to disease occurrence via conditions (abiotic factors) and resources (biotic

factors, which may be consumed and are subjected to competition) required for the pathogen’s

survival and breed [38]. However, models based solely on ecological niches of pathogens may

not lead to accurate maps of disease risk because the presence of a pathogen does not necessarily

implicate in disease manifestation [39]. Thus, by using not only the pathogen presence but also

the density most correlated to disease manifestation, we modeled the environmental conditions

most strongly related to the dry root rot occurrence. The resulting host × pathogen × environ-

ment interaction is therefore the pathogen niche projected for disease occurrence and repre-

sented in maps of climatic suitability of dry rot root in common beans.

Common bean crops account for about 3.1 million hectares cropped in all Brazilian regions,

especially in the South, Southeast, and Center-West regions, which themselves are responsible

for 3,327.8 thousand tons of the crop [40]. In Brazil, diseased fields are frequently reported,

especially due to conducive weather and the omnipresence of susceptible cultivars [41]. In this

study, models of FSSC distribution were calibrated with data retrieved for the Brazilian terri-

tory extent, although projections were made worldwide. We did so because the access to the

exclusive database on inoculum densities allowed us to characterize regions in the pathogen’s

climatic niche, e.g., the environmental preferences and constraints [42–44], in a way not

repeatable with other countries’ datasets.

By calibrating our distribution models exclusively with Brazilian data, we therefore assume

that the relationship among the disease occurrence, inoculum density, and environmental

requirements can be extrapolated to other regions with similar climatic conditions. This

approach, although possibly new in plant disease epidemiology, is widely used in other niche-

related areas, such as biological invasion risk assessments [45]. By using such an approach, our

attempt here is to provide a first visual map of the dry root rot potential distribution world-

wide, but not a guide for supporting local farmers and crop managers. Our models probably

do not capture local climate peculiarities due to territorial data restrictions, even though dis-

ease projections may match disease records elsewhere. Therefore, we caution that the world

maps provided here should not be used beyond their intended purpose.

Another known source of uncertainty in distribution models, beyond AOGCM climate

forecasts, is the modelling method used to establish the relationship between the occurrence of

the object of interest and the environment it occupies. Different modelling methods may pro-

vide dramatically distinct projections [8]. To minimize such discrepancies, we considered only

a few different methods and weighted their projections according to their performances. That

model-weighting procedure, also called “model ensembling”, assumes that by encompassing

different possible projections and their respective performances, uncertainty in the modelling

method is therefore minimized [46]. Such ensembles should not, however, encompass all clas-

ses of modelling methods, as they may have different requirements for model building and

thus non-comparable results [47]. We therefore accounted for model uncertainty by ensem-

bling among projections from different methods but also respecting theoretical restrictions

regarding outcome comparisons.

Our ensembles of distribution models were performed within two main classes of models:

1) the statistical methods and 2) the machine-learning methods. No ensemble was performed
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between both classes of methods. Statistical or regression-based methods (e.g., a generalized

linear model [GLM], a generalized additive models [GAM], and multivariate adaptive regres-

sion splines [MARS] allow for encompassing a large number of relationships between occur-

rences and environmental factors and usually have good explanatory power regarding the

distribution-related ecological processes [47]. In this class of methods, precision and generality

are balanced, which leads to moderately flexible although accurate predictions [48]. Machine-

learning methods, in contrast, employ data-mining algorithms—such as GARP (Genetic Algo-

rithm for Rule Set Production), random forest, and artificial neural networks—in an attempt

to maximize the relationship between environmental predictors and biological responses [47].

Machine-learning methods usually lead to highly accurate but more clinger distribution pre-

dictions (rigid predictions) [48]. In machine-learning methods, generality is penalized for the

sake of accuracy, and model complexity usually prevents a clear interpretation of parameter

relationships [47].

The regression-based methods used in this work were a GAM and a GLM because they are

compatible in building requirements [48]. The GAM was implemented with the function of

gam using the binomial family and selecting 10,000 pseudo-absences randomly sampled from

all occurrence points within our defined extent. Meanwhile, the GLM was adjusted with a lin-

ear function using a binomial family, being performed for stepwise proceeding, and using

10,000 pseudo-absences with random sampling, to avoid collinearity issues [48]. All analyses

were performed in “sp” [49], “raster” [50], and “Biomod2” [51] packages within the R environ-

ment (R Development Core Team).

The machine-learning methods used in this study were the random forest and classification

tree analysis. Random forest is a general technique of random decision forests. Here, we used

1,000 pseudo-absences collected with a random selection of points outside of the suitable area

estimated with a rectilinear surface envelope from the large presence number (surface range

envelope model “SRE”) [48]. Finally, we performed a classification tree analysis (CTA) with

the same random forest framework described above, to assure model outcome compatibility.

All models were fitted with 100 runs.

In a data-splitting process, 75% of our occurrence data were used for training and 25% for

testing the model performance [48]. Model weighting was based on the True Skill Statistics

(TSS), a measure of model performance that the prevalence of occurrences does not affect

[52]. Sensitivity is the probability that the model correctly rates the presence of data, and speci-

ficity is the probability that it correctly rates an absent data. Values of TSS (TSS = sensitivity

+ specificity -1) range from -1 to +1, where values close to +1 indicate high accuracy, whereas

values equal to or smaller than zero are usually considered not better than random. Less biased

than other criteria, the TSS is the measure of choice for distribution predictions [53]. We used

a cutoff (TSS < 0.5) to select exclusively the models with the best accuracy, i.e., models with

TSS smaller than this figure were removed and not considered in posterior weighting proce-

dures. Therefore, a weight (the TSS value) was attributed to each cell-based prediction of envi-

ronmental suitability, which resulted in an averaged ensemble for each modelling method.

Ensemble models were projected onto current climate maps to provide estimates of poten-

tial distribution for the FSSC. The same ensemble models were then projected onto predictions

of future climate forecasts, which were previously collected. Therefore, suitable regions were

identified for disease distribution in the present-day time and in different scenarios for climate

change. Projections were made on both a country (Brazil) and a worldwide scale to predict the

disease risks of dry root rot on growing regions of common beans elsewhere [54]. All of the

modelling procedures were performed with the R “Biomod2” package in R (R Development

Core Team).
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Uncertainty analysis

Despite considering different projections, i.e., the ensembling procedure, we were also inter-

ested in determining which were the main drivers of total uncertainty in the model outcomes.

To disentangle the variation present in our results, we adjusted linear mixed models with

residual maximum-likelihood estimation (REML). Prior to that, we performed an estimability

test of the effects in the mixed model in R [55] to check if it could be used to correctly describe

factor rankings. We therefore built the mixed model considering the “year” (year 2050 and

year 2070) as a random factor and considering “AOGCMS,” “RCPs,” and “modelling meth-

ods” as fixed factors. The Gauss-Markov function of the parameters was considered to be esti-

mable if built by a linear combination of mathematic expectations. The best empirical linear

unbiased estimates (eBLUEs) for fixed factors and the empirical best linear unbiased predictors

(eBLUPs) were also performed for random factors. Thus, we separated the percentage of varia-

tion attributed to each factor. Because our model outcomes are maps, uncertainty was calcu-

lated for each grid cell. Therefore, uncertainty maps could be obtained for total variation and

for the variation attributed to each factor. All maps presented in this paper are original and

were created in R and ArcGIS 10.1 (ESRI, Redlands, CA, USA).

Results

All three inoculum thresholds of the FSSC per soil gram showed correlation with disease

occurrence: 1200 propagule/ soil gram (ρ = 0.79; p = 0.001), 3700 propagule/ soil gram (ρ =
0.85; p = 0.001) and 4500 propagule/soil gram (ρ = 0.81; p = 0.001). Therefore, the best cor-

relation between propagules density and root rot occurrence in the common bean was 3700, as

a lower threshold, considering the current disease spatial distribution. The 3700 lower thresh-

old was therefore chosen as a proxy of the occurrence of common bean dry rot root in distri-

bution models (78 occurrences). Indeed, the area of the disease distribution varied according

to the proxy chosen: between 3700 propagules/soil gram and 1200 propagules/ soil gram the

area reduced 3% and between 4500 propagules/ soil gram and 3700 propagules/soil gram the

area reduced 21%. We projected also the distribution of the disease using the three proxies to

2050 and 2070, by the statistical method. We observed that to 2050, between the two RCPs,

there was no a pattern of the disease distribution–an increasing or decreasing of its range with

the increase of average temperature between RCPs. However, to 2070 we found the following

pattern: the increasing of the inoculum threshold (from 1200 to 4500) is associated to an

enhanced shrink of the disease distribution (S2 Table, S1 Fig).

Although the predictions of the current disease distribution in Brazil were not identical

between statistical and machine-learning models, both methods predicted high disease risk in

the central, southeastern, and southern portions of the country (Fig 1). Statistical methods pre-

dicted larger distributional areas for disease occurrence compared with machine-learning

methods. Similar pattern was found in worldwide maps of the current disease distribution.

Areas predicted as climatically highly suitable for disease occurrence were quite convergent

between statistical and machine-learning methods (Fig 2). Again, on a worldwide scale, statis-

tical methods produced less stringent distribution predictions compared with machine-learn-

ing methods.

We considered two future scenarios according to two extreme emission rates of greenhouse

gas (the “optimistic” RCP 2.6 and the “pessimistic” RCP 8.5), from the IPCC-AR5, estimated

for the years of 2050 and 2070. In Brazil, an overall reduction in the suitable area for rot root

occurrence in the common bean is expected in the future (Fig 3). In year 2050, a 49% reduc-

tion of the potential distribution is expected under the optimistic greenhouse gas emission

rates, and up to 48% under the pessimistic climate change scenario. The high-climate-
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suitability area moved toward Southern Brazil, keeping disease occurrence outside of the Cen-

ter-West Region of Brazil. That same reduction is observed in year 2070 projections (Fig 4). In

2070, for the RCP 2.6, reductions average 26% of the total area, and for the RCP 8.5, the reduc-

tion in the disease distribution area reached 41%. More details about the projections are in

Table 1. The methods of estimation showed high values of TSS, being 75.5 to statistical and

92.3 to machine-learning. The machine-learning showed more precise models than statistical

models. Most models had high overall accuracy (TSS>0.5), and bioclimatic variables presented

different weights in estimation, according to the modelling method, with isothermality (up to

43.5%), maximum temperature of warmest month (up to 43.84%) and precipitation seasonal-

ity (up to 42.92%) the most important variables. Only isothermality showed congruence

between Machine-Learning and statistical methods. (Table 2).

The uncertainty analysis showed differences in climate suitability estimation by the method,

AOGCMs, and climatic scenario. However, the greatest source of uncertainty was the model-

ling method (statistical and machine learning). In addition, uncertainty varied geographically

in a splash-like pattern, and it concentrated in regions predicted as inadequate for disease

occurrence. That splashed pattern was evident in both the years of 2070 and 2050. Moreover,

the relative contribution attributed to each factor (i.e., variation ranking) did not change with

the variation of fixed factors observed via eBLUEs (Table 3). The climate suitability of disease

was lower in the scenario RCP 8.5 compared to RCP 2.6, which is expected avoid to RCP 8.5 to

be pessimist, that is, shows a higher elevation of the average temperature. The low eBLUP val-

ues also show low interference with climate suitability as a response variable in 2050 and 2070.

For each year, in 2050, the climatic favorability increased by 4.17 units above average, and in

2070, it decreased by 4.17 units above average (eBLUPs). This represents a low influence that

only different years would explain about the climate suitability of the disease.

Fig 1. Current distribution of the FSSC, considering an inoculum density (3700 propagules per soil gram) in common bean crops as a

proxy of disease occurrence in Brazil. The legend shows the climatic suitability: 1 is the most adequate, and 0 is the least suitable.

https://doi.org/10.1371/journal.pone.0187770.g001
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Discussion

Plant pathogens and their diseases will likely follow the climate-mediated distributional shifts

on crops [4], thus creating a dynamic scenario in the management of plant disease epidemics

in the face of climate change. Highlighting which regions are expected to be most at risk of

Fig 2. Current projection for dry root rot distribution in common beans in the world according to statistical and machining-learning methods.

The model performed in Brazil was used to predict the dry root rot distribution in different places in which the host crop is grown, such as Central America,

North of USA, Europe, Africa, and Asia. The legend shows the climatic suitability: 1 is the most adequate, and 0 is the least suitable.

https://doi.org/10.1371/journal.pone.0187770.g002

Potential distribution of Fusarium dry root rot in common beans based on the optimal environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0187770 November 6, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0187770.g002
https://doi.org/10.1371/journal.pone.0187770


disease is therefore crucial for disease management policies [6], and therefore, maps that antic-

ipate disease risks can potentially increase efficiency and reduce the costs of disease manage-

ment strategies in the future [2]. In this study, we modelled the distribution of common bean

dry root rot, which stems from the FSSC. To do so, we used a spatial proxy for disease occur-

rence, represented by the inoculum density most correlated to disease distribution. An inter-

mediate inoculum density (3700 propagules per soil gram) was the best proxy of disease

occurrence, perhaps a more representative estimate of infestation by the FSSC in Brazilian

common bean fields. The potential distribution of the disease in both the present and future

times was also remarkably convergent to the predicted tropical areas (Central and South

American and African continent) as highly suitable for common bean crops [54]. Even though

records about the spatial distribution of dry root rot are scarce in the literature, our results

regarding the world distribution of the disease also match the disease reports in countries such

as Kenya [56], Rwanda [56], Burundi [56], Zaire [56], Mexico (such as the Aguascalientes,

Veracruz, and Guanajuato states) [57] and the USA (such as Minnesota and North Dakota)

Fig 3. Future projection by 2050 for dry root rot in common bean in two RCP scenarios via a consensus between machine-learning and

statistical methods, supported by distribution models based on inoculum densities of at least 3700 propagules/ gram of field soil in the

current scenario, along with an estimate of uncertainty of projections. The legend shows the climatic suitability: 1 is the most adequate, and 0 is

the not suitable.

https://doi.org/10.1371/journal.pone.0187770.g003
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[58]. All reports highlighted the importance of dry root rot as a result of relevant yield losses

and difficulties of control.

In this study, the dry root rot distribution in the common bean was linked to all inoculum

densities, but the intermediate threshold was the best spatial proxy for disease occurrence. The

correlation between the inoculum threshold and disease occurrence therefore exhibited an

intermediate saturation baseline [59]. The density-dependent relationships of the population

growth of soilborne pathogens may be the cause of such patterns in epidemiology [60] as well

as interspecific relationships in the soil community [61]. Soilborne pathogens may be endemic

and cause diseases in natural ecosystems, but their main nutrient resource, the host, is obvi-

ously a crucial driver of their distribution. However, pathogen populations are also dependent

on a certain within-host density that does not overcome the host’s carrying capacity, to avoid

its complete depletion [59]. This is the case of FSSC × common bean, which results in stunted,

low-yield plants and rarely in plant death. A host supportability therefore exists so that the

mechanisms of intra and inter competition might regulate the abundance of soilborne patho-

gens on a small scale [62].

Fig 4. Future projection by 2070 for dry root rot in common bean in two RCP scenarios via a consensus between machine-learning

and statistical methods supported by distribution models based on inoculum densities of at least 3700 propagules/ gram of field soil

in the current scenario, along with an estimate of uncertainty of projections. The legend shows the climatic suitability: 1 is the most

adequate, and 0 is the not suitable.

https://doi.org/10.1371/journal.pone.0187770.g004
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That intermediate aggressiveness paradigm has been observed on several root rot pathosys-

tems in different regions of world. For example, the inoculum densities of Verticillium dahliae,

Cylindrocladium clotalariae, Rhizoctonia oryzae, F. oxysporum f.sp. gossypii and phaseoli, and

incidences of wilt in cotton [63], root rot on peanuts [64], root rot on barley [65], and wilt inci-

dence in cotton [66] and the common bean [17] respectively are all density-dependently mod-

ulated, thus suggesting a general pattern. The intermediary aggressiveness of pathogens may

be a result of evolutionary mechanisms that regulate density-dependent populations to main-

tain their fitness in the long term [59].

Using the intermediate inoculum density as a spatial proxy for disease occurrence allowed

us to project the distribution of dry root rot in the future scenarios of climate change. Its

occurrence will be probably reduced overall in the future based on the reduction of areas that

are climatically suitable for the disease. In Brazil, the common bean dry root rot distribution is

expected to shift toward the southern and southwestern regions of the country, which is more

representative of small-scale farming than the Center-West Brazil is. On the other hand,

regions that nowadays respond to high yields of the common bean, such as the Brazilian Cen-

ter-West, will probably lose climatic suitability in the future.

Other diseases are also projected to move toward colder regions due to climate change [67].

Crop diseases stemming from soilborne pathogens, such as F. nivale, F. culmorum, Macropho-
mina phaseolina, Sclerotinia minor, and Pythium ultimum, on the European continent are all

Table 1. Range of predictions of statistical and machine-learning methods within RCP scenarios in

2050 and 2070 for common bean dry root rot distribution in Brazil, compared with the current disease

potential distribution.

Statistical

AOGCM 2050 2070

RCP 26 (%) RCP 85 (%) RCP 26 (%) RCP 85 (%)

MIROC5 -56 -52 -42 -62

CCSM4 -46 -44 -32 -68

HADGEM2 -61 -62 -57 -83

Average -54 -53 -44 -71

Machine-Learning

Miroc5 -3 -1 -20 -31

CCSM4 -2 -7 -12 -26

Hadgem2 -9 -6 -21 -32

Average (%) -5 -5 -18 -30

Total average range (%)1 -49 -48 -26 -41

1 Difference between Machine-Learning and Statistical average range

https://doi.org/10.1371/journal.pone.0187770.t001

Table 2. Relative importance of the bioclimatic variables by method of estimation weighted by TSS of

models.

Climate Variable Statistical (%)1 Machine learning (%)2

Isothermality 43.50 40.61

Max. Temperature of Warmest Month 31.13 43.84

Precipitation Seasonality 19.13 36.46

Precipitation of Warmest Quarter 17.63 42.92

1Weighted mean by TSS values each statistical modelling method.
2Weighted mean by TSS values each machine-learning modelling method.

https://doi.org/10.1371/journal.pone.0187770.t002
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predicted to migrate in the direction of cooler areas [4]. Such results suggest that policies on

disease management might benefit from focusing on the areas predicted to gain agricultural

relevance, such as in the Brazilian scenario. Meanwhile, the breeding of resistant cultivars and

the development of other environmentally friendly practices for disease integrated manage-

ment plans may anticipate such changes and reduce food security risks.

We found a strong convergence of the statistical modelling in the tropical areas predicted as

highly suitable for disease occurrence and the suitable areas for common bean cropping from

an independent work. Besides predicting similar areas throughout the world, the same shrink-

age pattern we found here was projected for common beans, from projections of physiological

mechanistic models [54]. Projections in temperate regions, however, showed less convergence

and were not so clear, probably because our dataset did not encompass temperate environ-

mental conditions, underrating disease occurrence in North American [58] and Canadian

regions, where dry root rot is relevant [68]. So far, no comparative data exist between disease

severity between tropical and temperate regions. However, the European region shows low

importance for the common bean because other crops are more important there, such as

wheat [69]. At least in the tropics, both the host and the pathogen seem to share the same envi-

ronmental requirements and constraints.

The integration of an environment conducive to pathogen infection and pathogen infectiv-

ity, via pathogen-host co-evolution mechanisms, may be one of the main drivers of disease

dynamic distribution in the face of climate change [70]. Climate seasonality also affects soil-

borne pathogens’ density. Consequently, disease occurrence may shift according to climate

seasonality. Temperature and precipitation regimes are also important drivers of soil pathogen

distribution. Understanding the resilience of such soilborne pathogens against abiotic stress

can potentially guide disease management plans [4].

The overlap of the predicted distribution of the disease and host therefore suggests that cli-

mate-mediated ecological and evolutionary mechanisms are the likely drivers of the distribu-

tion of common bean dry root rot. Indeed, co-evolutionary mechanisms between natural

pathogen populations and their hosts [71], coupled with pathogen evolution in agricultural

landscapes [72], have been attributed as the main drivers of disease occurrence. Although a

discussion on host and pathogen co-evolution is not the purpose here, our results indicate the

high climatic favorability of dry root rot in the Mesoamerican region, a hot spot of diversity

where wild P. vulgaris has its origin [73]. This is an area where the relevance of dry root rot

and the diversity of Fusarium species is well documented [57].

Table 3. The eBLUE values of standardized climatic favorability in a mixed model for uncertain analysis among estimate methods, AOGCMs, and

scenarios as fixed factors, and “year” as a random factor (2050 and 2070).

Scenario Method AOGCM eBLUE

RCP 2.6 Machine learning CCSM 4 132.79

RCP 8.5 Machine learning CCSM 4 128.88

RCP 2.6 Statistical CCSM 4 132.04

RCP 8.5 Statistical CCSM 4 101.95

RCP 2.6 Machine learning HADGEM 2 129.53

RCP 8.5 Machine learning HADGEM 2 128.53

RCP 2.6 Statistical HADGEM 2 103.53

RCP 8.5 Statistical HADGEM 2 83.97

RCP 2.6 Machine learning MIROC 5 131.00

RCP 8.5 Machine learning MIROC 5 129.08

RCP 2.6 Statistical MIROC 5 122.08

RCP 8.5 Statistical MIROC 5 106.16

https://doi.org/10.1371/journal.pone.0187770.t003
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Climate change will affect the distribution of the common bean [54]. Here, we found that

the distribution of common bean dry root rot will probably follow the same standard. In such

cases, disclosing which regions of higher disease risk will drive greater attention to crop and

disease management. Maps of disease risk are therefore crucial if we are to prevent economic

losses, stemming from climate change, in regions that currently do not exhibit high pressure of

diseases [6,74]. Here, we provide the first worldwide maps on the potential distribution of the

common bean dry root rot. The statistical-based map has straightforward applications for dis-

ease management, especially developing countries from tropical regions, such as Latin Amer-

ica and the African continent [75]. By anticipating maps of disease risk, our work may help

with the prioritization of financial and technological resources toward high-risk areas, thus

possibly reducing the costs of disease management in the future [2]. Moreover, our approach

may the adjusted to other pathosystems to predict disease occurrence and improve food

security.
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