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Abstract 

Among the various environmental pollutants, dioxin, a highly toxic and widely used compound, is associated with numerous adverse 
health effects, including a potentially toxic multigenerational effect. Understanding the mechanisms by which dioxin exposure can 
affect sperm epigenetics is critical to comprehending the potential consequences for offspring health and development. This study 
investigates the possible association between weighted epimutations, hypothesized as markers of epigenetic drift, and dioxin exposure 
in sperm tissues. We used a public online methylation dataset consisting of 37 participants: 26 Vietnam veterans exposed to Agent 
Orange, an herbicide contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and 11 individuals not directly exposed to TCDD 
but whose serum dioxin levels are equivalent to the background. In our study, conducted at the gene level, 437 epimutated genes 
were identified as significantly associated with each single-digit increase in serum dioxin levels. We found no significant association 
between the rise in total epimutation load and serum dioxin levels. The pathway analysis performed on the genes reveals biological 
processes mainly related to changes in embryonic morphology, development, and reproduction. Results from our current study suggest 
the importance of further investigations on the consequences of dioxin exposure in humans with specific reference to germinal tissue 
and related heredity.
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Introduction
Agent Orange is a mixture of tactical herbicides that the US Army 
sprayed in different locations (Vietnam and other southeast loca-
tions) from 1962 to 1971 during the Vietnam War. The US soldiers 
who may have been exposed to Agent Orange include soldiers who 
served in these locations and who flew on or worked on C-123 Air-
craft. The two active ingredients in the Agent Orange herbicide 
combination were equal amounts of 2,4-dichlorophenoxyacetic 
acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), which 
contained as primary contaminant 2, 3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD), an unwanted byproduct of herbicide production [1, 
2]. TCDD is a highly toxic chemical belonging to the dioxin family 
and is considered the most toxic of this group by the World Health 
Organization [3]. Dioxins are well known to be potent endocrine 
disruptors. TCDD demonstrates this property by interacting with 
the aryl hydrocarbon receptor (Ahr), which activates various sig-
nalling pathways and alters hormonal signals. This substance 

leads to metabolic disorders, immune disorders, an increased risk 
of cancer, and reproductive and developmental problems [4–7].

Furthermore, this chemical poses a danger exacerbated by its 

remarkable ability to persist in various environmental matrices 

and mammalian adipose tissue [8; 9].
How long TCDD remains accumulated depends on the organ-

ism; in directly exposed humans, it generally has an observed 

half-life of between 7 and 11 years. The persistence in the organ-

ism hinders the elimination of the pollutant from the body, leading 
to an accumulation over time that increases the risk of developing 

health problems mentioned earlier [10–13].
Due to its persistence, the damage caused by exposure to TCDD 

is not limited to only those directly exposed but can also affect 
their offspring [14]. Studies over several generations of rats have 
shown that TCDD exposure of the ancestors impairs the repro-
ductive health of their offspring [15]. Specifically, male offspring 
show problems with sperm quality and production, while female 
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offspring experience issues like ovarian cysts and pregnancy com-
plications [16, 17].

In humans, given the rarity of intense exposure to TCDD, 
our knowledge of the multi-generational effects of this pollu-
tant comes primarily from studies conducted on the newborns 
from mothers exposed to large amounts of TCDD almost 7 years 
before pregnancy during the Seveso incident in 1976 [18]. Specif-
ically, researchers have linked the identified multigenerational 
consequences to an altered sex ratio of offspring, higher mean 
neonatal blood thyroid-stimulating hormone levels, and various 
impacts on different seminal parameters, including concentra-
tion, count, and motility [6, 19]. The exact mechanisms that lead 
to the development of certain diseases caused by environmental 
toxic substances are not yet fully understood. Furthermore, many 
studies suggest that the exposome, which refers to an individ-
ual’s total exposure to various chemical, biological, and radiation 
agents from birth to death, plays a crucial role in shaping human 
epigenetic mechanisms [20, 21]. Unlike genomic mutations, which 
result in permanent changes to the DNA, epigenetic modifications 
can be transient and reversible [22, 23]. This characteristic allows 
the epigenome to reflect an individual’s environmental history 
and respond to changes in exposure, thus influencing gene expres-
sion without altering the genomic sequence itself [21,24–26]. 
Those types of changes at the gene expression level lead to health 
outcomes [27, 28]. The primary epigenetic mechanisms impacted 
by the exposome are DNA methylation, histone modifications, 
and the role of noncoding RNAs. These epigenetic changes, 
mainly induced by environmental substances, are observed in ani-
mal models and are present not only in those directly exposed 
but also in their offspring, impacting the phenotypes of future
generations [11].

DNA methylation is the most easily shaped and is the opti-
mal candidate for use as a marker due to its dynamic nature 
[20]. DNA methylation studies often utilize differential analysis to 
detect variations in methylation patterns associated with specific 
traits or environmental factors [29, 30]. This technique identifies 
genomic regions with differential methylation that may influence 
gene expression. Additionally, stochasticity—random fluctuations 
in methylation levels— is crucial and can be influenced by genetic 
and environmental factors [31]. These stochastic epigenetic muta-
tions (SEMs), which occur during embryogenesis and cell divi-
sion, are influenced by environmental factors and developmental 
processes and contribute to phenotypic diversity [31]. Combin-
ing differential analysis with understanding stochasticity offers a 
complete perspective on methylation variation and its significance 
in adaptation and evolution [31].

Studies have found that exposure to endocrine-disrupting 
chemicals can lead to changes in DNA methylation [32–34]. The 
exposure of animal models to these chemicals during crucial 
developmental stages can alter the methylation of somatic cells, 
leading to changes that can affect the proper development of 
the exposed individual [35]. Furthermore, if the exposure occurs 
in germinal cells, these changes can be inherited and affect the 
health of the offspring [36].

TCDD can alter the methylation values of imprinting genes, 
which typically should not undergo methylation changes, based 
on research conducted in cell culture, animal models, and 
humans [35,37,38].

Methylation is a tissue-specific epigenetic marker involved in 
cellular differentiation, and therefore, we studied the possible 
implications at a multigenerational level, focusing on the germi-
nal tissue [39].

Research focused on sperm methylation and direct exposure to 
TCDD is limited. The primary subjects of these investigations have 
been a small group of young Russian adults who were exposed 
to TCDD during their prepubertal age [40] and Vietnam veterans 
who were accidentally sprayed with varying quantities of Agent 
Orange, an herbicide contaminated with TCDD [1]. However, in the 
‘Russian Boys’ cohort, exposed to a dioxin-polluted environment, 
investigators linked the intensity of TCDD exposure to differences 
in methylation in various gene regions involved in cellular main-
tenance and assembly functions. In the second case, research 
on the sperm methylome of Vietnam veterans has shown that 
serum TCDD levels, measured at their exposure, are associated 
with altered methylation in two imprinting genes [41]. Addition-
ally, Nwanaji et al. [42] observed a possible connection between 
TCDD exposure and accelerated ageing in sperm associated with 
higher serum TCDD levels.

The biostatistics methodologies for investigating the human 
methylome are increasingly expanding [43; 44]. Calculating SEMs 
offers an alternative method to quantify widespread aberrations 
in the methylome [45]. This type of epigenetic alteration is viewed 
as stochastic aberrations scattered across the methylome and 
differs in detection from commonly identified methylation mark-
ers through differential analysis. The latter targets specific sites 
or regions with different average methylation values between 
two groups. In contrast, SEMs are considered values significantly 
higher or lower than those of a reference population [45]. This 
type of analysis thus allows for the exploration of a less usual and 
rarely investigated aspect in the context of environmental pollu-
tants, except in a few cases, such as to people directly exposed 
to polybrominated biphenyl, where an increase in the epimuta-
tional load, understood as the total sum of the detected SEMs, has 
been observed in directly exposed subjects [46]. Various studies 
over the years have shown that the aggregation of SEMs is signif-
icantly associated with multiple pathological conditions [47, 48]. 
Furthermore, SEMs are also associated with various physiologi-
cal processes, such as development and ageing [49, 50]. Previous 
studies have confirmed an altered methylome as measured by the 
signal mean difference between the TCDD-exposed and control 
groups [40,41,51].

However, the relationship between SEMs and exposure to TCDD 
is entirely unknown.

Our study investigates how TCDD exposure affects the 
germline methylome by modelling the effect using stochastic 
epigenetic mutational load (EML), intended as the burden or accu-
mulation of SEMs [52].

We used the publicly available dataset GSE139307, which 
consists of data on the methylation signals of spermatic tis-
sue from Vietnam veterans. The study will investigate whether 
SEMs connect with direct exposure at the individual level, 
analysing all SEMs dispersed throughout the genome or at the 
level of specific genes, and then evaluate the biological pro-
cesses associated with SEMs that can impact the health of
offspring.

Results
Differential analysis of the methylation signal revealed 90 signif-
icant genes associated with TCDD concentration (Supplementary 
Data 1). The regression coefficient linking methylation level to 
TCDD concentration never exceeds 1/1000 of the increase due 
to a TCDD increase of 1 ppt, indicating that the median level of 
methylation signal increases insignificantly for all affected genes. 
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Fig 1.  Scatterplot based on the principal components analysis results of gene epimutational burden, with individuals shaded from lighter to darker 
tones to represent their assigned dioxin exposure quartile, from lowest to highest

Pathway analysis also shows no effects on biological processes or 
molecular functions.

During our study on Weighted Stochastic Epimutation analy-
sis, we examined the impact of TCDD exposure on the SEM load 
per studied subject. After a thorough analysis, we found no sig-
nificant correlation between the two. Subsequently, we conducted 
our analysis with the weighted stochastic epimutation calculation 
at the gene level. After adjusting the P-value using the Benjamini–
Hochberg method, 437 genes showed significant associations with 
dioxin exposure. In Fig. 1, it is possible to graphically observe the 
synthesis of the SEM burden for genes that were significant for 
each individual related to serum TCDD levels reported in quartiles. 

For the complete list of significant genes, including the model’s 
P-value and the beta coefficient, refer to Supplementary Data 2.

In addition to the Pvalue, which indicates the significance of the 
association with dioxin, we also considered the beta coefficient to 
interpret the percentage increase in weighted SEMs with each unit 
increase in dioxin levels. Unlike conventional methods such as dif-
ferential methylation analysis, where the intensity of the effect 
on methylation levels is considered in terms of log fold change 
(logFC), here we consider the beta of the regression, and there are 
no specific cutoff values to understand when the change is biolog-
ically significant. We found that the percentage increase in serum 
dioxin (part per trillion) ranged from 1% to 43%. Table 1 shows the 
genes that exhibited a more significant percentage increase than 
the unit increase in dioxin.

By analysing the biological processes summarizing all 437 
significant genes, we mainly identified 10 significantly enriched 
pathways with an adjusted Pvalue < 0.05, which belong to two main 
pathway families:

1 Embryonic and general organismal development
2 Reproduction.

Table 2 lists the various biological pathways, the number 
of identified genes by our analysis involved in each pathway 

Table 1. The top five genes with the highest percentage increase in 
beta coefficients and their corresponding methylation alterations.

Gene Epimutation cause Beta coefficient (%)

HOXA5 Hypermethylated 43.26
HOXA3 Hypermethylated 42.38
WT1 Hypermethylated 35.64
HOXA4 Hypermethylated 28.81
ASCL2 Hypermethylated 27.94

(nGenes), the total count of the pathway’s gene (PathwayGenes), 
the identification code, and the significance of the enrichment 
(Enrichment False Detection Rate (FDR)).

For further information regarding which genes belong to which 
pathway, see Supplementary Data 3. Furthermore, in Fig. 2, they 
are graphically displayed in order of significance along with their 
respective enrichment levels. The boxplots in Fig. 3 show how the 
relationship between the percentage increase in weighted SEM 
exposure and the rise in serum dioxin levels correlates with the 
biological pathways. We note that the pathways belonging to 
the first family, which concern the organism’s development, are 
enriched with more disrupted genes than those related to repro-
ductive processes. Furthermore, we observe that the top five genes 
prioritized for biological impact as determined by the beta coeffi-
cient, whose names are shown in Fig. 3, are significantly different 
from the others in terms of the beta coefficient. Subsequently, we 
wanted to graphically represent the relationship from the sub-
jects’ perspective between the amount of dioxin exposure and the 
accumulation of weighted SEMs burden for each subject in Fig. 4. 
Despite the wide distribution of dioxin, for which we resorted to 
quartile ranking to illustrate this relationship, it is noticeable that 
this trend is similar across all genes. 

Discussion
Exposure to dioxins and dioxin-like substances is associated 
in humans with different harmful effects, ranging from acute 
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Table 2. Pathways impacted by altered epimutation load genes, sorted by fold enrichment.

Enrichment FDR nGenes Pathway genes Fold enrichment Identification code—pathway

4.51E-07 20 229 6.16 GO:0009952 anterior/posterior pattern specification
1.30E-03 17 312 3.84 GO:0048562 embryonic organ morphogenesis
3.42E-04 20 377 3.74 GO:0003002 regionalization
3.62E-04 23 491 3.30 GO:0007389 pattern specification proc.
8.78E-05 29 641 3.19 GO:0048598 embryonic morphogenesis
1.33E-03 27 702 2.71 GO:0009792 embryo development ending in birth or egg hatching
2.05E-03 26 680 2.70 GO:0043009 chordate embryonic development
1.82E-04 41 1189 2.43 GO:0009790 embryo development
1.97E-04 50 1635 2.16 GO:0022414 reproductive proc.
1.97E-04 50 1644 2.14 GO:0000003 reproduction

Fig 2. Lollipop plot depicting significantly enriched biological pathways. The x-axis represents fold enrichment values, while the y-axis lists the 
pathway names. The circle size indicates the number of genes within each pathway at the end of each line, and the colour of the circles denotes the 
significance level from multiple testing (FDR)

toxic responses (chloracne) to the development of long-term 
chronic diseases. These include reproductive, developmental, and 
neurodevelopmental effects, altered male-to-female birth ratio, 
immunotoxicity, alterations in thyroid hormones, liver, and tooth 
development, with particular sensitivity in fetuses and infants 
[6,7,18,53–55]. Zhang et al. attributed TCDD’s binding ability to the 
AhR as the primary mechanism to explain the toxicity of dioxin 
and dioxin-like substances [56]. This transcription factor regu-
lates a variety of genes involved in cellular processes. A cascade 
of downstream events occurs upon AhR activation, leading to the 
expression of genes implicated in xenobiotic metabolism, cell pro-
liferation, and apoptosis. Given the role of the AhR in mediating 
dioxin toxicity and its known involvement in regulating a vari-
ety of genes, it is plausible that dioxin exposure could lead to 
epigenetic alterations in these genes. Habano et al. showed that 
AhR activation influences DNA methylation patterns, suggest-
ing that dioxin exposure could alter the epigenetic landscape of 
genes involved in development, metabolism, and immune func-
tion [57]. The AhR, the primary cellular receptor for dioxins, is 
a crucial mediator of their toxic effects. Upon binding to diox-
ins, the AhR undergoes a conformational change, translocates 
to the nucleus, and forms a heterodimer with the aryl hydro-
carbon nuclear translocator. This heterodimer binds to specific 
DNA sequences, known as dioxin response elements, activating 
target gene transcription [57]. Dioxin’s ability to perturb cellular 
processes, particularly development-related, has been extensively 
studied. The potential for dioxin to induce epigenetic alterations 

involves changes in gene expression without altering the under-
lying DNA sequence, leading to long-lasting consequences for 
exposed individuals and their offspring. Epigenetic mutations, 
such as DNA methylation and histone modifications, have been 
implicated in mediating multigenerational effects and can be 
influenced by environmental factors, including exposure to toxic 
substances like dioxin [35, 36]. By altering gene expression pat-
terns, epigenetic changes can affect development, health, and 
disease susceptibility. DNA methylation, in particular, has been 
implicated in silencing Hox genes following dioxin exposure. Mul-
tiple studies have shown that dioxin exposure significantly alters 
the expression profiles of Hox genes [58–60]. These genes serve 
as master regulators of developmental patterning and are par-
ticularly vulnerable to environmental disruptions [61, 62]. Dis-
ruptions in the expression of Hox genes can result in various 
congenital malformations and diseases. The consequences of Hox 
gene dysregulation due to dioxin exposure are extensive and can 
include a range of developmental abnormalities: skeletal malfor-
mations, cardiovascular defects, neural tube defects, and cancer 
[63, 64]. The mechanisms underlying dioxin-induced dysregu-
lation of Hox genes are complex and involve several potential 
contributing factors: direct binding of AhR to Hox gene regula-
tory regions, indirect effects through other transcription factors, 
and epigenetic modifications. Various studies in the literature, 
both in vitro and in vivo in mice exposed in utero, have demon-
strated how exposure to TCDD can alter the expression of the 
Hox gene family. In mice exposed to TCDD in utero, the Hox genes 
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Fig 3. Boxplot showing the relationship between the regression coefficient, expressed in percentage on the x-axis, of epimutated genes depicted as 
dots, and the names of the pathways on the y-axis. Additionally, the names of the top five most impacted genes are displayed.

Fig 4. Boxplot showing the number of Weighted SEMs per subject(represented in dots), coloured by TCDD quartile rank, divided for the top five genes 
most associated. Light blue indicates the lowest TCDD exposure levels, while dark blue represents the highest dioxin values.

were predominantly repressed, leading to developmental issues 
in organs such as the kidneys and craniofacial abnormalities [58]. 
In vitro, researchers found that treating mouse cardiomyocytes 
with TCDD alters their differentiation, which manifests as cardiac 
dysfunction due to inadequate heart formation [59, 60]. In the lat-
ter case, the alteration of Hox gene expression caused by TCDD 
exposure varies, with some genes being overexpressed and oth-
ers underexpressed, depending on the amount of TCDD, which 
influences the gene’s expression status. The literature does not 
provide information regarding a direct relationship between TCDD 
and its ability to alter the methylation status of these genes, 
particularly in germline tissue. However, the role of methylation 

status in Hox genes is crucial in various developmental processes, 
including neural tube formation and muscle cell differentiation
[65, 66].

Our study investigated the link between direct exposure to 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and SEM accumula-
tion in germline tissue. The limited number and rarity of samples 
present a challenge in finding inferential statistical associations. 
The small sample size can make it difficult to detect potentially 
significant findings due to low statistical power in commonly used 
approaches, such as differential methylation analysis. Moreover, 
the scarcity of human TCDD exposure makes obtaining addi-
tional datasets for aggregate results in methodologies such as 
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meta-analysis difficult. However, in their study, Kelsey et al. were 
able to identify methylated regions of the H19 and TEAD3 genes 
in the same dataset, with nominally significant P-value and great 
beta-value differences when comparing high-exposed subjects 
with lower-exposed ones [41]. Based on these results and findings 
from the literature that shows how dioxin alters the methylome 
in animal models, we wondered if there might be other epigenetic 
changes that are difficult to detect using methods that heavily rely 
on statistical power. Additionally, we questioned whether expo-
sure to TCDD is associated with epigenetic drift, which is indicated 
by the accumulation of scattered epigenetic alterations through-
out the entire genome. To assess this aspect, we used stochastic 
epimutations as markers through the method introduced by Gen-
tilini et al., and we applied a new approach to the method defined 
by Gentilini, assigning intensity weights to the epimutations. Our 
approach allowed us to move from a binary ‘epimutated or not’ 
to a more nuanced five-level scale, ranging from ‘not epimutated’ 
to ‘epimutated level 4’. This new methodology approach stream-
lines the concept of epimutation and provides more statistical 
stability for our association models. As a primary result, from 
a statistical point of view, our analysis identified 90 genes that 
showed evidence of significant association with TCDD levels but 
with a small beta coefficient figure. Furthermore, we proceeded 
to do an association analysis with each gene’s EML (epimuta-
tion load). Given the result obtained, we corrected the P-value for 
multiple tests using the Benjamini–Hochberg methodology and 
identified 437 genes that might be affected by dioxin exposure. 
Therefore, to assess the biological processes affected by these 
altered genes, we conducted a pathway analysis of the biologi-
cal processes. Figure 2 shows the significantly enriched processes 
mostly related to embryonic development and reproduction. The 
primary genes that enriched these identified pathways belong to 
the Hox family and are HOXA2, HOXA3, HOXA4, HOXA5, HOXA6, 
HOXD4, and HOXD9. In our case, the identified Hox genes are 
all commonly hypermethylated, a state typically associated with 
gene repression, which aligns with some of the abovementioned 
aspects. Specifically, the hypermethylation of Hox genes, HOXA3 
and HOXD9, which we also identified, has been characterized by 
tissue ageing [67].

Previous studies on this dataset have highlighted how expo-
sure to TCDD is associated with increased biological age, typically 
linked to a rise in SEMs characteristic of epigenetic drift [42,45,68]. 
These mutations have been considered valuable markers for 
quantifying this effect [45]. We, therefore, hypothesize that the 
increase in epigenetic drift observed in found genes might result 
from sperm ageing induced by TCDD exposure, potentially leading 
to harm in both the offspring and the directly exposed individu-
als. This study focuses on multigenerational effects, where direct 
exposure can affect the health of offspring even if they were 
not directly exposed. The proposed mechanism involves epige-
netic alterations, specifically DNA methylation changes, in sperm 
cells. DNA methylation regulates gene expression and is suscep-
tible to environmental influences. While the analysis identified 
statistically significant associations between TCDD exposure and 
methylation levels in 90 genes (Supplementary Data 1), the over-
all effect size was small. The median methylation level increase 
across these genes due to TCDD exposure was negligible, and 
pathway analysis revealed no significant impact on biological 
processes or molecular functions. However, after adjusting for 
multiple tests, a more detailed analysis focusing on individual 
gene regions identified a much larger number of genes (437) with 
significant associations with TCDD exposure. These genes dis-
played a wider range of beta coefficients, indicating a variable 

increase in SEM burden associated with TCDD exposure, rang-
ing from 1% to 43% per unit increase in serum dioxin levels. 
The most compelling finding of this study is the identification 
of 10 significantly enriched biological pathways associated with 
the 437 genes linked to TCDD exposure. These pathways primar-
ily fell into two categories: embryonic and general organismal 
development and reproduction. Notably, the pathways related 
to development appeared to be more affected by TCDD expo-
sure, as evidenced by a higher percentage increase in SEM burden 
in the associated genes than those involved in reproduction as 
observable at Figure 2. This finding suggests that TCDD expo-
sure might have a more pronounced effect on early development
stages.

Since we do not have methylation data from the offspring, we 
cannot definitively state that the identified alterations in these 
genes are hereditary and causative of phenotypic alteration in the 
offspring. However, several studies on animal models demonstrate 
that alterations in various Hox genes in germline tissue can be 
inherited, manifesting as phenotypic abnormalities that influence 
offspring outcomes [69, 70].

Unfortunately, the literature on these aspects is lacking con-
cerning humans due to the difficulty of studying DNA methy-
lation multigenerational effects under conditions of exposure to 
TCDD, despite known serum levels. In conclusion, dioxin expo-
sure poses a significant risk to human health by disrupting the 
regular expression of Hox genes. Understanding the mechanisms 
behind these effects is crucial for developing strategies to prevent 
and treat dioxin-related diseases.

Study limitations
We conducted the research based on a specific 
dataset (GSE139307) involving Vietnam veterans directly exposed 
to Agent Orange, which does not represent the broader population. 
Furthermore, while we used the Benjamini–Hochberg method to 
adjust for multiple tests, a larger sample size will increase the sta-
tistical power to confirm the observed associations and provide 
more robust estimates of effect sizes. Additionally, the functional 
consequences of the identified SEMs remain unclear.

Future perspectives
Future research should explore the functional consequences of 
the identified SEMs to determine whether these methylation 
changes translate into altered gene expression and ultimately 
impact developmental or reproductive health outcomes. Addi-
tionally, it should investigate the mechanisms by which TCDD 
exposure might lead to increased SEM burden, specifically in 
developmental pathways.

Conclusions
Our study provides valuable insights into identifying genetic vari-
ations associated with specific biological factors with initial evi-
dence, suggesting that TCDD exposure might be related to alter-
ations in the germline methylome, potentially affecting develop-
mental processes. Despite sample size limitations, our approach 
offers a novel method to explore genes affected by specific biologi-
cal factors. Although our study may not provide definitive answers 
regarding the impact of identified variations, it lays the ground-
work for future research. By leveraging our approach, researchers 
can overcome sample size limitations and better understand the 
complex interplay between genetic variations and biological fac-
tors. In summary, while our study has significant limitations, it 
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Table 3. Summary of the phenotypic variables, divided by exposed 
and non-exposed subjects

Exposed Not exposed Overall
(N= 26) (N= 11) (N= 37)

Serum TCDD (ppt)
Mean (SD) 32.5 (38.5) 4.27 (1.37) 24.1 (34.7)
Median [Min, Max] 17.1 [5.62, 168] 4.09 [2.21, 7.05] 12.1 [2.21, 168]
Age (years)
Mean (SD) 74.0 (8.31) 70.7 (6.81) 73.0 (7.94)
Median [Min, Max] 69.0 [65.0, 94.0] 68.0 [65.0, 84.0] 69.0 [65.0, 94.0]
BMI
Mean (SD) 29.6 (3.75) 32.4 (5.67) 30.4 (4.52)
Median [Min, Max] 28.5 [23.9, 38.0] 31.7 [22.9, 43.7] 29.7 [22.9, 43.7]
Smoking
Current 3 (11.5%) 1 (9.1%) 4 (10.8%)
Former 15 (57.7%) 8 (72.7%) 23 (62.2%)
Never 8 (30.8%) 2 (18.2%) 10 (27.0%)

Reported are the mean values with their respective standard deviations and 
medians with minimum and maximum ranges for continuous variables such 
as serum dioxin, age, and Body Mass Index (BMI), as well as the percentage 
prevalence for categorical variables such as smoking status.

offers a promising avenue for further investigation. Although the 
clinical implications of these altered genes identified in the sperm 
remain speculative without further functional studies, our results 
can aid future investigations. 

Materials and methods
Dataset description
In this study, we analysed the dataset derived from the Air 
Force Health Study, a long-term cohort study initiated in 1982 
to assess health outcomes among American veterans, particu-
larly those involved in Operation ‘Ranch Hand’ during the Viet-
nam War, which exposed them to the herbicide Agent Orange, 
whose primary contaminant was 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD). The specific dataset used in this study is available 
on the Gene Expression Omnibus (GEO) platform under the acces-
sion code GSE139307. It comprises DNA methylation data obtained 
from sperm samples using the Infinium Methylation 450k technol-
ogy from 26 veterans who were directly exposed to Agent Orange 
as part of Operation Ranch Hand. It also includes DNA methyla-
tion data from 11 veterans, part of the same cohort, who served 
in cargo transport operations far from Southeast Asia during the 
Vietnam war and were, therefore, not exposed to tactical herbi-
cides [71]. In addition to DNA methylation data, the dataset con-
tains various phenotypic variables, such as serum dioxin levels, 
smoking habits, Body Mass Index (BMI), and age. The 11 veterans 
who were not exposed to Agent Orange exhibit minimal serum 
dioxin levels, which are considered as the dioxin background. This 
information may be useful in reconstructing an increasing trend 
in serum dioxin levels. Table 3 lists phenotypic variables available 
for this dataset.

Statistical analysis
Quality control and preprocessing
We utilized the Champ package [72] to conduct a comprehen-
sive quality control assessment to identify and mitigate technical 
and biological biases commonly encountered in DNA methylation 
datasets. Our stringent evaluation involved excluding probes with 
excessively low or high fluorescence values and those that did 
not display significant 𝛽 values compared to the background. We 

also implemented a filtering step to eliminate probes associated 
with known single-nucleotide polymorphism. Quality control pre-
served all samples because all have less than 10% missing infor-
mation at the Cytosine-Phosphate-Guanine dinucleotide (CpG) 
level.

Since all study participants were male, we decided not to 
eliminate the probes for the sex chromosome. This decision is con-
sistent with the nature of the tissue under study, as excluding this 
region would undermine the aims of our research.

After we finished the quality control phase, we conducted a 
principal component analysis of the probe data, which confirmed 
the lack of batch effects by showing no significant clustering asso-
ciated with Sentrix ID. To ensure complete genome coverage, we 
analysed the percentage of Illumina-designed probes present in 
our data for each genic region, including Body, 1st Exon, 3’UTR, 
5’UTR, TSS200, and TSS1550, as well as for each CpG island region, 
including n-shelf, n-shore, s-shelf, and s-shore. We represented 
the coverage in Fig. 5. 

Based on these observations, we selected Subset-quantile 
Within Array Normalization [73; 74], the most appropriate normal-
ization method to reduce differences between samples caused by 
technical factors unrelated to batch effects.

Differential methylation analysis
We started our research by conducting a thorough analysis of 
methylation signals, which included making necessary adjust-
ments for confounders such as age, BMI, and smoking habits to 
ensure accuracy. We used the quantile regression model at the 
median to perform the analysis. We aimed to identify the genomic 
regions where we could model the methylation levels with TCDD 
concentration.

Weighted stochastic epimutation analysis
We used the R package [75] Semseeker’s [76] functions to iden-
tify the SEMs (semseeker::semseeker) and search genomic regions 
with a significant burden of epimutations associable with TCDD 
serum levels (semseeker::association).

Many are the methods to quantify epimutations, includ-
ing those described by Teschendorff [77], Gentilini [49], and 
Irizarry [78]. The Gentilini method identifies extreme outliers in 
the methylation signals and helps apply regression models or 
statistical tests to the cumulative burden observed in specific
probes.

Our study adopted a method based on the Gentilini definition 
of epimutations, which is compatible with regression modelling. 
This approach aims to identify signals that overflow significantly 
from a reference signal interval and assign binary values to 
probes based on their agreement within or overflowing from this 
interval. The method uses the range reference calculated using 
the equations (3) and (4). The method computes the reference 
range using Q1, the first quartile, Q3, the third quartile, and the 
interquartile range (IQR).

LMinp = Q1 − (3 × IQR), (1)

LMaxp = Q3 + (3 × IQR). (2)

The Gentilini method considers the epimutation a fixed value 
of one, as in the following equations:
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Fig 5. The chart displays the percentage of genomic probe coverage for each specific area (indicated by the columns). Each cell shows the percentage 
of genomic areas with coverage defined by the corresponding row. The shade of blue illustrates this percentage of the overall genome coverage: darker 
shades indicate a higher prevalence than the entire genome. The sum of the values per column corresponds to the total coverage of that area. For 
example, the first row of the first column indicates 68.57% of all the first exons are 100% covered, while any probe does not cover 12.46% of the exons.

Δhyper = { Mvalue − LMaxp, if Mvalue > LMaxp,
0, otherwise

(3)

Δhypo = { LMinp − Mvalue, if Mvalue < LMinp.
0, otherwise

(4)

Furthermore, we calculated abs(Δhyper) and abs(Δhyper) associ-
ated quartiles across all samples and probes to weigh the over-
flowing signals, as done by Corsaro et al. [79]. This operation allows 
us to observe different weights, indicating their significance. Con-
verting the signal to quartiles is necessary to avoid misleading it 
as an absolute value because the overflowing signal starts at zero. 
Still, this zero is, de facto, the boundary of the benchmark range.

We used the control group’s methylation signal interval as the 
reference range, as pictured in Image A of Fig. 6. To identify the 

epimutation, we use the residual signal above (blue) and below 
(orange) the benchmark range as in Image C of Fig. 6. A positive 
residual value indicates hypermethylation (blue), while a negative 
value indicates hypomethylation (orange).

To quantify the importance of the epimutations, we calcu-
lated the signal strength ratio outside the reference interval to the 
interval itself as in Image D of Fig. 6, thus assessing the relative 
importance of these deviations. In addition, we used quartiles to 
assign integer values to these ratios as in Image E of Fig. 6. In this 
way, we assigned a weight to the epimutated probes to mimic the 
importance of the values based on their deviation from the refer-
ence interval, even though they have signals close to zero, defined 
as the edge of the reference interval.

The hypermethylated probes in Image A of Fig. 6, coloured in 
blue, exceed the range by nearly five times the average excess 
of the hypomethylated probes. The delta (DELTAS) depicted in 
Image C of Fig. 6 ranges between 0 and 0.4. At the same time, 
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Fig 6. The signal analysis, as 𝛽 values, of a specific probe across all study participants. The vertical axis represents the signals, while the horizontal 
axis lists the subjects, each marked distinctly. (A) demonstrates the calculation method for the reference range of the probe in question across all 
analysed subjects. Values determined by formulas (1) and (2) are highlighted in red, and dashed red lines denote the boundaries of the range. 
Instances where the probe/subject signals fall outside the range are coloured blue for hypermethylation and orange for hypomethylation, with 
subjects within the range in grey. Furthermore, the subjects of the reference population are coloured in cyan. (B) displays the presence of the probe in 
subjects according to the criteria defined by Gentilini, where a value of one indicates presence. The colour code remains unchanged: blue for 
hypermethylation, orange for hypomethylation, and grey for no alteration. (C) presents the distribution of probe signals among subjects as shown in A 
but referenced to zero. The colour code remains unchanged: blue for hypermethylation, orange for hypomethylation, and grey for no alteration. (D) 
illustrates the ratio of signals exceeding the reference range to the range’s excursion for each subject examined with the same probe. Subjects not 
exhibiting out-of-range values for the probe in question are grey. (E) shows the quartiles assigned to each subject over the entire genome. The colour 
code remains unchanged: blue for hypermethylation, orange for hypomethylation, and grey for no alteration.

Fig 7. These figures display the burden of epimutations across 100 probes for the same subject, (A) as adopted in this study and (B) according to the 
Gentilini method.
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the ratio to the comparison interval fluctuates between 0 and 
10, with the hypermethylated probes standing out compared to 
the hypomethylated ones. Assigning the number of the associated 
quartile to the probe highlights how, over the entire genome, the 
first, fourth, and seventh probes have a numerically higher weight 
than the second probe. We could end up losing this distinction 
using only the delta (Image C of Fig. 6) or each probe’s ratio to the 
reference range (Image D of Fig. 6) because both figures start from 
the absolute zero.

It is crucial to consider the probe’s burden while aggregating 
data. We may combine the burden with different scales if we do 
not calculate the ratios. For instance, as shown in Fig. 7, if we 
do not perform ratio calculation and quantisation, we may lose 
crucial information about the overflowing signal, as illustrated 
in Image B of Fig. 7. Neglecting the overflowing signal magnitude 
implies that we could end up having the same total burden even 
when the importance of the epimutation varies greatly.

To investigate possible associations, we have set the null 
hypothesis H0 as the concept that the connection between epimu-
tation load and TCDD (for instance, the quantile at the median 
regression beta) results from the casualty. In contrast, our alter-
native hypothesis H1 suggests that the observed association (the 
regression beta) is due to the exposure to TCDD. Our analysis used 
permutation tests to investigate potential associations between 
epimutation load (EML) and blood TCDD levels for each gene. We 
broke the relationship between the weighted epimutation load 
and the measured dioxin levels to create a null hypothesis and 
generated random associations.

We initially conducted 100 permutations, which produced 100 
regression beta coefficients. We then compared the H1 observed 
regression beta value within the H0 (regression beta) confidence 
interval range. If it is significant, e.g. the alternative hypothesis’s 
regression beta value was outside the null hypothesis’s confidence 
interval, we carried out additional permutations, up to 10 000. We 
then verified if the regression beta falls out of the H0 confidence 
interval accepting the alternative hypothesys H1, we computed 
the Pvalue as the number of coefficients of H0 falling out of the 
observed H1 regression beta.

Using this rigorous permutation process, we could validate 
the alternative hypothesis if its regression beta consistently fell 
outside the confidential range defined (95%) for the null hypoth-
esis. Additionally, we filtered perturbed genes for an exact Pvalue <
.05. We utilized the perturbed genes to identify the biological 
pathways that were significantly affected. To analyse these path-
ways, we used the shinyGo web platform [80]. This comprehensive 
approach uncovered the intricate relationships between epimuta-
tions, TCDD exposure, and their collective effects on epigenomic 
integrity and function.
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