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Abstract: Cisplatin (CP) is a powerful chemotherapeutic agent; however, its therapeutic use is
restricted due to its nephrotoxicity. In this work, we profiled the phytoconstituents of Jasminum
grandiflorum flower extract (JGF) using LC-MS/MS and explored the possible molecular mechanisms
against acute renal failure through pharmacological network analysis. Furthermore, the possible
molecular mechanisms of JGF against acute renal failure were verified in an in vivo nephrotoxicity
model caused by cisplatin. LC-MS analysis furnished 26 secondary metabolites. Altogether, there
were 112 total hit targets for the identified metabolites, among which 55 were potential consensus
targets related to nephrotoxicity based on the network pharmacology approach. Upon narrowing the
scope to acute renal failure, using the DisGeNET database, only 30 potential targets were determined.
The computational pathway analysis illustrated that JGF might inhibit renal failure through PI3K-Akt,
MAPK signaling pathway, and EGFR tyrosine kinase inhibitor resistance. This study was confirmed
by in vivo experiment in which kidneys were collected for histopathology and gene expression of
mitogen-activated protein kinase 4 (MKK4), MKK7, I-CAM 1, IL-6, and TNF receptor-associated
factor 2 (TRAF2). The animal-administered cisplatin exhibited a substantial rise in the expression
levels of the MMK4, MKK7, I CAM 1, and TRFA2 genes compared to the control group. To summarize,
J. grandiflorum could be a potential source for new reno-protective agents. Further experiments are
needed to confirm the obtained activities and determine the therapeutic dose and time.

Keywords: enrichment analysis; LC-MS/MS; MAPK pathway; gene expression; protein–protein
interaction; network pharmacology

1. Introduction

Cisplatin is a powerful chemotherapeutic drug that can be used to cure tumors.
However, CP has a number of side effects, including nephrotoxicity, which is linked to
a high morbidity and mortality rate [1,2]. Nephrotoxicity is caused by cisplatin due to
apoptosis and necrosis [3], and tubules inflammation [4]. The oxidative stress triggered by
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cisplatin leads to the development of renal tubule damage [5]. The formation of reactive
oxygen and nitrogen species (ROS and RNS) alters the structure and function of cellular
membranes. [6]. Consequently, their buildup in the kidneys and lysosomes [7] elucidated
the mechanisms for CP-induced nephropathy [8]. Whereas many pathways for CP-induced
nephrotoxicity have been investigated, including mitochondrial malfunction, inflammation,
DNA damage, oxidative stress, and apoptosis, the ultimate process is still unknown [9,10].

Therefore, antioxidants and free radical scavengers can aid in the prevention of
cisplatin-induced nephrotoxicity. Cisplatin causes apoptosis by disrupting DNA [11].
Many signaling pathways that can be activated by lipid peroxidation and oxidative stress
affect cell survival or death in response to cisplatin [12]. Chemical and physical stressors
stimulate the mitogen-activated protein kinase (MAPK) pathways, which modulate differ-
entiation, proliferation, and death [13]. The three main MAPK pathways terminate in ERK,
p38, and JNK/SAPK enzymes.

Cisplatin is also seen in numerous cell lines as renal epithelial cells, which stimulate
these three pathways [14,15]. Inflammation, cell cycle regulation, and differentiation are all
affected by p38 MAPK [16]. However, its significance in cancer treatment is unclear. Some
researchers believe that p38 MAPK regulates the p53-mediated response to cisplatin [17–20].

Plants and their components are a better choice for treating ailments than any manu-
factured chemical [21]. The medicinal plant Jasminum grandiflorum Linn. (Family: Oleaceae)
is widely utilized for both decorating and therapeutic value. J. grandiflorum flower (JGF)
is traditionally used to treat mental illness, wounds, infections, skin injuries such as con-
junctivitis and dermatitis, dysmenorrhea, spasms, ulcers, and cancer. In China, JGF is also
extensively drunk as a heat-clearing and purifying beverage [22,23]. Several beneficial
components, including flavonoids, iridoids, triterpenoids, secoiridoids, and lignans, have
been identified from J. grandiflorum [24,25].

Although other Jasminum species and different organs have been investigated, the
active metabolites of J. grandiflorum flowers (JGF) growing in Egypt have never been
studied [26,27]. Here, we analyzed the bioactive compounds of JGF extract using high-
performance liquid chromatography coupled with photodiode array detector/mass spec-
trometry (HPLC-PDA-MS/MS), and then used network pharmacology to explore the con-
nections between the active constituents of JGF, possible protein targets, and hub-signaling
pathways related to acute renal failure. Furthermore, in vivo studies investigating JGF’s
antioxidant activity in cisplatin-induced renal damage treatment in rat models corroborated
the molecular processes predicted by the network pharmacology method against acute
renal failure.

2. Materials and Methods
2.1. JGF Extraction

Jasminum grandiflorum Linn. flower powder was made from dried fine crushed flowers
collected from Keram fields in El-Behaira Governorate, Egypt. Dr. Mohammed El-Gebaly
(Consultant in Orman Garden) verified the plant, and a voucher sample (# 3.10.16.6) was
preserved at the Department of Pharmacognosy, Cairo University.

The powdered flower material (1 kg) was extracted with 80% aqueous methanol by
percolation (3 × 3 L). The extract was concentrated under reduced pressure to afford a
residue (108.8 g) of dry J. grandiflorum flower extract (JGF).

2.2. JGF Analysis

A Thermo Finnigan Surveyor Plus HPLC apparatus connected to a quaternary pump,
a Surveyor UV–Vis photodiode array detector, and an LCQ-Duo ion trap mass spectrometer,
via an electrospray ionization source, was utilized. The experiment was performed on
a Gemini C18 110 Å (150 × 2 mm, 5 µm). A gradient of water and acetonitrile (ACN)
(0.1% formic acid each) was applied from 5% to 30% ACN over 90 min, with a flow rate of
1 mL/min and a 1:1 split before the ESI source
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The injection volume was 5 µL with 1 mL/min flow rate. For the negative ionization
mode, the following were the ESI conditions: 350 ◦C, 35 psi nebulizer pressure, 10 L/min N2
drying gas flow rate, mass range 50–2000 m/z. The system was controlled with XcaliburTM

2.0.7 software. The negative ion mode operating parameters of the MS were employed [28].

2.3. Prediction of Bioactive Ingredients of JGF

All the compounds of JGF by LC/MS/MS analysis were considered as candidate
compounds. As an online chemical database, PubChem Database (http://pubchem.ncbi.
nlm.nih.gov/ accessed on 13 March 2022) was utilized to obtain the chemical data of
identified compounds (3D molecular structures, PCIDs, conocial smiles). The 3D molecular
structure files were uploaded to the Binding DB database (https://www.bindingdb.org/
bind/index.jsp accessed on 20 March 2022), an online tool for identifying drug targets. We
obtained anticipated drug targets for each metabolite using this web tool. We identified the
target genes with a normalized fit score of >0.7 as prospective JGF targets after combining
the duplicate data [29].

2.4. Potential Targets Intersection of JGF with Disease

Using the NCBI Gene database (https://www.ncbi.nlm.nih.gov/gene/ accessed on 22
March 2022) [30], and the Online UniProtKB/Swiss-Prot database (https://www.uniprot.
org/help/uniprotkb accessed on 25 March 2022) [31], the genes associated with renal
fibrosis were gathered from DisGeNet and NCBI databases [32]. The keywords used were
“kidney disease”, “acute kidney insufficiency”, “chronic kidney disease”, “chronic kidney
failure”, “kidney injury”, “kidney insufficiency”, “acute kidney failure”, kidney ischemia”,
prerenal acute kidney”, and “glomerular filtration”. The targets were annotated human
genes in this experiment. The interaction of the collected targets was then assigned as a
possible therapeutic target. The STRING database was utilized to determine the interaction
connection between target proteins.

2.5. Protein–Protein Interaction (PPI) Data

The PPI data were acquired from the STRING database (https://string-db.org/cgi/
network?taskId=bIDN4htc9NBY&sessionId=bZWvNlZHMn9h accessed on 27 March 2022) [33],
as a reliable database for predicting direct and indirect protein–protein interactions. The tar-
get proteins were chosen with the human species “Homo sapiens” and a confidence score
greater than 0.4. STRING was used to find proteins that interacted with the indicated targets of
JGF-isolated compounds directly or indirectly and acute renal failure [34].

2.6. Network Construction and Visualization

The Cytoscape network analysis program version 3.9.0 (a software platform that
visualizes complex networks and integrates the results) was used to construct compound–
target, protein–protein interaction (PPI), and compound–target–disease networks [35]. The
difference was deemed significant at p < 0.05. Nodes represent targets, compounds, and
renal diseases in the graphical network, while edges represent corresponding interactions.

2.7. Pathway and Functional Enrichment Analysis

The represented pathways related to JGF and acute renal failure were retrieved by
the KEGG (Kyoto Encyclopedia of Genes) enrichment analyses (https://www.genome.
jp/kegg accessed on 4 April 2022) [36] and Gene Ontology (ShinyGO) database (http:
//bioinformatics.sdstate.edu/go/ accessed on 7 April 2022) [37] to investigate the biological
processes, cellular components, molecular functions, and involved pathways.

2.8. Animals

The experiment was performed under the guidelines of the Research Ethical Commit-
tee (Faculty of Pharmacy, Tanta University, Egypt, Approval #PO-21-00109). Male Sprague
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Dawley (230–260 g) rats were housed under standard conditions of temperature (22 ± 1 ◦C)
and humidity (50–55%), and a 12-h light/dark cycle. There was plenty of food and drink.

2.9. In Vivo Experimental Design

The rats were divided into four groups (15 each) at random: the first group was given
saline (2.5 mL/kg) intraperitoneally (IP) (normal control group); for the second group, a
single dosage of 5 mg/kg CP (Pfizer Company) (1 mg/mL sterile concentrate) was given IP
(CP group). For 14 days, the third group was given 40 mg/kg JGF dissolved in water orally
(JGF group). The fourth group was given 40 mg/kg JGF dissolved in water orally for two
weeks, with a single CP (5 mg/kg, i.p.) dosage on the tenth day. All rats were weighed and
anesthetized before decapitation 24 h after the last treatment. Sera were separated after
blood samples were collected. The kidneys were removed right away in an ice-cold saline
solution. For histopathological and gene expression research, portions of kidneys were
sliced into small pieces.

2.10. Estimation of Blood Urea Nitrogen and Serum Creatinine

Blood urea nitrogen (BUN) was monitored spectrophotometrically following Tabacco
et al. [38]. In summary, serum was diluted 1:4 in normal saline, and 5 µL of diluted serum
and standard was added to microplate wells, followed by 150 µL of urease mix solution.
At room temperature, the plate was incubated for 15 min with shaking. Each well was
then filled with 150 µL of alkaline hypochlorite. After 10 min at room temperature, using a
microplate reader, the absorbance of each sample was measured in duplicate at 620 nm. A
standard curve was prepared to calculate the concentration. Serum creatinine was detected
following the procedures of Fabiny and Ertingshausen [39]. Briefly, after 30 s, picric acid
(17.5 mmol/L final concentration)/NaOH solution (0.16 mol/L final concentration) was
added to 100 µL of serum samples, and the standard and the absorbance of the standard
and sample were measured after 2 min. The creatinine concentration was then estimated
by dividing the sample’s delta absorbance by the control’s delta absorbance multiplied by
the standard concentration.

2.11. Determination of Malondialdehyde (MDA) of Lipid Peroxidation

The concentration of MDA was determined in tissues using the method previously
established by Satoh [40] and Ohkawa et al. [41], due to MDA being the primary product
of membrane lipid peroxidation. The idea of this approach is based on the development
of a pink color as a result of MDA and thiobarbituric acid reacting. The reaction yields a
pink thiobarbituric acid reactive substance (TBARS) with a spectrophotometric wavelength
of 532 nm.

2.12. Determination of Glutathione Levels (GSH) in Kidney Tissues

GSH concentration was measured using Beutler’s method [42]. The procedure is
established by reducing 5,5′ dithiobis (2—nitrobenzoic acid) with GSH to generate a yellow
compound. The reduced chromogen’s absorbance could be determined at 405 nm and was
directly proportional to GSH content.

2.13. RNA Extraction and Gene Expression Studies

TRIzol reagent (Invitrogen, Waltham, MA, USA) was used to purify the RNA. Thermo
Scientific Maxima First Strand DNA Synthesis Kit with dsDNase was then used to make
complementary DNA (Thermo Fisher Scientific, Rockford, IL, USA). The control gene was
the B actin gene. Primer 3 PLUS software was used to create gene primer sets (v. 0.4.0; 163
https://frodo.wi.mit.edu/; accessed on 29 December 2021 Table S1). Real-time PCR assays
were conducted using the Applied Biosystem 7500 real-time PCR detection system (Life
Technologies, Carlsbad, CA, USA) with the SensiFAST SYBR Lo-ROX PCR Master Mix Kit
(Bioline, Toronto, UK). The overall reaction volume was 20 µL, with the following thermal
reaction profile: initial denaturation at 95 ◦C for 2 min followed by 40 cycles of 95 ◦C for

https://frodo.wi.mit.edu/


Metabolites 2022, 12, 792 5 of 19

5 s, then 60 ◦C for 30 s. The method (2−∆∆Ct) was used for the calculation of fold induction
values [43].

2.14. Histopathology Assessment

Each group’s kidneys were preserved in a 10% neutral buffered formaldehyde solution.
The conventional process was followed for tissue dehydration, xylene cleaning, and paraffin
embedding. Hematoxylin and eosin, as well as periodic acid schief (PAS), were used to
stain sections cut using a rotary microtome at 5–7 µm thickness.

2.15. Statistical Analysis

All the tests were done in triplicate, and the data were reported using SPSS software
version 26 as means and standard deviation (SD) (IBM Corp., Version 26.0. Armonk, NY,
USA). ANOVA was used to compare the parameters obtained from the various tested
groups. The statistical significance of the received data was assessed using p < 0.05.

3. Results
3.1. JGF Phytochemical Profile

A total of 26 secondary metabolites were tentatively identified in JGF using LC-MS/MS.
The main compounds are divided into several subclasses, including secoiridoids, flavonoids,
and phenolic and organic acids. Comprehensive profiling is presented in Table 1, and the total
ion chromatogram (TIC) of JGF is displayed in Supplementary Figure S1.

Table 1. Phytochemical profiling of J. grandiflorum flower (JGF) in negative mode HPLC-PDA-MS/MS.

No Compound RT m/z Fragments Ontology

1 1-Caffeoylquinic acid 17.04 353.16 191, 179 Phenolic acid

2 Verbascoside 25.02 623.59 461, 161 Phenylpropanoid

3 Elenolic acid glucopyranoside 27.38 403.95 241, 179 Secoiridoids

4 Quercetin-3-O-pentosyl (1–2) acetylpentoside 27.99 607.11 433, 301 Flavonoid glycosides

5 Quercetin 3-rutinoside 30.09 609.22 463, 301 Flavonol glycosides

6 Quercetin-3-O-sophoroside 33.14 624.94 463, 301 Flavonol glycosides

7 Myricetin-3-O- glucopyranoside 34.10 479.08 317, 195 Flavonoid-3-glycosides

8 Eriodictyol-7-O-neohesperidoside 34.14 595.23 289, 163 Flavonoid-7-glycosides

9 Kaempferol 3,7 Di-glucoside 35.13 609.32 285, 179 Flavonoid glycosides

10 10-hydroxyoleuropein 36.21 555.08 539, 249 Secoiridoids

11 Vicenin-2 37.04 593.28 503, 353 Flavonoid 8-C-glycosides

12 Oleuropein glucoside 38.75 701.31 529, 223 Secoiridoids

13 Kaempferol-7-O-glucoside 40.46 447.34 285, 177 Flavonol glycosides

14 Isorhamnetin-3-O- glucoside 41.84 477.03 315, 193 Flavonoid 8-C-glycosides

15 Isoquercitrin 43.41 463.08 301, 179 Flavonoid 8-C-glycosides

16 Multifloroside 44.83 677.31 661, 539 Secoiridoids

17 Oleuropein 46.46 539.17 377, 233 Secoiridoids

18 Kaempferitrin 47.44 577.31 285, 179 Flavonoid 8-C-glycosides

19 Reynoutrin 49.18 433.10 301 Flavonoid glycosides

20 Quercetin 3-(6”-acetylglucoside) 51.08 505.02 301, 271 Flavonol glycosides

21 Myricetin 3-xyloside 56.41 449.05 317, 179 Flavonoid-3-glycosides

22 Laricitrin 3-O-glucoside 58.48 493.10 331, 151 Flavonoid glycosides

23 Myricitrin 59.39 463.28 317, 179 Flavonoid-3-O-glycosides

24 Kaempferol 61.25 285.30 269, 241 Flavonoid glycosides

25 Quercetin 61.62 301.17 245, 179 Flavonoid

26 5-O-Methyllicoricidin 66.82 483.61 203, 177 Flavan
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3.2. Compound–Target Network Construction

A total of 112 targets were found among the 26 identified chemicals in the NCBI Gene
and UniProtKB/Swiss-Prot databases. A total of 55 potential renal disease targets were
identified from the DisGeNet database, among which only 30 targets are related to acute renal
failure. Taking the intersection of the 112 potential targets and the compounds in JGF into
account, we constructed a compound–target network using Cytoscape (Figure 1 and Table S2),
which included 138 nodes (26 for potential phytoconstituents and 112 for protein targets) with
547 edges. The top hit targets for the identified compounds were PTPN1, NOX4, and TNF,
with no edges > 10.
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Figure 1. Compound–common targets of the identified compounds of J. grandiflorum flower (JGF).
Pink rectangle shapes represent the identified compounds from JGF; blue circles indicate common
targets of identified compounds. Edges indicate interactions between identified compounds and
common targets.

The 112 possible therapeutic target genes were loaded into the STRING database,
which supplied predicted interaction data, and then imported into Cytoscape 3.9.0 for
analysis and network construction (Figure 2). In the PPI network, the top 17 genes,
prioritized by interactions, were gathered to be the hub targets, each represented by
edges > 25, namely HSP90AA1, TNF, ESR1, VEGFA, EGFR, PPARG, PTGS2, HSP90AB1,
CA4, MMP9, AR, KDR, CYP3A4, HDAC1, APP, CDK1, and CDK2. These genes contributed
to the gene–disease interactions. The PPI was represented in 4 clusters, with 131 nodes,
831 edges, and an average local clustering coefficient equal to 0.532.
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to narrow the scope to urogenital disorders, a total of 47 genes were obtained (Figure 3). 
To direct the research scope to acute renal failure disorders, 30 genes were detected (Fig-
ure 4). 

Figure 2. PPI of the hit targets of the identified compounds of J. grandiflorum flower (JGF): results
represented in four clusters obtained from the STRING online database; dotted lines represent
interactions between clusters, solid lines represent interactions between proteins.

3.3. Potential Targets Intersection of JGF with Disease

The DisGeNET online database was used to interpret the associated diseases with
the identified 112 target hits of the JGF-identified compounds. Upon filtration of the
results to narrow the scope to urogenital disorders, a total of 47 genes were obtained
(Figure 3). To direct the research scope to acute renal failure disorders, 30 genes were
detected (Figure 4).
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3.4. Compounds–Common Targets–Renal Failure Pharmacology Network

The combination and merging of the JGF–compounds, compounds–targets, and
targets–non-cancer renal diseases networks formed the complete pharmacology network
that correlates the identified compounds from JGF, as described in Figure 5.
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3.5. Target Genes–Pathways Network

To investigate the probable pathways of JGF on kidney disorders, the pathway enrich-
ment of 112 probable targets was targeted by 26 identified compounds interacting with
renal diseases using the KEGG and ShinyGO databases. The pathways analysis conducted
with the KEGG diagram illustrated the top 24 pathways annotated by the target genes.
Upon focusing on the pathways involved in acute renal failure disorders, three signaling
pathways were identified: PI3K-Akt, MAPK, and EGFR tyrosine kinase inhibitor resistance.
Each pathway diagram is illustrated to elaborate the specific genes among our targets
involved directly in the nominated pathways as described by the KEGG labeled diagrams
(Figure 6 and Table S3).
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diseases illustrate the directly involved genes among JGF target hits. Red rectangles are the target
genes in each pathway: (A) PI3K-Akt signaling pathway, (B) MAPK signaling pathway.

3.6. GO Enrichment Analysis

Using GO terms, the gene ontology results are illustrated as networks (Figure 7),
representing the analysis of the cellular components and illustrating the role of the target
hits of JGF phytometabolites. The major identified cellular components according to
fold enrichment are receptor complex (GO:0043235), apical part of cell (GO:0045177), and
perinuclear region of cytoplasm (GO:0048471) (Table S4). The molecular functions enriched
to all targets were arranged according to fold enrichment, and the top molecular functions
are protein kinase activity (GO:0004672), phosphotransferase activity, alcohol group as
acceptor (GO:0016773), and oxidoreductase activity (GO:0016491) (Table S5). The biological
processes enriched for all the target hits of JGF were arranged according to fold enrichment,
and the top biological processes are olefinic compound metabolic process (GO:0120254),
cellular response to oxygen-containing compound (GO:1901701), and response to oxygen-
containing compound (GO:1901700) (Table S6).
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3.7. In Vivo Studies
3.7.1. Effects of JGF on Bodyweight, BUN, and Serum Creatinine

The impact of CP, JGF, and their combination on rat body weight is shown in Figure 8.
Compared to the control group, CP-treated animals lost weight significantly (p < 0.05) at
the end of the experiment. Interestingly, JGF treatment alone increased the body weight
compared to the control and cisplatin groups. In addition, treatment of JGF in combination
with CP attenuated the deleterious effects of CP and increased the declined body weight
(p < 0.05, Figure 8).
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Cisplatin elevated BUN and serum creatinine levels substantially compared to the
control group (p < 0.001). However, JGF combined with CP completely reversed the elevated
levels, which returned to normal levels in the control group (Figure 8). Of note, there were
no substantial differences in BUN and serum creatinine in the JGF group compared to the
control group.
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3.7.2. Effects of JGF on Renal Oxidative Stress

CP elevated MDA and lowered GSH levels in renal tissue substantially compared to
the control group. Remarkably, pretreatments with JGF inverted the adverse effects and
returned them to normal levels, much like in the control group (Figure 9). Compared to the
control group, treatment of JGF alone did not affect MDA or GSH levels.
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3.7.3. Effects of JGF on the Levels of Gene Expression

Figure 10 depicts the effects of CP, JGF, and their combination on MKK4, MKK7,
I-CAM-1, IL-6, and TRAF 2 expression levels in kidney tissues. CP alone resulted in a
remarkable rise in tested markers (p < 0.001) compared to the control group. Pretreatments
with JGF inverted the elevated levels, leading to a complete setback to normal values
(Figure 10). In the JGF group, no significant alterations in any of the tested markers were
observed.
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3.7.4. Histopathology

Figure 11 depicts the impact of CP and JGF on histological alterations in renal tissues.
Under a light microscope, the kidney tissues from the normal and treated rat groups were
examined. The kidneys of control rats showed no glomeruli histological abnormalities,
proximal convoluted tubules, or distal convoluted tubules. The section in the cortex of rats
that received cisplatin showed severe effects on the renal tubules, with signs of tubular cell
lining vacuolation and intratubular cast deposition. The section in the cortex of rats that
received JGF showed normal architecture. The section in the cortex of rats that received
cisplatin + JGF showed almost normal renal glomeruli and tubules, apart from minimal
tubular cell lining vacuolations.
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4. Discussion

CP is an anticancer medicine that was established to treat a variety of malignancies,
including testicular, head, neck, ovary, lung, and breast cancers [1]. However, its dose-
limiting adverse effect is nephrotoxicity [44]. Acute renal damage was also detected
in roughly 20–30% of patients taking CP [45], and hypomagnesemia in approximately
40–100% of patients [46], as well as distal renal tubular acidosis, hypocalcemia, renal salt
wasting, hyperuricemia, and Fanconi-like syndrome [47].

Nephrotoxicity is defined as a decrease in renal function that results in an elevation in
serum creatinine and blood urea levels as a result of CP [48]. Serum creatinine and BUN
levels were considerably higher in CP-treated rats compared to the untreated group in this
study, indicating that CP caused nephrotoxicity as indicated by a reduction in glomerular
filtration rate. JGF significantly reduced the increased serum creatinine and BUN levels
caused by CP, restoring them to normal values in the control group.

Other research suggests that CP causes ROS and an immunological response, both of
which are nephrotoxic mediators [49,50]. MDA and GSH were assessed as indicators for
oxidative stress in this investigation. The action of cisplatin on renal tissue resulted in a
considerable rise in MDA and a reduction in GSH. The administration of JGF, on the other
hand, resulted in considerable reductions in lipid peroxidation and stimulated a rise in
GSH content in the kidney. As a result of the improved oxidant status, JGF can protect the
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kidney from damage caused by cisplatin. JGF may furnish its nephroprotective activity
through its antioxidant properties.

The p38-MAPK stress pathway, activated by inflammatory cytokines such as TNF-α
or IL-1, is a critical regulator of cell apoptosis [51]. After cisplatin injury, the amount
of inflammatory cytokines and chemokines is raised in the kidney [52]. CP boosted the
expression of inflammatory cytokines such as IL-6 in the current study. TNF-α, IL-1β,
macrophage inflammatory protein-2 (MIP-2), monocyte chemoattractant protein-1 (MCP-1),
ICAM-1, and TGF-β were all upregulated in the kidneys of CP-treated animals [53]. JGF
administration enhanced the CP-induced rise in IL-6 expression levels.

Due to the highly complex biochemistry of plants, which includes a variety of semi-
polar molecules, including important secondary metabolite groups, which may be best
separated and detected by LC-MS techniques, LC-MS-based approaches are anticipated to
be particularly significant for plants. Mass spectrometry is a reliable detection method, and
using tandem mass spectrometry can improve selectivity and specificity. The analysis of
several phytochemicals can be conducted using LC-MS since it is sensitive and selective [54].

The negative ionization modes of LC-MS/MS analysis of J. grandiflorum flower extract
resulted in the detection of twenty-six bioactive metabolites compounds. The identified
metabolites belong to several phytochemical classes, such as secoiridoids, phenolic acids,
and flavonoids, in agreement with the previous literature [27,55].

HPLC–PDA–MS profiling of JGF produces extremely rich metabolite profiles. LC/MS
analysis of JGF demonstrated that it has significant flavonoids and polyphenolic content.
The different flavonoid subclasses (flavone, flavanone, and flavonols) were also represented
by aglycones and glycosides.

Flavonoids are essential in a wide range of nutraceutical, pharmacological, medical,
and cosmetic uses because they are linked to a wide range of health-promoting effects [56].
This is because they possess strong anti-oxidative, anti-inflammatory, anti-mutagenic,
antimicrobial, anti-carcinogenic, vascular, and other therapeutic properties, as well as the
ability to modify crucial cellular enzyme processes [57]. The present study agreed with
previous reports that demonstrate the protective effect of natural products containing
flavonoids as antioxidants and anti-inflammatory agents in kidney injury [58–60].

Cisplatin-induced inflammatory cytokines primarily rely on forming reactive oxygen
species (ROS), NFκB activation, and p38 MAPK activation. TNF-α and IL-1 substantially
activate the stress-activated group of MAPKs (JNK and p38) [52]. This was supported
by the current study, which found that a single dose of CP increased JNK and P38 ex-
pression. TNF activates JNK through the TNF receptor-associated factor (TRAF) class of
adaptor proteins [61].

The present study suggests that cisplatin induced TRAF2 overexpression is the cause
of nephrotoxicity and apoptosis. The reduction in TRAF2 expression in kidney tissues after
JGF administration in CP-treated rats implies that JGF may safeguard against nephrotoxicity
caused by CP through regulating apoptotic pathways. The TRAF2 adapter protein is
recruited when TNF receptors are activated [62,63]. TRAF2 expression needs to be activated
for TNF to activate JNK [62].

According to a previous study, JNK genes have an essential role in modifying the
pro- and anti-apoptotic proteins in the mitochondria in the nephrotoxicity caused by
chemotherapy [64]. By blocking anti-apoptotic proteins, JNK with ROS can increase
apoptosis [65]. JNK can also be activated by MKK4 and MKK7 phosphorylation at threonine
and tyrosine. MAPKKK phosphorylates two locations in the T-loop to activate MKK4 and
MKK7 protein kinases [66].

The MKK7 is mainly triggered by cytokines, whereas MKK4 is activated primarily
by environmental stress [67]. In the present work, CP-induced changes in MKK4 and
MKK7 expression were reduced in CP-treated rats by supplementing them with JGF.
MKK3, MKK4, and MKK6 all activate P38 MAPK [68]. After a single cisplatin dosage, P38
expression was increased in this investigation. Inhibition of p38 MAPK, ERK, or JNK with
particular pharmacologic or genetic inhibitors decreased inflammation and kidney injury
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in multiple investigations. In CP-treated rats, JGF treatment restored P38 expression and
decreased apoptosis.

JGF showed a significant nephroprotective effect in rats, and its nephroprotection
mechanism could be attributable to the presence of a variety of phytochemicals, including
secoiridoids, flavonoids, and phenolic and organic acids with antioxidant properties and
free-radical-scavenging properties. Therefore, this plant could be useful in treating renal
failure caused by nephrotoxic drugs.

5. Conclusions

The metabolites in J. grandiflorum were detected using HPLC-PDA-MS/MS, including
quercetin, myricetin, kaempferol, isorhamnetin flavonoids, and other secoiridoid deriva-
tives. Our findings could contribute to the understanding of the molecular mechanisms
of JGF in CP nephrotoxicity, which were confirmed by in vivo research that supported
the molecular processes predicted by the network pharmacology method. Compared to
the control group, a single dose of CP to rats caused nephrotoxicity, which was related
to a considerable rise in BUN and serum creatinine and a significant increase in MDA
in renal tissues. The expression levels of the MMK4, MKK7, I CAM 1, and TRFA2 genes
were considerably higher in the cisplatin-treated animals than in the control. Furthermore,
the histological investigation revealed that cisplatin induced significant tubular cell lining
vacuolation and intratubular cast deposition in the renal tubules. JFG treatment reduced
cisplatin-induced gene expression changes and kidney structural and functional abnormal-
ities. Gene expression data were also corroborated by histological investigation of kidney
tissues. Our study suggests that the anti-inflammatory effects of JGF can protect from
CP-induced nephrotoxicity through lowering oxidative stress and repairing the histopatho-
logical changes against cisplatin use. However, further studies should be carried out in
the future to reveal the clinical effectiveness of J. grandiflorum as a renal protective drug in
preclinical and clinical trials.
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Abbreviations

PTPN1 Receptor-interacting serine/threonine-protein kinase 1
NOX4 NADPH oxidase 4
TNF Tumor necrosis factor
p38 MAPK Mitogen-activated protein kinase signaling pathway
HSP90AA1 Heat shock protein HSP 90-alpha
ESR1 Estrogen receptor
VEGFA Vascular endothelial growth factor A
EGFR Epidermal growth factor receptor
PPARG Peroxisome proliferator-activated receptor gamma
PTGS2 Cyclooxygenase
HSP90AB1 Heat shock protein HSP 90-beta
CA4 Carbonic anhydrase 4
MMP9 Matrix metalloproteinase 9
AR Androgen Receptor
CYP3A4 Cytochrome P450 3A4
HDAC1 Histone deacetylase
APP beta-Glucuronidase (β-glucuronidase)
CDK1 Cyclin-dependent kinase 1
CDK2 Cyclin-dependent kinase 2
KDR Vascular endothelial growth factor receptor 2
ERK Extracellular signal-regulated kinases

JNK
c-Jun N-terminal protein kinases (JNK), also known as stress-activated
protein kinases

STRING
The STRING database is one of several online resources dedicated to
organism-wide protein association networks

DisGeNET
A discovery platform containing one of the largest publicly available
collections of genes and variants associated with human diseases

HDAC1 Histone deacetylase
GO Gene ontology
JGF Jasminum grandiflorum flowers

HPLC-PDA/MS
High-performance liquid chromatographic coupled with diode array
detector/mass spectrometry
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