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SUMMARY
Skeletal mandibular hypoplasia (SMH), one of the common types of craniofacial deformities, seriously affects appearance, chewing,

pronunciation, and breathing. Moreover, SMH is prone to inducing obstructive sleep apnea syndrome. We found that brain and muscle

ARNT-like 1 (BMAL1), the core component of themolecular circadian oscillator, was significantly decreased inmandibles of juvenile SMH

patients. Accordingly, SMH was observed in circadian-rhythm-disrupted or BMAL1-deficient mice. RNA sequencing and protein chip

analyses suggested that matrix metallopeptidase 3 (MMP3) is the potential target of BMAL1. Interestingly, in juvenile SMH patients,

we observed that MMP3 was obviously increased. Consistently, MMP3 was upregulated during the whole growth period of 3–10 weeks

in Bmal1�/� mice. Given these findings, we set out to characterize the underlying mechanism and found BMAL1 deficiency enhanced

Mmp3 transcription through activating p65 phosphorylation. Together, our results provide insight into the mechanism by which

BMAL1 is implicated in the pathogenesis of SMH.
INTRODUCTION

Skeletal mandibular hypoplasia (SMH), presenting with

smallmandibular deformity, results in anunfavorable facial

profile (Hamid and Asad, 2003). In addition to affecting

appearance, chewing, and pronunciation (de Almeida

Prado et al., 2015;Maeda et al., 2008), severe SMHcan cause

narrowing of the pharyngeal airways, which results in

obstructive sleep apnea syndrome (OSAS). OSAS increases

the risks of cardiovascular disease, cerebrovascular events,

depression, diabetes, and cognitive impairment, leading

to poor life quality (Bibbins-Domingo et al., 2017; Gottlieb

et al., 2010; Kendzerska et al., 2014; Peppard et al., 2006;

Yaggi et al., 2005). Extensive studies on the pathogenesis

of SMHhave been conducted. Bothhereditary and environ-

mental factors contribute to SMH and its associated defor-

mities (Bejdova et al., 2013; Boell and Tautz, 2011).

The circadian rhythm is of considerable interest because

of its potential effects on tissue growth and development

(Kaneshi et al., 2016). Circadian rhythm is an endogenous

rhythm that allows organisms to adapt to the light-dark

cycle, temperature changes, and other environmental

factors, and it plays critical roles in many physiological

and behavioral processes in mammals (Bailey et al., 2014;

Bell-Pedersen et al., 2005). Previous studies have indicated

that the metabolism of bone and cartilage shows a circa-

dian manner, especially in the maxillomandibular

complex (Dudek andMeng, 2014; Gafni et al., 2009).More-
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over, circadian rhythms were seen in expression profiles of

the master regulator gene of chondrogenesis, bonemineral

deposition, and bone formation (Gafni et al., 2009;

Maronde et al., 2010; McElderry et al., 2013; Takarada

et al., 2012). Brain and muscle ARNT-like 1 (BMAL1) is

the paramount component of the circadian rhythmmolec-

ular oscillator, and its functions are irreplaceable in main-

taining the circadian oscillatory mechanism in mammals

(Marcheva et al., 2010). Accumulating evidence suggests

that BMAL1 plays pivotal roles in embryonic development

and postnatal development, including oocyte fertilization,

follicle development, angiogenesis, amelogenesis, neuro-

development, hair growth, and intestinal regeneration

(Al-Nuaimi et al., 2014; Jensen et al., 2012; Powell and

LaSalle, 2015; Stokes et al., 2017; Xu et al., 2016b; Zhang

et al., 2016; Zheng et al., 2013). The absence of BMAL1

can lead to multi-organ dysplasia, premature aging, and a

shortened lifespan in mice (Xu et al., 2016b; Yang et al.,

2016). In the skeletal system, BMAL1 can regulate bone

and cartilage homeostasis and maintain structural integ-

rity, and BMAL1 abnormal expression reduces bone mass

significantly and predisposes knee cartilage to osteoar-

thritis-like damage (Dudek et al., 2016; Peek et al., 2017).

It has been proven that BMAL1 deficiency in mice could

result in limb bone hypoplasia (Samsa et al., 2016). How-

ever, there have been few studies on the effect of circadian

rhythm or core clock gene Bmal1 on mandibular

development.
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In this study, we found that BMAL1 expression in the

mandibular tissues of juvenile patients with SMH

decreased significantly compared with those of subjects

with normal mandibular development. Furthermore, we

noticed that the reduced mandibular bone formation was

concomitant with decreased BMAL1 expression in circa-

dian-rhythm-disrupted mice. Consistently, mandibular

hypoplasia was observed in Bmal1�/� mice. To better

understand the correlation between BMAL1 and mandib-

ular hypoplasia, we deployed RNA sequencing and protein

chip analyses and found that MMP3 was the potential

target of BMAL1. In addition to promoting bone resorption

(Flores-Pliego et al., 2015; Sundaram et al., 2007), MMP3

was verified to inhibit osteoblast differentiation of mouse

bone mesenchymal stem cells (mBMSCs) to ensure the

proper bone formation process. Surprisingly, chromatin

immunoprecipitation (ChIP) and luciferase reporter assays

showed that BMAL1 could not associate directly with the

Mmp3 promoter. Normally, phosphorylated p65 can trans-

locate into the nucleus and subsequently promote Mmp3

transcription (Souslova et al., 2010). Notably, we found

that p65 was concentrated in the nucleus of BMAL1-

depleted cells, suggesting that BMAL1 could impede the

nuclear translocation of p65 via inhibiting p65 phosphor-

ylation. Indeed, circadian locomotor output cycles kaput

(CLOCK) can phosphorylate p65 in the absence of

BMAL1, and BMAL1 addition can counteract the CLOCK-

dependent activation of p65 (Spengler et al., 2012). Taken

together, our results indicated that BMAL1 controls the

expression of MMP3 indirectly via p65 phosphorylation

modulation. Also, these results provided insight into the

pathogenesis of SMH, presenting a potential therapeutic

strategy of mandibular deformity.
RESULTS

BMAL1 Expression Is Downregulated in the

Mandibular Tissues of Juvenile SMH Patients

SMH patients are characterized by the insufficient bone

mass in the mandibles (Figure 1A). Reconstructed three-

dimensional (3D) cone-beam computed tomography (CT)

images showed the differences in bone mass between juve-

nile SMH patients and normal subjects (Figure 1B). In juve-

nile SMH patients, the indexes of mandibular growth

Co-Go (right), Co-Go (left), Go-Me (right), and Go-Me

(left) were significantly lower than those of the control

group. Consistently, the indexes of the mandibular plane

angle (MP)-Frankfurt horizontal (FH; right), MP-FH (left),

were larger (Figure 1C).

To determine the correlation between the expression of

clock genes and SMH, we used qRT-PCR and western blot

to measure BMAL1, CLOCK, REV-ERBa, PER1, PER2,
CRY1, and CRY2 expression levels in human mandibular

tissues. The mRNA and protein levels of BMAL1, CLOCK,

PER1, and CRY2 decreased significantly in the mandibular

tissues of SMH patients, but the CRY1 expression was obvi-

ously upregulated (Figures 1D and 1E). These results

suggested that circadian rhythm disruption could be

involved in the pathogenesis of SMH. Notably, BMAL1

expression change is relatively prominent among the clock

genes affected. The core clock gene Bmal1 is an essential

part of the circadian clock and has been implicated in

maintaining circadian rhythm (Lipton et al., 2015).

Indeed, BMAL1 has been reported to be involved in the

development of limb bone (Samsa et al., 2016).

Circadian Rhythm Disruption Results in Decreased

Mandibular Bone Mass and Bone Size

Our findings indicated that SMH is closely correlated with

the expression changes of clockgenes, suggesting that circa-

dian rhythm may be involved in regulating bone develop-

ment. To further determine if circadian rhythmparticipates

in mandibular bone development specifically, we estab-

lished a jet-lag mouse model to observe the impact of

circadian rhythm disruption on the occurrence and devel-

opment of SMH. In our experiment, C57BL/6J mice were

placed under a normal 12 hr light/12 hr dark (LD12:12) or

a jet-lag schedule with light advanced 8 hr every 2–3 days

for 4 or 8 weeks (Figure 2A). By measuring the expression

of clock genes at different time points, we verified that the

jet-lag schedule disrupted themouse circadian rhythm (Fig-

ure 2B). The mandibles of jet-lagged mice appeared grossly

smaller than those of control mice (Figures 2C and 2D).

Micro-CT analysis showed that the bone volume/total

volume (BV/TV) and trabecular thickness (Tb.Th) were

significantly decreased in the condylar regions of the

jet-lagged group. 3D reconstructions demonstrated that

the total length of themandible and the height of the coro-

noid process were reduced in the jet-lagged group (Fig-

ure 2E). Also, additional indexes were also affected, such

as BS/BVand bonemineral density (BMD), in the jet-lagged

group (Figure S2). Serial sections of the mandibular tissues

stained with Masson’s trichrome and H&E showed that

both the bone mass and the number of osteocytes in

the jet-lagged group were decreased. Moreover, tartrate-

resistant acid phosphatase (TRAP) staining displayed the

increased number of osteoclasts compared with the

LD12:12 group (Figures 2F and 2G). Together, these results

suggest that circadian rhythm disruption is closely corre-

lated with the decreased mandibular bone mass.

Loss of BMAL1 Leads to Skeletal Mandibular

Hypoplasia

Thus far, our data suggest that circadian rhythm is impli-

cated in mandibular bone development. Notably, BMAL1
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Figure 1. BMAL1 Expression Is Downregulated in the Mandibles of Juvenile SMH Patients
(A) The initial facial photographs of normal and SMH patients.
(B) Three-dimensional cone-beam computed tomography images of normal and SMH patients. In the lateral film, the red arrows refer to
Co-Go (ramus length, distance between Co and Go) and Go-Me (distance between point Go and point Me).
(C) Comparisons of the bilateral lengths of Co-Go, Go-Me, and mandibular plane angle between SMH patients and normal individuals.
(D) qRT-PCR analysis of Bmal1, Clock, Rev-erba, Per1, Per2, Cry1, and Cry2.
(E) Western blot analysis of BMAL1, CLOCK, REV-ERBa, PER1, PER2, CRY1, and CRY2 proteins.
Data represent the mean ± SD (n = 12 individuals per group). *p < 0.05 and **p < 0.01 (compared with control), from Student’s t tests.
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expression was affected prominently in SMH patients. To

establish the role of BMAL1 in SMH, we constructed

Bmal1�/� mice and confirmed their genotype by PCR (Fig-

ure 3A). The mandibles of Bmal1�/� mice are smaller than

those of even-aged wild-type mice in 3- and 7-week-old

animals (Figure 3B). Micro-CT analysis showed that

BV/TV and Tb.Th of the condylar region of the mandible

of Bmal1�/� mice were significantly reduced compared

with those of the even-aged wild-type mice. Also, the total

height of the mandible and height of the coronoid process

were decreased upon loss of BMAL1 (Figures 3C and 3D).

Moreover, additional indexes were also affected, such as

BS/BV and BMD, in the Bmal1�/� mice (Figure S3). The

results of Masson’s staining showed that the mandibular

bone mass of Bmal1�/� mice decreased significantly (Fig-

ures 3E and 3F). Similarly, the number of osteocytes per

unit area declined in Bmal1�/� mice (Figures 3E and 3F).

Moreover, the number of osteoclasts increased in Bmal1�/�

mice (Figures 3E and 3F). The results of micro-CT analysis

and H&E staining in the femur also showed decreased

bone mass and osteocytes in Bmal1�/� mice (Figure S4),

which are consistent with the results in mandibles. Taken

together, these data indicated that BMAL1 deficiency led

to bone dysplasia, probably by destroying the balance

between bone formation and bone resorption.

BMAL1 Deficiency Inhibits Osteoblast Differentiation

and Promotes Osteoclast Differentiation In Vitro

To test whether BMAL1 has intrinsic functionality in the

osteogenic functions of mBMSCs, we extracted primary

bone mesenchymal stem cells from Bmal1�/� and wild-

type mice and performed Alizarin red S (ARS) staining.

We noticed that the mineralization of mBMSCs from

Bmal1�/� mice was significantly decreased (Figure 3G).

We also tested the influence of BMAL1 on the osteoclast

differentiation of RAW264.7 cells and found that short

hairpin RNA (shRNA)-mediated knockdown of Bmal1

effectively promoted osteoclast differentiation of the cells
Figure 2. Circadian Rhythm Disruption Results in Decreased Mand
(A) The schematic shows the timeline of the jet-lag experiment s
disruption.
(B) qRT-PCR analysis demonstrated successful establishment of the m
(C) Photograph of the mandibles of 7- and 11-week-old male C57BL/
(D) Representative images of micro-CT reconstruction of mandibles
shadows indicate the position of the condylar regions.
(E) Micro-CT analysis of bone volume/total volume (BV/TV), trabecular
of coronoid process (n = 5 per group).
(F) Representative images of H&E, Masson’s trichrome, and TRAP stai
disrupted mice. The arrows in the H&E staining images indicate osteo
Scale bar, 50 mm.
(G) Osteocyte number (N.Osteocyte/Bone.Ar) and osteoclast number
Data represent the mean ± SD. *p < 0.05, **p < 0.01, and ***p < 0.0
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(Figure 3H). Taken together, these data indicated that

BMAL1 deficiency restrained osteoblast differentiation

and enhanced osteoclast differentiation simultaneously.

In addition, our results verified that osteoclasts, osteocytes,

and their precursor cells are specifically modulated by

BMAL1 during SMH formation.

MMP3 Expression Is Prominently Upregulated in

Mandibular Tissues of Bmal1�/� Mice

To gain an independent assessment of the regulatory tar-

gets of BMAL1, we performed genome-wide RNA

sequencing (RNA-seq) to acquire the transcriptional profile

in Bmal1�/�mBMSCs (Figure 4A). A total of 537 genes were

found to be differentially expressed in BMAL1-depleted

mBMSCs, including 227 downregulated genes and 310

upregulated genes (Figure 4B). Importantly, many candi-

date genes are osteogenesis-related and/or osteoclastic-

related genes (Figure 4C). We further performed qRT-PCR

to validate these differentially expressed osteogenesis-

related or osteoclast-related genes in Bmal1�/� mBMSCs

(Figure 4D). Furthermore, we performed protein chip

assays of mandible tissues from 3-, 4-, 5-, 6-, 7-, 8-, 9-, and

10-week-old mice. The results showed that MMP3 expres-

sion upregulation is prominent and consistent throughout

the growth period in the mandibular tissues of Bmal1�/�

mice (Figure 4E and Table S3). Western blot confirmed

the same trend of MMP3 level change (Figure 4F). Together

these results suggested that MMP3 is a potential regulatory

target of BMAL1 during SMH.

MMP3 Is Negatively Correlated with BMAL1 during

Osteoblast Differentiation and Osteoclast

Differentiation

To better understand the mechanisms by which BMAL1

and its potential target MMP3 modulate mandibular

growth, we analyzed the expression level of MMP3 from

mandibular tissues of juvenile SMH patients and normal

peers. We observed that MMP3 expression level was
ibular Bone Mass and Bone Size
chedule used to establish the mouse model of circadian rhythm

ouse model (n = 5 animals per time point).
6J mice under normal LD12:12 or jet-lag conditions.
in normal and jet-lagged circadian-rhythm-disrupted mice. The

thickness (Tb.Th), the total length of the mandible, and the height

ning in the mandibles of normal and jet-lagged circadian rhythm-
cytes, and arrows in the TRAP staining images indicate osteoclasts.

(TRAP(+) cells/BS) in mandible sections (n = 5 per group).
01 (compared with control), from Student’s t tests.



Figure 3. Loss of BMAL1 Leads to Skeletal Mandibular Hypoplasia
(A) The genotypes of Bmal1�/�, Bmal1+/�, and Bmal1+/+ mice determined by PCR (n = 5 per genotype).
(B) Photograph of the mandibles of 3- and 7-week-old male wild-type and Bmal1�/� mice.

(legend continued on next page)
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significantly upregulated and presented a negative correla-

tion with BMAL1 level change in the SMH patients

(Figure 5A). Protein chip analysis showed the elevated

expression of MMP3 was consistent throughout the entire

growth period in Bmal1�/� mice (Figures 4E and 4F).

Consistently, the MMP3 protein level in 3-, 7-, and

11-week-old Bmal1�/� mandibular tissue was higher than

that in wild-type mice (Figure 5B). Also, the level of

MMP3 was greatly upregulated in BMAL1 knockout

mBMSCs, BMAL1 knockdown MC3T3-E1 cells, and

RAW264.7 cells. Conversely, MMP3 was downregulated

in BMAL1-overexpressing MC3T3-E1 cells (Figures 5C,

5D, and S5A–S5C). These results suggested that MMP3

could be an important regulatory target of BMAL1.

We then used mBMSCs and RAW264.7 cells to assay the

effect ofMMP3 level variation on osteoblast differentiation

and osteoclast differentiation, respectively. Indeed, there

was an evident increase of osteoblast differentiation in

mBMSCs upon depletion of MMP3 by transfection

with lentivirus vectors encoding shRNA targeting Mmp3

(Figures 5E and 5F). Similarly, increased osteoblast differen-

tiation was observed in the MMP3-specific inhibitor

C27H46N10O9S-treated mBMSCs (Figure 5G). Next, we

found that MMP3 knockdown RAW264.7 cells exhibited

impaired osteoclast differentiation, as indicated by TRAP

staining. Decreased osteoclast differentiation was also

observed in RAW264.7 cells treated with the MMP3-spe-

cific inhibitor (Figures 5H–5J). Importantly, BMAL1

knockdown-induced osteoclast differentiation enhance-

ment was significantly reversed by shRNA-mediated

MMP3 knockdown (Figure 5K). Taken together, these

results indicated that MMP3 upregulation is involved in

mandibular hypoplasia caused by BMAL1 deficiency.

Suppression of BMAL1-Mediated MMP3 Expression

Requires p-p65

The well-known transcription factor BMAL1 performs its

functions by activating the transcription of downstream

target genes, including matrix metalloproteinases (MMPs)
(C) Representative images of micro-CT reconstruction of the mandib
shadows indicate the positions of the condylar regions.
(D) Micro-CT analysis of bone volume/total volume (BV/TV), trabecula
of coronoid process (n = 5 per group).
(E) Representative images of H&E, Masson’s trichrome, and TRAP st
Bmal1�/� mice. Arrows in the H&E staining imagings indicate osteoc
Scale bar, 50 mm.
(F) Osteocyte number (N.Osteocyte/Bone.Ar), bone area, osteoclast nu
mandible sections (n = 5 per group).
(G) Representative images of ARS staining of mBMSCs (n = 3 indepen
(H) Representative images of TRAP staining in RAW264.7 cells. Scale b
and the number of osteoclasts was counted (n = 3 independent expe
Data represent the mean ± SD. *p < 0.05, **p < 0.01, and ***p < 0.0
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(Huang et al., 2012; Lou et al., 2017). To test whether upre-

gulated MMP3 expression and secretion are due to the

direct transcription activation of Mmp3, a ChIP assay was

performed in MC3T3-E1 cells. Surprisingly, we found that

BMAL1 does not regulate MMP3 expression directly (data

not shown). Recent studies revealed that the phosphoryla-

tion of p65 (a subunit of nuclear factor kB [NF-kB]) and its

nucleus translocation are required for the transcriptional

regulation of NF-kB downstream genes, including Mmp3

(Souslova et al., 2010; Spengler et al., 2012). Interestingly,

we found that the phosphorylation level of p65 was signif-

icantly affected in BMAL1-overexpressing or BMAL1

knockdown mBMSCs (Figure 6A). To determine whether

p65 is involved in the mandibular hypoplasia, we assayed

the p65 knockdown effects on osteoblast differentiation

of mBMSCs and osteoclast differentiation of RAW264.7

cells. We observed that shRNA-mediated p65 knockdown

increased osteoblast differentiation of mBMSCs and

decreased osteoclast differentiation of RAW264.7 cells (Fig-

ures 6B and 6C). We speculated that p65 could be an essen-

tial functional link between BMAL1 and MMP3. Indeed,

P-p65 protein transportation to the nucleus was increased

in both BMAL1 knockdown RAW264.7 cells and BMAL1

knockdown MC3T3-E1 cells (Figures 6D and S6). It was

reported that P-p65 protein relocation to the nucleus could

activate the transcription of downstream genes (Perkins,

2006). Consistently, p65 knockdown inhibited MMP3

expression in MC3T3-E1 cells (Figure 6E). In addition, the

ChIP and luciferase reporter assays demonstrated that

p65 binds to the Mmp3 promoter and activates Mmp3

transcription in MC3T3-E1 cells (Figures 6F and 6G). In

Figure 6G, we showed that knockdown of p65 inhibited

the activity of the Mmp3 promoter but not those of

mutants with the p65 binding site being deleted or

mutated. Together these findings suggested that BMAL1

deficiency contributes to mandibular dysplasia via upregu-

lating MMP3 expression, and BMAL1-mediated MMP3

expression inhibition requires p65 phosphorylation and

transportation to the nucleus.
les in 3-, 7-, and 11-week-old wild-type and Bmal1�/� mice. The

r thickness (Tb.Th), the total length of the mandible, and the height

aining of the mandibles of 3-, 7-, and 11-week-old wild-type and
ytes, and arrows in the TRAP staining images indicate osteoclasts.

mber (TRAP(+) cells/BS), and osteoclast surface per bone surface in

dent experiments). Scale bar, 100 mm.
ar, 25 mm. Arrows in the TRAP staining images indicate osteoclasts,
riments).
01 (compared with control), from Student’s t tests.



Figure 4. MMP3 Expression Is Prominently Upregulated in Mandibular Tissues of Bmal1�/� Mice
(A) Hierarchical clustering of quantitative gene expression profiling for mandibular tissues in wild-type and Bmal1�/� mice.
(B) Volcano plot of differentially expressed genes (DEGs) in mandibular tissues between wild-type and Bmal1�/� mice.
(C) Heatmap shows DEGs related to bone development.
(D) Confirmation of the DEGs by qRT-PCR (n = 5 independent experiments). All genes tested followed the expression pattern identified by
RNA-seq.
(E) Heatmap shows the results of protein microarray (n = 6 pairs per week).
(F) Western blot verified the expression changes of MMP3 proteins (n = 6 per group).
Data represent the mean ± SD. *p < 0.05 and **p < 0.01 (compared with control), from Student’s t tests.
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DISCUSSION

Circadian rhythm, the inherent rhythm of the body,

evolved to adapt to long-term changes in light, tempera-

ture, and other environmental factors (Dibner and Schi-

bler, 2015; Gerhart-Hines and Lazar, 2015). Circadian

rhythm plays essential roles in various physiological and

pathological processes, including bone growth and bone

resorption (Bass and Takahashi, 2010; Fu et al., 2005; Panda

et al., 2002; Xu et al., 2016a). In this study, we found that

juvenile SMH patients have abnormal circadian clock

gene expression in the mandibular tissues. In jet-lagged

mice, we observed reduced mandible bone mass and

bone size, suggesting that circadian rhythm deficiency is

a risk factor for the occurrence of mandibular hypoplasia.

Circadian rhythm was greatly affected by changes in habi-

tation and living habits (Kohyama, 2014; Wyse et al.,

2014). Noise, light, personal habits, depression, and sleep

disorders often affect circadian rhythm severely (Basner

et al., 2014; Bedrosian and Nelson, 2013; Landgraf et al.,

2015; Munzel et al., 2014; Parry et al., 2008). Circadian

rhythm dysfunction has been suggested to be associated

with various human diseases, such as cardiovascular dis-

ease, diabetes, cancer, and developmental malformations

(Muller and Tofler, 1991; Potocki et al., 2000; Tamemoto,

2012; Tang et al., 2017). BMAL1 is a core component that

plays critical roles in generating andmaintaining circadian

rhythm (Lipton et al., 2015). BMAL1deficiency had a broad

impact on bone deformity, which is consistent with the

previous reports (Min et al., 2016; Samsa et al., 2016).

Consistently, we observed that juvenile SMH patients had

decreased BMAL1 expression in their mandibular tissues.

In Bmal1�/� mice, mandible bone mass and bone size

were also reduced. The mandible arises from neural crest
Figure 5. MMP3 Is Negatively Correlated with BMAL1 during Oste
(A) Western blot analysis of MMP3 protein expression in human mandi
per group).
(B) Immuno-histochemical staining verified increased expression of M
bar, 25 mm.
(C) Western blot analysis of MMP3 in Bmal1�/� mBMSCs (n = 3 indep
(D) Western blot analysis of BMAL1 and MMP3 in BMAL1-overexpr
experiments).
(E) The knockdown of MMP3 by shRNA was confirmed by western blot
(F and G) Representative ARS staining images of MMP3 knockdownmBM
independent experiments). Scale bar, 100 mm.
(H–J) Representative TRAP staining images of MMP3 knockdown RAW
bar, 50 mm. Arrowheads in the TRAP staining images indicate osteocla
experiments).
(K) Representative TRAP staining images of RAW264.7 cells, BMAL1 kn
RAW264.7 cells. Scale bar, 50 mm. Arrowheads in the TRAP staining
counted (n = 3 independent experiments).
Data represent the mean ± SD, *p < 0.05, **p < 0.01, and ***p < 0.001
post hoc test (K) were used.
stem cells of the neuroectoderm germ layer rather than

the mesoderm (Chai and Maxson, 2006). The mandible is

remodeled faster than the other bones (Huja et al., 2006).

Interestingly, our study demonstrated essential roles of

BMAL1 and circadian rhythm during the growth and

development of the mandible.

MMPs were identified as collagen-cleaving soluble

proteases (Aiken and Khokha, 2010). MMP1, MMP9, and

MMP13 are required for development and maintenance

of osteocyte processes. Especially, MMP3 was found to be

implicated in bone remodeling and degrading cartilage

(Eguchi et al., 2008; Garcia et al., 2013; Holmbeck et al.,

2004; Li et al., 2015a). We found that MMP3 was upregu-

lated in mandibular tissues of juvenile SMH patients. The

previous study reported that BMAL1 promotes osteoblast

differentiation by upregulating BMP2 expression, indi-

cating the correlation of BMAL1 with osteoblast differenti-

ation regulators (Min et al., 2016). Together these results

highlight the complex mechanism of circadian-rhythm-

related bone developmental processes.

Being a transcription factor, BMAL1 regulates gene

expression by activating the gene promoter. However,

ChIP and luciferase reporter assays showed that BMAL1

does not bind directly to the Mmp3 promoter (data not

shown). Intriguingly, Spengler et al. (2012) reported that

p65, a critical subunit for NF-kB transactivation, was

required for the BMAL1-mediated suppression of down-

stream gene transcription. Also, Bmal1 targeting by

miR-155 could lead to a pro-inflammatory state by

activating p65 (Curtis et al., 2015). Hence, we sought to

determine the correlation among BMAL1, p65, and

MMP3. We found that the phosphorylated level of p65 is

tightly associated with MMP3 expression in BMAL1-over-

expressing or BMAL1 knockdown MC3T3-E1 cells. It is
oblast Differentiation and Osteoclast Differentiation
bles with SMH compared with normal individuals (n = 12 individuals

MP3 in mandibular tissues of Bmal1�/�mice (n = 5 per group). Scale

endent experiments).
essing or BMAL1 knockdown MC3T3-E1 cells (n = 3 independent

ting (n = 3 independent experiments).
SCs or mBMSCs treated with the MMP3 inhibitor C27H46N10O9S (n = 3

264.7 cells or cells treated with MMP3 inhibitor C27H46N10O9S. Scale
sts, and the number of osteoclasts was counted (n = 3 independent

ockdown RAW264.7 cells, and BMAL1 and MMP3 double-knockdown
images indicate osteoclasts, and the number of osteoclasts was

. Two-tailed Student’s t test (A, C–E, and J) and ANOVA with Tukey’s
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widely acknowledged that phosphorylated p65 translo-

cates to the nucleus and activates transcription (Perkins,

2006). Indeed, we found that p-p65 could promote Mmp3

transcription via direct binding to the promoter.

MMP3 is an endogenous activator of MMP9 (Flores-

Pliego et al., 2015), which is the most abundant MMP

member implicated in osteoclast differentiation and

recruitment (Sundaram et al., 2007). MMP3 triggers the

release of tumor necrosis factor alpha (TNF-a), which stim-

ulates MMP9 production through activating the MAPK/

ERK1/2 signaling pathway (Steenport et al., 2009; Van

den Steen et al., 2002). MMP9 then activates RANKL-

induced osteoclast differentiation (Franco et al., 2011). In

mBMSCs, we found that MMP3 could inactivate the

MAPK/ERK pathway and the phosphatidylinositol 3 kinase

(PI3K)/AKT pathway (data not shown), which are in close

positive correlation with osteoblast differentiation (Li

et al., 2015b, 2017). Therefore, we speculate that BMAL1

regulates osteoblast differentiation by manipulating

MMP3 and the downstream signaling pathways.

Collectively, our data demonstrates that MMP3 is

an indispensable factor in BMAL1-deficiency-induced

mandibular dysplasia and provides insight into the mech-

anism of mandibular deformities. Moreover, our results

provided a valuable reference for juveniles to correct unde-

sirable effects on lifestyle.
EXPERIMENTAL PROCEDURES

Patient Tissue Specimens
Twenty-four human mandibular specimens were obtained from

patients at the Wuhan Union Hospital, Tongji Medical College,

Huazhong University of Science and Technology (Wuhan, China)

from May 2014 to June 2015. Tissue specimens were obtained

between 9:00 am and 11:00 am at consistent time points. Twelve

specimens were acquired from juvenile patients with SMH, and

another 12 normal specimens were collected from sex-matched
Figure 6. BMAL1-Mediated MMP3 Expression Suppression Require
(A) Western blot analysis of MMP3 and phosphorylated p65 protein
independent experiments).
(B) Representative ARS staining images of p65 knockdown mBMSCs (
(C) Representative TRAP staining images of p65 knockdown RAW264.7
and the number of osteoclasts was counted (n = 3 independent expe
(D) Confocal microscopic images of P-p65 in BMAL1 knockdown RAW26
experiments). Scale bar, 25 mm.
(E) Western blot analysis of MMP3 in p65 knockdown MC3T3-E1 cells
(F) The transcription factor p65 bound to the Mmp3 promoter in MC3
using anti-p65 with anti-Ig G as a negative control (n = 3 independe
(G) A luciferase reporter assay was performed to measure the activi
promoter with p65 binding site deleted or mutated in p65 knockdown
circle, p65-binding site. Filled crossed black circle, mutation of p65-
Data represent the mean ± SD, *p < 0.05, **p < 0.01, and ***p < 0.00
post hoc test (F and G) were used.
control peers. All subjects were between 10 and 12 years old, and

their skeletal maturation preceded the advent of the growth and

development peak determined by the quantitative cervical verte-

bral maturation method. Clinical characteristics, including age,

sex, and body mass index, are shown in Table S1, and there were

no significant differences. Subjects were selected for the experi-

mental group according to the following inclusion criteria: convex

facial type, class II disocclusion, skeletal mandibular dysplasia,

lateral cephalometric radiograph showing a sella-nasion-A-point

(SNA) angle of 82.3� ± 3.5�, sella-nasion-B-point (SNB) angle

<73.8�, A-point-nasion-B-point (ANB) angle >5�. Subjects were

selected to the control group according to the following inclusion

criteria: normal facial shape, normal maxillary and mandibular

development, lateral cephalometric radiograph showing an SNA

angle of 82.3� ± 3.5�, SNB angle of 77.6� ± 2.9�, 1� < ANB angle

<5�. Subjects with temporomandibular joint disorder, history of

maxillofacial trauma, or orthodontic treatment were excluded.
Animals
A total of 140male C57BL/6J mice were obtained from Beijing HFK

Bioscience (Beijing,China) and fed antibiotic-free food andwaterad

libitum. Mice were placed randomly under either LD12:12

conditions with the light on from 8:00 a.m. (this timing set as zeit-

geber time 0 [ZT0]) to 8:00 p.m. (ZT12) or under a jet-lagged condi-

tion.For the jet-laggedgroup, animalswereplacedunder alternating

light-cycle conditions with light advanced 8 hr every 2–3 days for 4

or 8 weeks. After 4 and 8 weeks, five mice per time point were killed

to obtainmandibular tissues at the indicated time points (ZT0, ZT4,

ZT8, ZT12, ZT16, ZT20, and ZT24). Homozygous BMAL1-deficiency

(Bmal1�/�) mice in the C57BL/6J background were produced by

breeding heterozygous BMAL1-deficiency mating pairs (Bmal1+/�),
which were kindly provided by Dr. Y. Xu (Soochow University,

Jiangsu,China), and theBMAL1deficiencywas confirmedbymulti-

plex PCR as described by Bunger et al. (2000).
Cell Culture, Flow Cytometric Analysis, Osteogenic

Induction, and Osteoclastogenesis
MC3T3-E1 cells (ATCC) and RAW264.7 cells (ATCC) were cultured

in minimum essential medium a (a-MEM; Cyagen, Guangzhou,
s p-p65
s in BMAL1-overexpressing or BMAL1 knockdown mBMSCs (n = 3

n = 3 independent experiments). Scale bar, 100 mm.
cells. Arrowheads in the TRAP staining images indicate osteoclasts,
riments). Scale bar, 50 mm.
4.7 cells and scrambled shRNA-transfected cells (n = 3 independent

(n = 3 independent experiments).
T3-E1 cells. Chromatin immunoprecipitation assays were performed
nt experiments).
ties of wild-type Mmp3 promoter (�2,392/+70), and the mutant
MC3T3-E1 cells and scrambled shRNA-transfected cells. Filled black
binding site (n = 3 independent experiments).
1. Two-tailed Student’s t test (A, C, and E) and ANOVA with Tukey’s
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China) supplemented with 10% fetal bovine serum (FBS) (Gibco,

USA) and 1% penicillin-streptomycin (HyClone). The cells were

isolated from the femur marrow of 6- to 8-week-old mice and

cultured in a-MEM supplemented with 12% FBS. All cells were

maintained at 37�C in a 5% CO2 humidified incubator. Direct

immunofluorescence-based flow cytometric analysis was

performed to identify mBMSCs (Figure S1). The expression levels

of CD11b, CD44, Sca-1, CD29, and CD45 were determined by

flow cytometric analysis using APC/Cy7-labeled anti-CD11b

(#101225, BioLegend), phycoerythrin (PE)-labeled anti-CD44

(#103007, BioLegend), PE-labeled anti-Ly6A/E (Sca-1) (#108107,

BioLegend), fluorescein isothiocyanate-labeled CD29 (#102205,

BioLegend), and PerCP/Cy5.5-labeled anti-CD45 (#103131,

BioLegend), respectively. The corresponding isotype-matched

conjugated irrelevantmonoclonal antibodieswereused asnegative

controls. Primary mBMSCs were plated at 1 3 106 cells/well in

six-well plates to induce osteoblast differentiation using medium

supplemented with 50 mg/mL ascorbic acid, 10 nmol/L dexameth-

asone, and 10 mmol/L b-glycerophosphate (Sigma). Cells were

cultured for 14 days in either control or differentiation medium

followed by fixation with 4% formaldehyde and staining with 1%

ARS (Cyagen, Guangzhou, China). RAW264.7 cells were plated at

5 3 104/well in 12-well plates in a-MEM supplemented with 10%

FBS and 50 ng/mLRANKL (R&D Systems, USA) for 5 days to induce

osteoclastogenesis, and then the cells were stained with TRAP.

Micro-CT
After the hind limbs andmandibles were harvested from themice,

soft tissues were removed, and the bone tissues were fixed in 4%

paraformaldehyde. Scanning was performed at a resolution of

9 mm using the Skyscan 1076 micro-CT (Inveon Multimodality

Scanner; Siemens, Erlangen, Germany). The images were used to

reconstruct the tomography scans and quantified by Inveon

Research Workplace software. Bone mass was evaluated according

to BMD, BV/TV, Tb.Th, BS/BV, and trabecular pattern factor

(Tb.PF). Ramus angle, the height of the coronoid process, the total

length of the mandible, and base length of the mandible were

measured to evaluate mandible development, while the marrow

cavity in the 0.5–1 mm range under the cortical bone of the fossa

intercondyloidea was used to evaluate femur development.

RNA Sequencing
Total RNAwas extracted from in Bmal1�/� and wild-type mBMSCs

using Trizol reagent according to the manufacturer’s protocol.

The samples were sent to the Labs Biotech (Changchun, China)

for quantification, preparation of the RNA-seq library, and

sequencing. The Ion Total RNA-Seq Kit v2 (Thermo Fisher) was

used to prepare the sequencing libraries. Then the final template-

positive Ion PI Ion Sphere particles were enriched and loaded

onto the Ion PI chip. Later, raw reads above the filtering threshold

(R50 bp) were chosen for mapping. Gene expression was quanti-

fied using RPKM (reads per kilobase of transcript per million

mapped reads) values and corrected by the upper quartile.

Protein Chip
The protein samples were collected from the mandibular tissues

of 3-, 4-, 5-, 6-, 7-, 8-, 9-, and 10-week-old Bmal1�/� mice and
192 Stem Cell Reports j Vol. 10 j 180–195 j January 9, 2018
wild-type mice and were then used to assess 25 proteins using

Quantibody Mouse Cytokine Arrays 2 (Ray-Biotech, Norcross,

GA). Samples were loaded onto the wells of chips by the standards

provided. The chips were performed according to the manufac-

turer’s instructions and data were read with microarray analysis

software (GenePix, ScanArray Express, ArrayVision, MicroVigene).

Other Methods
Immunohistochemistry and immunofluorescence, ELISA, direct

co-cultures, viral infection, qRT-PCR analysis, western blot anal-

ysis, quantitative real-time RT-PCR analysis, ChIP assay, and lucif-

erase reporter assay were performed using a standard protocol. See

Supplemental Experimental Procedures for more details.

Study Approval
All animal-related procedures were performed according to the

ethical guidelinesof, andwere approvedby, the InstitutionalAnimal

Care and Use Committee of Tongji Medical College (Institutional

Animal Care andUseCommittee number 539). Humanmandibular

specimenswere obtained frompatients at theDepartmentof Stoma-

tology, Wuhan Union Hospital, Tongji Medical College, Huazhong

University of Science and Technology (Wuhan, China) from May

2014 to January2015. This studyprotocolwasapprovedby the Insti-

tutional Research Ethics Committee of Tongji Medical College

(Wuhan, China) (approval number 2014S05001). The study was

performed in accordance with the Declaration of Helsinki. Written

informed consents were obtained before data collection.

Statistical Analysis
All data are displayed as means ± SD. SPSS 17.0 (SPSS, Chicago, IL)

was used for the statistical analyses. Data were evaluated by the

two-tailed Student’s t test or by ANOVA with Tukey’s post hoc

test for multiple comparisons. A p value <0.05 was considered

significant.
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The accession number for the RNA sequencing data reported in

this paper is GEO: GSE106586.
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