
ABSTRACT

Purpose: Although static magnetic fields (SMFs) have been used in dental prostheses 
and osseointegrated implants, their biological effects on osteoblastic and cementoblastic 
differentiation in cells involved in periodontal regeneration remain unknown. This 
study was undertaken to investigate the effects of SMFs (15 mT) on the osteoblastic and 
cementoblastic differentiation of human osteoblasts, periodontal ligament cells (PDLCs), 
and cementoblasts, and to explore the possible mechanisms underlying these effects.
Methods: Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity, 
mineralized nodule formation based on Alizarin red staining, calcium content, and the 
expression of marker mRNAs assessed by reverse transcription polymerase chain reaction 
(RT-PCR). Signaling pathways were analyzed by western blotting and immunocytochemistry.
Results: The activities of the early marker ALP and the late markers matrix mineralization 
and calcium content, as well as osteoblast- and cementoblast-specific gene expression in 
osteoblasts, PDLCs, and cementoblasts were enhanced. SMFs upregulated the expression of 
Wnt proteins, and increased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) 
and total β-catenin protein expression. Furthermore, p38 and c-Jun N-terminal kinase (JNK) 
mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways were 
activated.
Conclusions: SMF treatment enhanced osteoblastic and/or cementoblastic differentiation 
in osteoblasts, cementoblasts, and PDLCs. These findings provide a molecular basis for the 
beneficial osteogenic and/or cementogenic effect of SMFs, which could have potential in 
stimulating bone or cementum formation during bone regeneration and in patients with 
periodontal disease.
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INTRODUCTION

The ultimate goal of periodontal treatment is to prevent further loss of attachment and 
to regenerate periodontal supporting tissues including cementum, periodontal ligament 
(PDL), and bone. To achieve periodontal regeneration, several therapeutic approaches 
have been examined in animal models and clinical studies, including bone grafting, guided 
tissue regeneration, and the implantation of biologic mediators [1]. However, inconsistent 
beneficial effects of these treatments have been observed. The application of magnetic fields 
has been used as an alternative and/or complementary treatment for fracture healing, spinal 
fusion, osteoarthritis, and wound healing [2]. Magnetotherapy including static magnetic 
fields (SMFs), pulsed electromagnetic fields (PEMFs), and alternating electromagnetic fields 
provides a non-invasive, safe, and easy method to directly treat the site of injury, the source 
of pain and inflammation, and various types of disease. Although PEMFs have been used 
extensively in clinical treatments of non-united bone fractures for a long time [3], there is 
some skepticism concerning the proposed exposure protocols [4]. Furthermore, PEMFs are 
generated by electrical devices.

SMFs are a type of magnetic field used in clinical practice, especially in the dental field [5], 
because SMFs do not need power devices, as PEMFs do. In addition, SMFs are convenient 
and suitable for long-term application [6], and do not provide any heat or electric hazard 
to surrounding tissue [7]. Rare-earth magnets, which generate SMFs, have been used in 
magnetic retention appliances in implant- or tooth-retained overdentures [8], maxillofacial 
prostheses after trauma and cancer surgery [9], as well as in orthodontic treatments such 
as space closure, molar distalization, intrusion, the traction of impacted teeth, and palatal 
expansion [5]. SMFs increased implant stability and reduced bone loss during the initial 
weeks of healing [10]. Recently, we demonstrated that exposing sandblasted, large-grit, acid-
etched-treated titanium implants to 15-mT SMFs triggered faster early peri-implant bone 
formation in rabbits [11].

However, the effect of SMFs on growth and osteoblastic differentiation remains controversial. 
SMF exposure had no significant effect on the proliferation of rat calvaria cells or osteoblast-
like cells [12]. The proliferation of human osteoblast cultures was reduced when cells were 
exposed to continuous low-intensity SMFs [13]. Moreover, SMFs generated by corrosion 
currents inhibited human osteoblast differentiation [14]. In contrast, SMFs were found to 
increase the osteoblastic differentiation of rat osteoblasts [12], human osteoblast-like MG63 
cells [18], and dental pulp cells [16]. In addition, we found that 15-mT SMFs, an intensity 
that is relatively low within the intensity range of moderate SMFs (1 mT to 1 T), enhanced the 
proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal 
stem cells (MSCs) in vitro [17].

Periodontal regeneration involves the recruitment of locally-derived progenitor cells that 
can subsequently differentiate into periodontal ligament cells (PDLCs), mineral-forming 
cementoblasts, or bone-forming osteoblasts [18]. Although SMFs can enhance bone fracture 
healing and bone formation by osteoblasts both in vivo and in vitro [19,20], their effects on the 
differentiation of PDLCs, cementoblasts, and osteoblasts are not fully understood. These cells 
constitute the periodontium and can be directly influenced when SMFs are applied to teeth, 
implants, and other intraoral structures. Thus, the aim of this study was to investigate the 
effects of SMFs (15 mT) on the osteoblastic and cementoblastic differentiation of human PDLCs, 
cementoblasts, and osteoblasts, and to explore the possible mechanisms underlying these effects.
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MATERIALS AND METHODS

Cell culture
Human fetal osteoblasts (hFOB 1.19) were obtained from the American Type Culture 
Collection (CRL-11372, Rockville, MD, USA) and maintained in Dulbecco's modified Eagle's 
medium-Ham's F-12 (1:1) basal medium supplemented with 10% fetal bovine serum (FBS) 
and 1% penicillin/streptomycin/glutamine (Gibco, 15140-122, Invitrogen Corporation, Grand 
Island, NY, USA) in a standard cell-culture incubator at 37°C and 5% CO2. Differentiation 
was induced by transfer to osteogenic medium (OM) containing 100 µM ascorbic acid, 2 mM 
β-glycerophosphate, and 10−7 M dexamethasone, as previously described [21].

Human PDLCs and cementoblasts [22], immortalized by transfection with the telomerase 
catalytic subunit of the human telomerase reverse transcriptase, were kindly provided by 
Professor Takashi Takata (Hiroshima University, Hiroshima, Japan). Cells were cultured in 
α-minimum essential medium (α-MEM; Invitrogen Corporation) supplemented with 10% 
FBS, 100 U/mL of penicillin, and 100 μg/mL of streptomycin in a humidified atmosphere of 
5% CO2 at 37°C.

Primary osteoblasts were enzymatically isolated from the calvaria of 1-day-old ICR mice 
(Samtako, Osan, Korea). Briefly, the calvaria were aseptically dissected, and the fragments 
were incubated in phosphate-buffered saline (PBS) solution with 0.2% collagenase-dispase 
solution (Sigma-Aldrich, St. Louis, MO, USA) for 2 hours at 37°C. The cells were dissociated 
from the bone fragments, counted, and plated at 4×104 cells/cm2. The cells were grown in 
α-MEM supplemented with 10% FBS, 100 U/mL of penicillin, and 100 μg/mL of streptomycin 
in a humidified atmosphere of 5% CO2 at 37°C.

All animal experimental procedures in the current study were approved by the Institutional 
Animal Care and Use Committee of Kyung Hee University (approval number: KHMC-IACUC 
2015-002). Primary human PDLCs were cultured using an explant technique, as described 
previously [23]. Briefly, impacted third molars were obtained from 3 healthy patients of the 
Department of Oral and Maxillofacial Surgery, Kyung Hee University Dental Hospital, Seoul, 
Korea. The experiments were performed with approval from the Ethical Committee of Kyung 
Hee University Dental Hospital, and informed written consent was obtained from all patients.

Freshly extracted teeth were immediately placed in PBS supplemented with antibiotics (100 
U/mL of penicillin, 100 μg/mL of streptomycin, and 0.25 μg/mL of Fungizone). In order to 
culture PDLCs, the PDL was carefully removed from the middle third of the root by a scalpel. 
Tissues were cultured in Dulbecco's modified Eagle's medium supplemented with 10% FBS 
and antibiotics. Cultures were maintained at 37°C in a humidified atmosphere of 5% CO2 and 
95% air. Confluent cells were detached with 0.25% trypsin and 0.05% EDTA for 5 minutes, 
and aliquots of separated cells were subcultured. Cell cultures between the third and eighth 
passages were used in this study.

The SMF exposure system
A neodymium (Nd2Fe14B) disc magnet (1 mm thick and 15.0 mm in diameter, Qingdao 
Qiangsheng Magnets Co., Ltd., Shandong, China) and 4-well plastic culture plates were 
used to create an SMF exposure system (Figure 1A). A magnet was placed below the wells 
horizontally, and the north (N) side of the magnet was oriented towards the well. The desired 
field intensities (3, 15, and 50 mT) were established by controlling the distance between the 
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magnet and the culture plates, as previously described [17]. The distance was fixed by the 
space between the magnet and bottom wall of the well. We measured the SMF intensity with 
a Gauss meter (TM-701, Kanetec, Tokyo, Japan) that could detect either axial or transverse 
fields. To eliminate the interference of adjacent SMFs, we attached only 1 magnet disc on 1 
culture plate and provided adequate space between adjacent culture plates (at least 30 mm).
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Figure 1. Effects of SMFs on osteoblastic differentiation in human osteoblasts. (A) Schematic diagram of the SMF exposure system. (B) Cell proliferation was 
examined by an MTT assay at 3, 7, and 14 days. (C) Differentiation was assessed based on ALP activity, (D) Alizarin red staining, (E) calcium content, and (F) 
expression of the mRNA of bone matrix proteins. The intensity of Alizarin red staining was determined by optical density. Cells were treated with OS medium 
containing 50 μg/mL of L-ascorbic acid and 10 mM β-glycerophosphate along with 3-, 15-, and 50-mT SMFs for 7 days and 14 days. OM contained OS and 10−7 M 
dexamethasone. The results are representative of 5 independent experiments that were performed. 
SMF: static magnetic field, MTT: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, ALP: alkaline phosphatase, OS: 
osteogenic supplement, OM: osteogenic medium, Runx2: runt-related transcription factor 2, OPN: osteopontin, OCN: osteocalcin, GAPDH: glyceraldehyde 
3-phosphate dehydrogenase. 
a)Significant difference compared to control (P<0.05); b)Significant difference between each group (P<0.05).  
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Figure 1. (Continued) Effects of SMFs on osteoblastic differentiation in human osteoblasts. (A) Schematic diagram of the SMF exposure system. (B) Cell 
proliferation was examined by an MTT assay at 3, 7, and 14 days. (C) Differentiation was assessed based on ALP activity, (D) Alizarin red staining, (E) calcium 
content, and (F) expression of the mRNA of bone matrix proteins. The intensity of Alizarin red staining was determined by optical density. Cells were treated with 
OS medium containing 50 μg/mL of L-ascorbic acid and 10 mM β-glycerophosphate along with 3-, 15-, and 50-mT SMFs for 7 days and 14 days. OM contained OS 
and 10−7 M dexamethasone. The results are representative of 5 independent experiments that were performed. 
SMF: static magnetic field, MTT: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, ALP: alkaline phosphatase, OS: 
osteogenic supplement, OM: osteogenic medium, Runx2: runt-related transcription factor 2, OPN: osteopontin, OCN: osteocalcin, GAPDH: glyceraldehyde 
3-phosphate dehydrogenase. 
a)Significant difference compared to control (P<0.05); b)Significant difference between each group (P<0.05). 
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Cell viability
Cell viability was confirmed using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium (MTT) assay kit (CellTiter 96 AQueous One Solution, 
Promega, Madison, WI, USA) following the protocol suggested by the manufacturer.

Alkaline phosphatase (ALP) activity
Intracellular and soluble ALP, a marker of osteoblast activity, was assayed by the release of 
p-nitrophenol from p-nitrophenylphosphate. Cells were washed with PBS and sonicated 
with a cell disruptor. ALP activity was measured using p-nitrophenyl phosphate (final 
concentration, 3 mM) in 0.7 M 2-aminomethyl-1-propanol (pH 10.3) and 6.7 mM MgCl2. 
Absorbance was measured at 415 nm using an enzyme-linked immunosorbent assay reader 
(Beckman Coulter, Fullerton, CA, USA).

Alizarin red staining
Alizarin red staining was used to detect mineralization. Cells were fixed in 70% ice-cold 
ethanol for 1 hour and rinsed with distilled water. Fixed cells were stained with 40 mM 
Alizarin red (pH 4.2) for 10 minutes with gentle agitation. All Alizarin red staining images 
were photographed.

RNA isolation and reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was extracted using Trizol reagent (Life Technologies, Gaithersburg, MD, USA). 
Then, 1 mg of RNA was reverse transcribed using oligo (dT) 15 primers (Roche Diagnostics, 
Mannheim, Germany) and AccuPower RT PreMix (Bioneer Corporation, Daejeon, Korea). 
Thereafter, the reverse transcriptase-generated DNA (2–5 mL) was amplified. Primer 
sequences are detailed in Table 1. The polymerase chain reaction (PCR) products were 
subjected to electrophoresis on 1.5% agarose gels, and stained with ethidium bromide.
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Figure 1. (Continued) Effects of SMFs on osteoblastic differentiation in human osteoblasts. (A) Schematic diagram of the SMF exposure system. (B) Cell 
proliferation was examined by an MTT assay at 3, 7, and 14 days. (C) Differentiation was assessed based on ALP activity, (D) Alizarin red staining, (E) calcium 
content, and (F) expression of the mRNA of bone matrix proteins. The intensity of Alizarin red staining was determined by optical density. Cells were treated with 
OS medium containing 50 μg/mL of L-ascorbic acid and 10 mM β-glycerophosphate along with 3-, 15-, and 50-mT SMFs for 7 days and 14 days. OM contained OS 
and 10−7 M dexamethasone. The results are representative of 5 independent experiments that were performed. 
SMF: static magnetic field, MTT: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, ALP: alkaline phosphatase, OS: 
osteogenic supplement, OM: osteogenic medium, Runx2: runt-related transcription factor 2, OPN: osteopontin, OCN: osteocalcin, GAPDH: glyceraldehyde 
3-phosphate dehydrogenase. 
a)Significant difference compared to control (P<0.05); b)Significant difference between each group (P<0.05). 
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Western blot analysis
Aliquots of 1×106 cells were solubilized in ice-cold 1% Triton X-100 lysis buffer (Boston 
BioProducts, Inc., Ashland, MA, USA). After 30 minutes on ice, the lysates were clarified by 
centrifugation. Proteins (20 µg) were resolved by sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis (10% acrylamide), transferred to nitrocellulose membranes, and probed with 
specific antibodies (diluted to 1:1,000), followed by incubation with secondary horseradish 
peroxidase-conjugated antibody (1:5,000). Products were detected using an enhanced 
chemiluminescence system (Amersham-Pharmacia, Piscataway, NJ, USA).

Ca2+ assays
To measure calcium content, cells were harvested by centrifugation at 13,500 rpm for 1 
minutes, resuspended in lysis buffer (0.1% Triton X-100, Boston BioProducts, Inc.) and 
sonicated on ice for 1 minute to destroy the cell membranes. The resulting supernatant was 
used for calcium measurements made with a QuantiChrom™ Calcium Assay Kit (DICA-
500, BioAssay Systems, Hayward, CA, USA). Calcium content was estimated by measuring 
absorbance at 612 nm in a microplate reader.

Immunocytochemistry
Cells were fixed with freshly prepared 3% paraformaldehyde for 15 minutes and permeabilized 
with 0.5% Triton X-100 (Boston BioProducts, Inc.) for 15 minutes. After 1 hours of incubation 
with 10% normal goat serum/PBS, cells were incubated with anti-p65 antibody (Santa Cruz 
Laboratories, Santa Cruz, CA, USA) diluted 1:50 in PBS for 2 hours, washed and incubated with 
fluorescein isothiocyanate (FITC)-conjugated immunoglobulin G, and diluted at 1:100 in PBS 
for 1 hour. In order to identify the nuclei, the FITC-labeled samples were counterstained with 
10 μg/mL of propidium iodide for 2 minutes. To acquire the immunofluorescence images, a 
confocal microscope (Cell Voyager, Yokogawa, Japan) was used.

Statistical analysis
Descriptive statistics (mean±standard deviation) for each parameter were evaluated in all the 
groups. The data distributions satisfied normality as tested by the Shapiro-Wilk test, meaning 
that intergroup comparisons could be made by using 1-way analysis of variance and the Duncan 
multiple range test. P values <0.05 were considered to indicate statistical significance.
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Table 1. RT-PCR primers and conditions
Genes Primer sequence (5′–3′) Annealing 

temperature (°C)
Cycle number Product size 

(bp)
OPN F: 5′-CCAAGTAAGTCCAACGAAAG-3′ 55 28 347

R: 5′-GGTGATGTCCTCGTCTGTA-3′
OCN F: 5′- GTGCAGCCTTTGTGTCCAAGCAGGA-3′ 62 30 196

R: 5′-CCGTAGAAGCGCCGATAGGCC-3′
Runx2 F: 5′-AACCCACFAATFCACTATCCA-3′ 63 30 76

R: 5′-CGGACATACCGAGGGACCTG-3′
CEMP-1 F: 5′-CAGGATCCACATCCGTC-3′ 55 30 434

R: 5′-CTGAACAGCTTCGAGGC-3′
CAP F: 5′-GGGTGGTTGGTTCTAGCTATTG-3′ 58 32 345

R: 5′-CGGCAAGGCAGCGTATATT-3′
GAPDH F: 5′-CGGAGTCAACGGATTTGGTCGTAT-3′ 62 30 306

R: 5′-AGCCTTCTCCATGGTGGTGAAGAC-3′
RT-PCR: reverse transcription polymerase chain reaction, OPN: osteopontin, OCN: osteocalcin, Runx2: runt-
related transcription factor 2, CEMP-1: cementum protein 1, CAP: cementum-derived attachment protein, GAPDH: 
glyceraldehyde 3-phosphate dehydrogenase.
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RESULTS

SMFs promote osteoblastic differentiation in human osteoblasts
To determine the cytotoxic potential of SMFs, its effect on viability of the human osteoblasts 
was evaluated. Up to a magnitude of 50 mT, no cytotoxic effects could be observed using 
the MTT assay (Figure 1B). To determine the effects of SMFs on osteoblastic differentiation, 
we evaluated its effects on ALP activity (an early marker of osteoblastic differentiation) 
and mineralization. ALP activity was significantly higher (P<0.05) and calcified nodules 
more frequent after SMF treatment than when the cells were simply maintained in normal 
osteogenic supplement (OS) or OM (Figure 1C). Osteoblasts exposed to an SMF of 15 mT 
had significantly higher ALP levels than the other groups (P<0.05). Because the endpoint of 
osteoblast formation is the production of a calcified, mineralized matrix, calcium content 
was measured as an indicator of osteodifferentiation. The SMF-exposed osteoblasts had 
significantly larger mineralized nodules (Figure 1D) and extracellular calcium deposits than 
their control counterparts (Figure 1E) (P<0.05). The largest number of mineralized nodules 
and the greatest calcium content was observed in the 15 mT group. In order to explore 
the effects of SMFs on the osteoblastic differentiation of osteoblasts, we examined the 
expression of specific markers of osteoblastic differentiation. Treating the osteoblasts with 
SMFs increased the expression of mRNA encoding the OS- and OM-induced differentiation 
markers runt-related transcription factor 2 (Runx2), osteopontin (OPN), and osteocalcin 
(OCN) (Figure 1F and G). Maximal upregulation of the osteoblast marker genes was observed 
at 15 mT.

SMFs promote osteoblastic/cementoblastic differentiation in PDLCs and 
cementoblasts
Since SMFs of 15 mT maximally stimulated the osteoblastic differentiation of human 
osteoblasts, 15 mT was used in further experiments. Cytotoxicity of PDLCs and 
cementoblasts in response to SMFs was not observed on days 3, 7, or 14 (Figure 2A and B). 
To investigate whether SMFs stimulated PDLCs and cementoblasts to differentiate toward 
a cementoblast/osteoblast phenotype, we measured ALP activity and the expression of 
osteoblast- and cementum-related genes, calcium content, and calcified nodule formation. 
Treatment with SMFs enhanced ALP activity and mineralized nodule formation in PDLCs 
and cementoblasts, compared with OS and OM controls (Figure 2C-F). Similar increases 
in calcium concentration were also observed in SMF-treated PDLCs and cementoblasts 
(Figure 3A and B). In addition, SMFs upregulated the mRNA expression of osteoblast 
markers in PDLCs, including Runx2, OPN, and OCN (Figure 3C), as well as the expression 
of cementoblast markers, such as cementum protein 1 (CEMP-1) and cementum-derived 
attachment protein (CAP), in cementoblasts (Figure 3D).

SMFs promote osteoblastic differentiation in primary cultured osteoblasts 
and PDLCs
To further assess the osteoblastic activity of the SMFs, we examined primary cultured 
osteoblasts and PDLCs. Primary cultured PDLCs and osteoblasts showed no cytotoxicity in 
response to SMFs, but did show increased ALP activity and mineralization (Figures 4A-F, 5A 
and B). In addition, the treatment of primary cultured PDLCs and osteoblasts with SMFs 
increased the expression of mRNA encoding the differentiation markers Runx2, OPN, and 
OCN (Figure 5C and D).
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Figure 2. Effect of SMFs on osteoblastic differentiation in a cell line of human PDLCs and cementoblasts. (A, B) Cell proliferation was examined by an MTT assay 
at 3, 7, and 14 days. (C, D) ALP activity was determined and normalized to protein content. (E, F) Matrix mineralization was evaluated by Alizarin red staining. 
Cells were treated with 15-mT SMFs and OS or OM for 14 days. The results are representative of 5 independent experiments. 
SMF: static magnetic field, PDLC: periodontal ligament cell, MTT: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 
ALP: alkaline phosphatase, OS: osteogenic supplement, OM: osteogenic medium. 
a)Significant difference compared to control (P<0.05); b)Significant difference between each group (P<0.05).
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Figure 3. Effects of SMFs on calcium content and osteoblastic or cementoblastic gene expression in a cell line of human PDLCs and cementoblasts. (A, B) Ca2+ 
concentration was measured using a calcium quantification assay kit. (C, D) mRNA was determined by RT-PCR analysis. Cells were treated with a 15-mT SMF and 
OS or OM for 14 days. The results are representative of 5 independent experiments. 
SMF: static magnetic field, PDL: periodontal ligament, PDLC: periodontal ligament cell, RT-PCR: reverse transcription polymerase chain reaction, OS: osteogenic 
supplement, OM: osteogenic medium, Runx2: runt-related transcription factor 2, OPN: osteopontin, OCN: osteocalcin, GAPDH: glyceraldehyde 3-phosphate 
dehydrogenase, CEMP-1: cementum protein 1, CAP: cementum-derived attachment protein. 
a)Significant difference compared to control (P<0.05); b)Significant difference between each group (P<0.05).
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Figure 4. Effect of SMFs on proliferation, ALP activity, and mineralized nodule formation in primary cultured human PDLCs and osteoblasts. (A, B) Cell 
proliferation was examined by an MTT assay at 3, 7, and 14 days. (C, D) ALP activity was determined and normalized to protein content. (E, F) Matrix 
mineralization was evaluated by Alizarin red staining as described in the Materials and Methods. Cells were treated with 15-mT SMFs and OS or OM for 14 days. 
The results are representative of 5 independent experiments. 
SMF: static magnetic field, ALP: alkaline phosphatase, PDLC: periodontal ligament cell, MTT: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium, OS: osteogenic supplement, OM: osteogenic medium. 
a)Significant difference compared to control (P<0.05); b)Significant difference between each group (P<0.05).
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SMFs activate Wnt/β-catenin, p38 and c-Jun N-terminal kinase (JNK) 
mitogen-activated protein kinases (MAPKs), and nuclear factor-κB (NF-κB) 
signaling, but not extracellular signal-regulated kinase (ERK) signaling 
To determine the basis of the effects of SMFs on osteoblast differentiation, their effects on 
Wnt/β-catenin, MAPK, and NF-κB signaling were examined. As shown in Figure 6A and 
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Figure 5. Effect of SMFs on calcium content and osteoblastic gene expression in primary cultured human PDLCs and osteoblasts. (A, B) Ca2+ concentration 
was measured using a calcium quantification assay kit. (C, D) mRNA was determined by RT-PCR analysis. The results are representative of 5 independent 
experiments. 
SMF: static magnetic field, PDLC: periodontal ligament cell, RT-PCR: reverse transcription polymerase chain reaction, Runx2: runt-related transcription factor 2, 
OPN: osteopontin, OCN: osteocalcin, GAPDH: glyceraldehyde 3-phosphate dehydrogenase. 
a)Significant difference compared to control (P<0.05); b)Significant difference between each group (P<0.05).
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B, SMFs increased Wnt1 and Wnt3a expression, the phosphorylation of glycogen synthase 
kinase-3β (GSK-3β), and total β-catenin protein levels in osteoblasts. Moreover, treatment 
with SMFs increased OM-induced p38 and JNK phosphorylation, but not that of ERK (Figure 
6C). In addition, it enhanced the OM-induced nuclear translocation of p65 (Figure 6D). 
Immunocytochemical observations showed that the nuclear content of NF-κB p65 increased 
markedly in SMF-treated osteoblasts compared with the OM control (Figure 6E).

To confirm the involvement of Wnt/β-catenin, MAPKs, and NF-κB pathways in SMF-induced 
osteoblastic differentiation, inhibitors of Wnt (DKK1), ERK (PD98059), JNK (SP6100126), 
p38 (SB203580), MAPK, and NF-κB (PDTC) signaling were used. SMF-induced ALP activity, 
mineralization nodule formation, calcium concentration, and the mRNAs of osteoblast 
markers were effectively inhibited by DKK1, SP600126, SB203580, and PDTC, but not by 
PD98059 (Figure 7A-D).
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Figure 6. Effects of SMFs on the Wnt/β-catenin, MAPK, and NF-κB signaling pathways in human osteoblasts. (A, B) Cells were treated with SMFs and OS or OM for 
2 days, (C) 30 minutes, and (D, E) 45 minutes. (A-D) Protein levels were assessed by western blot analysis and (E) immunofluorescence staining. Arrows (yellow) 
indicate the nuclear translocation of NF-κB p65. The data presented are representative of five independent experiments. 
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DISCUSSION

Successful periodontal reconstruction requires the regeneration of multiple tissues, 
including cementum, PDL, and bone. Osteoblasts are specialized mesenchymal-derived cells 
capable of forming new bone. PDLCs retain the capability to differentiate into the osteoblast 
lineage, and are considered to play a key role in the regeneration of periodontal tissues 
[24]. In addition, cementoblasts may play a key role in the formation of the PDL-cementum 
apparatus during periodontal regeneration [25]. Thus, complete periodontal repair entails 
de novo cementogenesis, osteogenesis, and the formation of PDL fibers, and we focused here 
on the effects of SMFs on the osteoblastic/cementoblastic responsiveness of cells associated 
with the periodontium such as osteoblasts, cementoblasts, and human PDLCs, to explore the 
possibility of using SMFs as a therapeutic agent in periodontal or bone regeneration.

The present study showed that SMF exposure did not affect or impair cell proliferation, even 
over the course of 14 days of culture. Therefore, the present results agreed with previous 
findings that demonstrated that SMF exposure did not affect cell proliferation in rat calvaria 
cells or osteoblast-like cells [12]. However, SMFs significantly inhibited the proliferation 
of human osteoblasts [13], but conversely stimulated the proliferation of MSCs in vitro [17]. 
These discrepancies may stem from differences in culture conditions, cell type, and the 
application methods or type of magnetic fields.

ALP activity is an early maker of osteoblasts, whereas mineralization of the extracellular 
matrix detected by Alizarin red staining is a marker of mature osteoblasts [26]. OCN and OPN 
are non-collagenous proteins found in the extracellular matrix produced by osteoblasts, and 
are late osteoblast differentiation markers [27]. Runx2 is an osteoblast-specific-transcription 
factor essential for early osteoblastic differentiation [28]. hFOB 1.19 cells have the matrix-
synthesizing properties of differentiated osteoblasts, and are an excellent model for the 
study of osteoblast biology in vitro [29]. We reported above that SMFs increased ALP activity, 
upregulated OCN, OPN, and Runx2 mRNA, and promoted the formation of mineralized 
nodules, as well as increasing calcium content in osteoblasts. Evidently, SMFs stimulated 
both early and late osteoblastic differentiation, as well as mineralization in the osteoblasts, 
which is consistent with previous data obtained using rat osteoblasts [12], human osteoblast-
like MG63 cells [15], dental pulp cells [16], and MSCs [17].

Cementoblasts share many characteristics with osteoblast-like cells, including the ability to 
form a mineralized matrix, and express genes associated with osteogenic differentiation, 
including OPN, OCN, CEMP-1, and CAP [22]. PDLCs have the capacity to differentiate in vitro 
into osteoblasts and cementoblasts, as they have high ALP activity and produce considerable 
OPN, bone sialoprotein, and OCN [30]. Thus, the regulation of osteogenic/cementoblastic 
differentiation in PDLCs and cementoblasts has important implications for the development 
of new therapeutic strategies for periodontitis. We observed that SMFs stimulated PDLCs and 
cementoblasts to acquire cementoblast/osteoblast characteristics as measured by increased 
ALP activity, osteogenesis/cementogenesis-related gene expression, enhanced calcium 
content, and mineral nodule formation. These results support existing data suggesting 
that SMFs enhance osteoblastic/cementoblastic differentiation and the mineralization of 
osteoblasts, PDLCs, and cementoblasts.

Wnt/β-catenin signaling plays an important role in skeletal development and osteoblast 
differentiation [31]. Binding of Wnt to its receptors leads to the inhibition of GSK-3β and the 
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stabilization and accumulation of β-catenin, which then translocates to the nucleus where it 
interacts with members of the T-cell factor/lymphoid enhancer factor family of transcription 
factors, resulting in the activation of Wnt downstream target genes [32]. A recent study 
showed that PEMFs can prevent ovariectomy-induced bone loss and the deterioration of bone 
microarchitecture and strength by activating this Wnt/β-catenin signaling pathway [33]. In 
the present study, SMFs significantly upregulated canonical Wnt ligands (Wnt1 and Wnt3a), 
and stimulated phosphorylation of GSK-3β and total β-catenin expression in osteoblasts. 
These results suggest that SMFs stimulate osteoblastic differentiation by activating the 
Wnt/β-catenin signaling pathway.

The MAPK and NF-κB pathways are known to play essential roles in cell differentiation 
[22]. Recently it was reported that extremely low-frequency magnetic fields inhibited the 
adipogenic differentiation of human MSCs via the JNK-dependent Wnt signaling pathway 
[34]. However, electromagnetic fields activated the ERK/MAPK pathway in fibroblast-like 
cells [35] and hippocampal neurons [36], as well as p38 signaling in a Chinese hamster 
lung cell line [37]. In addition, treatment with SB203580, an inhibitor of p38 MAPK, 
suppressed extremely low-frequency electromagnetic field-induced collagen production 
in mouse osteoblast-like MC3T3-E1 cells [38]. PEMF exposure significantly increased 
the anti-inflammatory effect of the A2A and A3 adenosine receptors by inhibiting NF-κB 
pathways in chondrocytes and osteoblasts [39]. In contrast, strong SMFs (6 T) induced the 
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secretion of prostaglandin E2 and the expression of cyclooxygenase 2 in MC3T3-E1 cells, via 
the translocation of NF-κB [40]. Our results confirm that the p38, JNK/MAPK, and NF-κB 
signaling pathways are activated in SMF-treated osteoblasts. Furthermore, inhibitors of Wnt, 
p38, JNK MAPK, and NF-κB significantly reduced osteoblastic differentiation in response to 
SMFs. Hence, SMF may promote osteoblast differentiation by activating the Wnt, p38, JNK/
MAPK, and NF-κB signaling pathways.

In summary, this is the first study to report that SMFs promoted osteoblastic/cementoblastic 
differentiation by activating the Wnt/β-catenin, p38, JNK/ MAPK, and NF-κB signaling 
pathways in osteoblasts, cementoblasts, and PDLCs. Figure 8 is a schematic representation 
of the signaling pathway involved in the effects of SMFs on the osteoblastic differentiation 
in osteoblasts. Wnt binds to the transmembrane receptor Frizzled (Fzd) and co-
receptor LRP5/6. SMF-activated Wnt-Fzd-LRP5/6 binding events lead to the intracellular 
accumulation of β-catenin and phosphorylation of GSK3, which activates MAPK and NF-κB 
for osteoblastogenic gene and Runx2 transcription. Our results also show that SMFs have 
beneficial effects on bone healing and periodontal regeneration.
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