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OBJECTIVE—Our recent study demonstrated that Rac1 and
NADPH oxidase activation contributes to cardiomyocyte apopto-
sis in short-term diabetes. This study was undertaken to investi-
gate if disruption of Rac1 and inhibition of NADPH oxidase
would prevent myocardial remodeling in chronic diabetes.

RESEARCH DESIGN AND METHODS—Diabetes was in-
duced by injection of streptozotocin in mice with cardiomyocyte-
specific Rac1 knockout and their wild-type littermates. In a
separate experiment, wild-type diabetic mice were treated with
vehicle or apocynin in drinking water. Myocardial hypertrophy,
fibrosis, endoplasmic reticulum (ER) stress, inflammatory re-
sponse, and myocardial function were investigated after 2
months of diabetes. Isolated adult rat cardiomyocytes were
cultured and stimulated with high glucose.

RESULTS—In diabetic hearts, NADPH oxidase activation, its
subunits’ expression, and reactive oxygen species production
were inhibited by Rac1 knockout or apocynin treatment. Myo-
cardial collagen deposition and cardiomyocyte cross-sectional
areas were significantly increased in diabetic mice, which were
accompanied by elevated expression of pro-fibrotic genes and
hypertrophic genes. Deficiency of Rac1 or apocynin administra-
tion reduced myocardial fibrosis and hypertrophy, resulting in
improved myocardial function. These effects were associated
with a normalization of ER stress markers’ expression and
inflammatory response in diabetic hearts. In cultured cardiomy-
ocytes, high glucose–induced ER stress was inhibited by block-
ing Rac1 or NADPH oxidase.

CONCLUSIONS—Rac1 via NADPH oxidase activation in-
duces myocardial remodeling and dysfunction in diabetic
mice. The role of Rac1 signaling may be associated with ER
stress and inflammation. Thus, targeting inhibition of Rac1 and
NADPH oxidase may be a therapeutic approach for diabetic
cardiomyopathy. Diabetes 59:2033–2042, 2010

D
iabetic cardiomyopathy has been defined as
ventricular dysfunction that occurs in the ab-
sence of changes in blood pressure and coro-
nary artery disease (1). Cardiac structural

phenotypes of diabetic cardiomyopathy include cardiomy-
ocyte apoptosis, cardiac hypertrophy, myocardial fibrosis,
and interstitial inflammation (2,3), all of which signifi-
cantly contribute to myocardial dysfunction. Three evi-
dent characteristic metabolic disturbances in diabetes,
including hyperglycemia, hyperlipidemia, and hyperinsu-
linemia, are attributable to altered myocardial structure
and function in diabetic cardiomyopathy (4). However, the
signaling pathways associated with these metabolic trig-
gers remain not fully understood in diabetic hearts.

Several mechanisms involved in diabetic myocardial
dysfunction have been suggested, which include increased
oxidative stress, impaired calcium homeostasis, upregula-
tion of the renin-angiotensin system, altered substrate
metabolism, and mitochondrial dysfunction (3). These
changes are closely related to reactive oxygen species
(ROS) production. ROS is mainly produced by mitochon-
dria and NADPH oxidase in cardiomyocytes. A cross-talk
between mitochondria and NADPH oxidase has been
suggested to sustain cellular ROS production under
stresses (5–9). Selective inhibition of mitochondrial ROS
has been shown to prevent diabetic cardiac changes in
type 1 diabetic mice, confirming an important role of
mitochondrial ROS (10). Our recent study has revealed
that Rac1 via NADPH oxidase activation induces mito-
chondrial ROS production and plays an essential role in
cardiomyocyte apoptosis and myocardial dysfunction in
streptozotocin (STZ)-induced diabetes (8). Cell death by
apoptosis is the predominant damage in diabetic cardio-
myopathy (2). Cardiomyocyte death causes a loss of
contractile tissue, which initiates a cardiac remodeling
(11). Furthermore, Rac1/NADPH oxidase signaling has
also been demonstrated to directly induce cardiac hyper-
trophy (12,13) and skin fibrosis (14,15). However, direct
evidence is lacking as for the contribution of Rac1/NADPH
oxidase to myocardial remodeling in the development of
diabetic cardiomyopathy.

In this study, we took advantage of the availability of
mice with cardiomyocyte-specific Rac1 knockout to ana-
lyze the impact of Rac1 on NADPH oxidase activation,
endoplasmic reticulum (ER) stress, hypertrophy, fibrosis,
and inflammatory response in diabetic hearts. We further
investigated the therapeutic effect of the NADPH oxidase
inhibitor apocynin on diabetic cardiomyopathy in STZ-
induced type 1 diabetic mice.
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RESEARCH DESIGN AND METHODS

This investigation conforms to the Guide for the Care and Use of Laboratory

Animals, published by the U.S. National Institutes of Health (NIH Publication
No. 85-23). All experimental procedures were approved by the Animal Use
Subcommittee at the University of Western Ontario, Canada. Breeding pairs of
C57BL/6 mice and mice bearing the modified Rac1 gene containing loxP sites
(floxed Rac1) were purchased from The Jackson Laboratory. Transgenic mice
with cardiomyocyte-specific expression of Cre recombinase (Cre) under the
control of �-myosin heavy chain (�-MHC) were provided by Dr. Dale Evan
Abel (University of Utah). Mice with cardiomyocyte-specific Rac1 knockout
(Rac1-ko) were generated by crossing the floxed Rac1 mice with mice
overexpressing Cre under the control of �-MHC, as we recently described (8).
Animals used for experiments were genotyped by PCR (PCR) to detect Rac1
and Cre as described previously (8). A breeding program for mice was
implemented at our animal care facilities. (An expanded RESEARCH DESIGN AND

METHODS section is available in the online appendix at http://diabetes.
diabetesjournals.org/cgi/content/full/db09-1800/DC1.)

Adult male rats (Sprague-Dawley, 200 g body weight) were purchased from
Charles River Labs. Adult rat ventricle cardiomyocytes (ARVCs) were isolated
and cultured as described previously (8,16,17).
Experimental protocol. Diabetes was induced in adult male mice (2 months
old) by consecutive peritoneal injection of STZ (50 mg/kg/day) for 5 days.
Whole blood was obtained from the mouse tail vein 72 h after the last injection
of STZ, and random glucose levels were measured using a OneTouch Ultra 2
blood glucose monitoring system (LifeScan, Milpitas, CA). The mice were
considered diabetic and used for the study only if they had hyperglycemia
(�15 mmol/l) at 72 h after STZ injection, whereas citrate buffer–treated
mice were used as a nondiabetic control (blood glucose �12 mmol/l). Two
months after induction of diabetes, Rac1-ko mice and their wild-type (WT)

littermates (n � 8 –12 in each group) were killed for the following
experiments.

In a separate experiment, WT animals were divided into four groups (n �
8–12 in each group) that included control, control-treated, diabetes, and
diabetes-treated groups. After induction of diabetes, apocynin, an inhibitor of
NADPH oxidase, was administered to the control-treated and diabetes-treated
groups in the drinking water (30 mg/kg/day) for 2 months.
Histological analysis. Hearts were excised, washed with saline solution,
and placed in 10% formalin. Hearts were then cut transversely close to the
apex to visualize the left ventricle and right ventricle. Several sections of
heart (5 �m thick) were prepared and stained with hematoxylin and eosin
and a saturated solution of picric acid containing 1% Sirius red for collagen
deposition (18). The sections were then visualized by light microscopy and
photographed, and the collagen content of the sections was measured by
using the computer-assisted morphometry (Image-Pro Plus Version 6.0).
For each sample, all available fields (�30 fields) were measured, including
the septum and the right and the left ventricle (all fields were analyzed with
a �40 objective lens).

For cardiomyocyte cross-sectional area, sections were stained for
membranes with fluorescein isothiocyanate– conjugated wheat germ agglu-
tinin (WGA; Invitrogen) and for nuclei with DAPI (19). A single cardiomy-
ocyte was measured with an image quantitative digital analysis system
(NIH Image version 1.6). The outline of 200 cardiomyocytes was traced in
each section.

Tissue sections (5 �m) were stained with antibodies against tumor
necrosis factor (TNF)-�, transforming growth factor (TGF)-�1, and GRP78,
respectively. Detection was carried out by using the EnVision� system and
diaminobenzidine (USCNLIFE, China) as described previously (20).
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FIG. 1. Effects of Rac1 knockout on NADPH oxidase and ROS production. Rac1-ko mice (KO) and their WT littermates were injected with
STZ. Two months later, NADPH oxidase activation and expression and ROS production in heart tissues were measured. A: Translocalization
of Rac1 and p67phox to the membrane. The protein levels of Rac1 (mRac1) and p67phox (mp67phox) were decreased in the membrane fractions
of Rac1 KO compared with WT diabetic hearts. The top panel is the representative Western blot for membrane mRac1, mp67phox, and
gp91phox from three out of five to six different hearts in each group, and the lower panel is the quantification of mRac1, mp67phox, and
gp91phox. NADPH oxidase activity (B), superoxide production (C), and H2O2 production (D) were decreased in diabetic Rac1 KO compared
with WT hearts. C is the representative DHE staining (Red signal) for superoxide production from five to six different hearts in each group.
E: Rac1, p67phox, and gp91pho protein expression. The protein levels of Rac1 and p67pho were decreased in Rac1 KO compared with WT
diabetic hearts. The top panel is the representative Western blot for Rac1, p67phox, and gp91phox from three out of five to six different hearts
in each group and the lower panel is the quantification of Rac1, p67phox, and gp91phox. F: Mitochondrial superoxide production was increased
in WT diabetic hearts, which was significantly decreased in Rac1 KO hearts. G: Thioredoxin reductase activity was preserved in Rac1
knockout diabetic hearts. Magnification �40. Data are means � SD, n � 5–8. *P < 0.05 vs. sham; #P < 0.05 vs. STZ in WT. (A high-quality
digital representation of this figure is available in the online issue.)
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Statistical analysis. All data were given as mean � SD. ANOVA followed by
Newman-Keuls test was performed for multigroup comparisons. A value of
P � 0.05 was considered statistically significant.

RESULTS

Downregulation of NADPH oxidase activity, its ex-
pression, and ROS production in Rac1-ko and apocy-
nin-treated hearts during diabetes. Administration of
STZ resulted in characteristic symptoms of diabetes in-
cluding hyperglycemia and increased food and fluid intake
when compared with age-matched controls (supplemental
Table 2, available in the online appendix). Diabetic mice
had higher plasma glucose levels (20 – 30 mmol/l) than
nondiabetic control mice (�12 mmol/l) 72 h after STZ
injection. All animals responded to STZ treatment, and no
animal died or was excluded from the study. At termina-
tion, fluid intake, food consumption, and plasma glucose
levels were higher in diabetic mice than in control mice,
and neither Rac1 knockout nor treatment with apocynin
for 2 months had significant effects on these changes
(supplemental Table 2).

Consistent with our recent report (8), Rac1 protein
levels were significantly reduced in Rac1-ko compared
with WT hearts (Fig. 1A and C). In contrast, there was
no change of Rac1 protein levels in cardiac fibroblasts
from Rac1-ko mice compared with WT mice (supple-
mental Fig. 1). This result confirms cardiomyocyte-
specific Rac1 deletion in Rac1-ko mice. Diabetes
significantly increased membrane p67phox and Rac1 pro-
tein (Fig. 1A), NADPH oxidase activity (Fig. 1B), and
ROS production (Fig. 1C and D), which were dramati-
cally reduced in Rac1-ko mice. Diabetes also increased
mRNA and/or protein expression of NADPH oxidase
subunits (Rac1, gp91phox, p67phox, and p47phox) in the

heart. However, their levels were significantly reduced
in Rac1-ko diabetic hearts (Fig. 1E and supplemental
Fig. 2A and B). Thus, deficiency of Rac1 not only blocks
the translocation of p67pho to the membrane, NADPH
oxidase activation, and ROS production, but also inhib-
its its expression in diabetic hearts.

Deficiency of Rac1 also abrogated the increase of super-
oxide production in freshly isolated mitochondria from
diabetic hearts on addition of pyruvate/malate (Fig. 1F).
This result supports the fact that Rac1 activation induces
mitochondrial superoxide generation in chronic diabetic
hearts, which was also shown in STZ-induced acute dia-
betic hearts in our recent study (8).

It has been demonstrated that diabetes leads to a loss of
antioxidant activity, in particular, thioredoxin system (21).
Consistently, thioredoxin reductase activity was signifi-
cantly reduced in diabetic hearts, which was preserved in
Rac1-ko mice (Fig. 1G). This result suggests that Rac1
activation induces the reduction of thioredoxin reductase
activity in diabetic hearts.

Similar to the effects of Rac1 knockout, administration
of apocynin inhibited NADPH oxidase expression (supple-
mental Fig. 2C–E) and activation and ROS production in
diabetic hearts (Fig. 2A and B). To determine the involve-
ment of Nox isoforms, we focused on Nox2 and Nox4,
since our previous study showed that cardiomyocytes
express Nox2 and Nox4 (22). Cultured ARVCs were trans-
fected with siRNA specific for Nox2 and Nox4, respec-
tively, and then incubated with normal (5.5 mmol/l) or high
glucose (33 mmol/l) for 24 h. A scrambled siRNA was used
as a control. Knockdown of either Nox2 or Nox4 de-
creased NADPH oxidase activity and superoxide produc-
tion in high glucose–stimulated ARVCs (Fig. 2C–F). Thus,
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drinking water for 2 months. Apocynin treatment significantly reduced NADPH oxidase activity (A) and H2O2 production (B) in diabetic heart
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cardiomyocytes were transfected with gp91phox siRNA, Nox4 siRNA, or a scrambled siRNA as a control and then incubated with normal glucose
(NG, 5.5 mmol/l) or high glucose (HG, 33 mmol/l) for 24 h. NADPH oxidase activity (C and E) and superoxide production (D and F) were measured
in cardiomyocytes. Data are means � SD, n � 3–4. *P < 0.05 vs. scrambled siRNA in NG; #P < 0.05 vs. scrambled siRNA in HG.

J. LI AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 59, AUGUST 2010 2035



both isoforms may be involved in diabetes-induced ROS
production.
Anti-hypertrophic effect of Rac1 knockout and apo-
cynin in diabetic hearts. Diabetes induces cardiac hy-
pertrophy, which is one characteristic change of diabetic
cardiomyopathy (23). Consistently, cardiomyocyte cross-
sectional areas were significantly increased in diabetic
compared with nondiabetic hearts, indicative of hypertro-
phy (Fig. 3A and D). In contrast, hearts from diabetic
Rac1-ko mice showed a much smaller increase in cross-
sectional areas (Fig. 3A). Similar to the finding of cardio-
myocyte cross-sectional areas, induction of cardiac fetal
gene expression (atrial natriuretic peptide [ANP] and
	-MHC, markers of cardiac hypertrophy) was significantly
reduced in Rac1-ko mice compared with their WT hearts in
response to diabetes (Fig. 2B and C). These results indi-
cate that Rac1 is critical for the development of cardiac
hypertrophy in diabetic mice.

Having shown that deficiency of Rac1 blocked NADPH
oxidase activity and ROS production, and attenuated car-
diac hypertrophy in diabetic mice, we reasoned that
administration of apocynin, a selective inhibitor of
NADPH oxidase would prevent cardiac hypertrophy. In
support of this hypothesis, inhibition of NADPH oxidase
with apocynin resulted in significant attenuation of hyper-
trophy, as evidenced by a smaller increase in cardiomyo-
cyte cross-sectional areas (Fig. 3D) and significant
downregulation of ANP and 	-MHC expressions in apo-
cynin-treated hearts compared with vehicle-treated hearts
in response to diabetes (Fig. 3E and F). However, this
effect of apocynin was not observed in nondiabetic hearts.
These findings support an important role of NADPH oxi-
dase in the development of cardiac hypertrophy in diabetic

mice, and thus, apocynin may provide a therapeutic effect
on diabetic cardiac changes.
Contribution of Rac1 and NADPH oxidase to myocar-
dial fibrosis in diabetic mice. To investigate the role of
Rac1 signaling in myocardial fibrosis, we first analyzed
total collagen contents in diabetic hearts. In agreement
with previous studies (24,25), diabetes significantly in-
creased collagen deposition in mouse hearts (Fig. 4).
The collagen deposition was present in both intra-
myocardial and peri-vascular areas (Fig. 4A). Deficiency
of Rac1 or apocynin treatment reduced diabetes-in-
duced collagen deposition (Fig. 4B and C). Because
changes in the collagen (Col) composition, and partic-
ularly in Col I and III, compromise cardiac performance
(26), we then measured Col I and III expression in the
heart. Consistently, the mRNA levels of Col I and III
in hearts from diabetic Rac1-ko and apocynin-treated
mice were much lower than those in diabetic WT and
vehicle-treated mice, respectively (Figs. 5A and B and
6A and B).

To further demonstrate the role of Rac1 and NADPH
oxidase in diabetes-induced fibrosis, we also analyzed
the expression of pro-fibrotic genes in diabetic hearts.
In nondiabetic mice, there were no changes in mRNA
levels of TGF-	1, �-SMA, and osteopontin between
Rac1-ko and WT hearts and between vehicle and apo-
cynin-treated hearts. In response to STZ, the mRNA
levels of TGF-	1, �-SMA, and osteopontin were signifi-
cantly upregulated in WT or vehicle-treated hearts. In
parallel with changes in collagen deposition and Col I/III
expression, deficiency of Rac1 or apocynin treatment
reduced TGF-	1, �-SMA, and osteopontin mRNA ex-
pression by 54, 84, and 68% in diabetic Rac1-ko hearts
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(Fig. 5C–E) and 67, 80, and 62% in apocynin-treated
diabetic hearts, respectively (Fig. 6C–E). Similarly, de-
ficiency of Rac1 also inhibited diabetes-induced TGF-	1
protein in the myocardium (Fig. 5G).
Reduced inflammatory response in diabetic Rac1-ko
and apocynin-treated hearts. Rac1 has previously been
suggested to be mediators of inflammation (27). Inflamma-
tion has been suggested to play an important role in the
development of myocardial remodeling (28); we therefore
analyzed inflammatory cytokine TNF-� expression in dia-
betic hearts. In agreement with another report (25), dia-
betes induced upregulation of TNF-� mRNA and protein
expression in the heart. Similar to the hypertrophic and
fibrotic effects, the increase in TNF-� mRNA and protein
was significantly attenuated by Rac1 knockout or apocy-
nin treatment in diabetic hearts (Figs. 5F, 5H, and 6F).
These results suggest that inhibition of Rac1 and NADPH
oxidase prevents inflammatory response in diabetic hearts.
Role of Rac1 in ER stress induction. Oxidative stress is
involved in ER stress induction, which contributes to
myocardial dysfunction (29). A recent study has shown
that ER stress is induced in diabetic hearts and plays a role
in the development of diabetic cardiomyopathy (30). We
therefore hypothesized that blocking Rac1 signaling could
prevent ER stress in diabetic hearts. To test this hypothe-
sis, we determined ER stress by analyzing ER stress
markers’ expression (CHOP, XBP1, and GRP78) (31).
Consistent with a previous report (30), diabetes increased
CHOP, XBP1, and GRP78 mRNA and/or protein expression
in the heart, confirming the presence of ER stress. How-
ever, the increases in mRNA and/or protein levels of
CHOP, XBP1, and GRP78 were abolished in Rac1-ko mice
compared with their WT hearts in response to diabetes

(Fig. 7A–D). Thus, these results suggest that disruption of
Rac1 signaling prevents ER stress induction in diabetic
hearts.

To further demonstrate the role of Rac1 signaling in ER
stress and explore the involved pathways, we exposed
cultured ARVCs to high glucose and analyzed phosphory-
lation of PERK, cleaved ATF-6, and GRP78 expression.
ARVCs were infected with Ad-RacN17, an adenoviral vec-
tor expressing a dominant-negative mutant of Rac1, which
specifically blocks Rac1 activation (32), or Ad-gal as an
adenoviral control and were then incubated with normal
(5.5 mmol/l) or high glucose (33 mmol/l) for 24 h. High
glucose significantly increased GRP78 protein, phosphor-
ylated PERK, and cleaved ATF-6 (50 kDa) in ARVCs (Fig.
7E), indicative of induction of ER stress and activation of
PERK and ATF-6 pathways (31). In line with a reduction
of superoxide production (supplemental Fig. 3), inhibi-
tion of Rac1 abrogated high glucose–induced increases in
GRP78 protein and activation of PERK and ATF-6 in
ARVCs. Similarly, incubation of apocynin inhibited ER
stress in high glucose–stimulated ARVCs (Fig. 7F).
Attenuation of myocardial dysfunction in apocynin-
treated diabetic mice. We recently showed that defi-
ciency of Rac1 attenuates myocardial dysfunction in
diabetic hearts (8). In the present study, we extended our
experiments to examine the therapeutic potential of
NADPH oxidase inhibition with apocynin for myocardial
dysfunction in diabetic mice. Consistently, STZ-induced
diabetic animals showed a significant reduction of �dF/
dtmax and 
dF/dtmin compared with nondiabetic ones.
Importantly, myocardial function was significantly im-
proved in apocynin-treated STZ mice compared with STZ
controls (Fig. 8). Apocynin treatment in nondiabetic ani-
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red for collagen deposition (see RESEARCH DESIGN AND METHODS). A: Representative staining for collagen deposition is presented for intra-
myocardium (IM), small vessel (SV), and big vessel (BV) from each group. Collagen deposition is stained as red color. B and C: Collagen
deposition was quantified as percent of cardiac area. Data are means � SD, n � 6–8. *P < 0.05 vs. nondiabetes in WT or vehicle; #P < 0.05 vs.
diabetes in WT or vehicle. (A high-quality digital representation of this figure is available in the online issue.)
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mals did not affect myocardial function, indicating no
potential side effects of apocynin. Thus, administration of
apocynin protects myocardial function in diabetic mice.

DISCUSSION

The present study used mice with cardiomyocyte-specific
Rac1 knockout to investigate the role of Rac1 signaling in
myocardial remodeling in chronic diabetes. We demon-
strated that deficiency of Rac1 reduced cardiac hypertro-
phy and fibrosis in STZ-induced type 1 diabetic mice.
Diabetes-induced NADPH oxidase activation and expres-
sion, ROS production, ER stress, and TNF-� expression
were also attenuated by Rac1 knockout. Furthermore,
pharmacological inhibition of NADPH oxidase prevented
myocardial remodeling and alleviated myocardial dysfunc-
tion in diabetic mice. Thus, Rac1 and NADPH oxidase
activation play a critical role in myocardial remodeling
during the development of diabetic cardiomyopathy, and
this action of Rac1/NADPH oxidase may be associated
with ER stress and inflammatory response in diabetic
hearts.
Rac1/NADPH oxidase and diabetic cardiac hypertro-
phy. Previous studies have provided direct evidence that
demonstrates that NADPH oxidase activation is required
for cardiac hypertrophy in different models (33). For
example, cardiac hypertrophy induced by angiotensin II
and myocardial infarction was prevented in gp91phox (34)

and p47phox knockout mice (35), respectively. Rac1
activation is critical for the assembly of active NADPH
oxidase to produce superoxide (36). In this regard, over-
expression of active Rac1 induces cardiomyocyte hyper-
trophy (13), and cardiomyocyte specific Rac1 knockout
prevents angiotensin-induced hypertrophy in mice (12).
Thus, Rac1/NADPH oxidase signaling is important in car-
diac hypertrophy. However, the role of NADPH oxidase
may be both isoform specific and depending on stimuli
(34,37). In diabetes, it remains unclear whether Rac1 and
NADPH oxidase are involved in diabetic cardiac hypertro-
phy. Previous studies have shown that activation of a
gp91phox-containing NADPH oxidase results in nuclear
factor–�B activation and upregulation of atrial natriuretic
factor mRNA in cardiomyocytes in response to early-
glycated Amadori products (38), and cardiac hypertrophy
is attenuated in association with downregulation of
NADPH oxidase by N-acetylcysteine in STZ-induced dia-
betic rats (39). However, conclusive evidence is lacking to
link Rac1/NADPH oxidase to the development of cardiac
hypertrophy in diabetes. In this study, we have provided
convincing evidence that demonstrates a critical role of
Rac1 in diabetic cardiac hypertrophy. Cardiomyocyte-
specific deletion of Rac1 reduced cardiomyocyte cross-
sectional areas and prevented hypertrophic gene ANP and
	-MHC expression in diabetic hearts. Furthermore, the
role of Rac1 is mediated through NADPH oxidase, since

C
ol

la
ge

n-
I/ 

G
AP

D
H

 
(m

R
N

A 
O

.D
. R

at
io

/1
03

) *

C
ol

la
ge

n-
III

/ G
AP

D
H

(m
R

N
A 

O
.D

. R
at

io
/1

03
)

WT
KO

0.

5

10

15

Non-Diabetes Diabetes

* #
TG

F -
β/

 G
A

P
D

H
(m

R
N

A 
O

.D
. R

at
io

/1
04

)

A C

D E

G

Non-Diabetes Diabetes

*
#

0.0

2.5

5.0

7.5

α-
S

M
A

/ G
A

P
D

H
 

(m
R

N
A 

O
.D

. R
at

io
/1

03
)

WT
KO

*

Non-Diabetes Diabetes

#

0

1

2

O
st

eo
po

nt
in

/G
A

P
D

H
 

(m
R

N
A 

O
.D

. R
at

io
/1

03
)

TN
F-

a/
 G

AP
D

H
(m

R
N

A 
O

.D
. R

at
io

/1
04

)

Non-diabetes Diabetes

#

0

1

2

3

4

5 WT
KO

Non-Diabetes Diabetes

*
#

0

1

2

3

4 WT
KO WT

KO

Non-Diabetes Diabetes
0.0

2.5

5.0

7.5

10.0 *
#

WT
KO

Non-Diabetes Diabetes Non-Diabetes Diabetes

WT

KO

WT

KO

a b

c d

a b

c d

B

F

H

FIG. 5. Effect of Rac1 knockout on pro-fibrotic genes expression. Diabetes was induced by injection of STZ in Rac1-ko (KO) and their WT
littermates. Two months after STZ injection, the mRNA levels of Col I (A), Col III (B), osteopontin (C), �-SMA (D), TGF-�1 (E), and TNF-� (F)
were quantified in heart tissues by real-time RT-PCR. G and H: Representative immunohistological stainings for TGF-�1 (G) and TNF-� (H) from
four to six different hearts in each group (yellow-brown signal). Magnification �40. Data are means � SD, n � 6–8. *P < 0.05 vs. nondiabetes
in WT; #P < 0.05 vs. diabetes in WT. O.D., optical density. (A high-quality digital representation of this figure is available in the online issue.)

ROLE OF Rac1 IN DIABETIC CARDIOMYOPATHY

2038 DIABETES, VOL. 59, AUGUST 2010 diabetes.diabetesjournals.org



deficiency of Rac1 blocks NADPH oxidase activation, its
expression, and ROS production, and pharmacological
inhibition of NADPH oxidase with apocynin reduces car-
diac hypertrophy in diabetic mice. Although apocynin may
have other antioxidant effects independent of NADPH
oxidase inhibition (40), our data showed that administra-
tion of apocynin prevented NADPH oxidase activity and
reduced ROS production in diabetic hearts, confirming the
inhibitory effect of apocynin on NADPH oxidase activa-
tion. Thus, the present study extends the role of Rac1 via
NADPH oxidase to the development of diabetic cardiac
hypertrophy. However, future studies will be required to
investigate whether NADPH oxidase–independent path-
ways are also involved in Rac1-induced cardiac hypertro-
phy in diabetes.

In addition to a direct pro-hypertrophic role of Rac1 in
cardiomyocyte, the anti-hypertrophic effects of Rac1
knockout and NADPH oxidase inhibition may also partly
result from the prevention of cardiomyocyte apoptosis,
which otherwise will lead to compensative hypertrophy,
since deficiency of Rac1 or inhibition of NADPH oxidase
reduces cardiomyocyte apoptosis in diabetic hearts (8).
Rac1/NADPH oxidase and diabetic myocardial fibro-
sis. Myocardial fibrosis is one of the most important
mechanisms for the pathogenesis of diabetic cardiomyop-
athy (41). Consistent with previous studies (24,25), we
found increased collagen deposition in the hearts of
STZ-induced diabetic mice, correlating with myocardial
dysfunction. Col I and III, which constitute 90% of cardiac
collagen and are especially important for cardiac hemody-
namics (26), were also upregulated in diabetic hearts. In
contrast, cardiomyocyte-specific deletion of Rac1 blunted
total cardiac collagen deposition and reduced the levels of
Col I and III expression. Similarly, pharmacological inhi-

bition of NADPH oxidase prevented myocardial fibrosis
and Col I and III expression, in line with the improved
myocardial function. Thus, Rac1/NADPH oxidase activa-
tion leads to the induction of fibrosis in diabetic hearts.
Further evidence to support the role of Rac1/NADPH
oxidase was from previous studies that demonstrated that
atorvastatin inhibited Rac1 activity and reduced myocar-
dial fibrosis in diabetic hearts (25), and inhibition of
NADPH oxidase attenuated interstitial fibrosis of nonin-
farcted myocardium after myocardial infarction in type 2
diabetes (42).

It is known that fibroblasts play an important role in
fibrosis. Activation of fibroblasts with limited proliferative
capacity undergoes a conversion to myofibroblasts, lead-
ing to the formation of fibrosis (43). The change in
fibroblast properties is initiated by TGF-	1, which stimu-
lates the expression of genes that are characteristic of
myofibroblasts, including �-SMA and osteopontin. In this
regard, TGF-	1, �-SMA and osteopontin expression were
significantly upregulated in diabetic hearts. However, their
levels were decreased by deficiency of Rac1 or pharmaco-
logical inhibition of NADPH oxidase. This data provides
mechanistic insight into the involvement of Rac1/NADPH
oxidase in myocardial fibrosis.

Nevertheless, the mechanisms by which Rac1/NADPH
oxidase induces fibrosis in diabetic hearts are not fully
understood. Our data showed that diabetes induced myo-
cardial TNF-� expression, which was also prevented by
Rac1 knockout and inhibition of NADPH oxidase. Because
myocardial fibrosis in diabetic cardiomyopathy is partly
mediated by the upregulation of cytokines that have a
pro-fibrotic action, including TNF-� (44), the reduction of
myocardial TNF-� expression may be one of the mecha-
nisms involved in the anti-fibrotic effects of Rac1 knockout
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and NADPH oxidase inhibition in STZ diabetic mice. In
addition, we recently demonstrated that Rac1 via NADPH
oxidase activation is required for cardiomyocyte apoptosis
in diabetes (8). Loss of cardiomyocytes through both
necrosis and apoptosis are replaced by fibrosis, since
cardiomyocytes are not able to proliferate and the gener-
ation of new cardiomyocytes is largely limited. Thus,

inhibition of cardiomyocyte apoptosis may be another
possible mechanism for reduction of fibrosis by disruption
of Rac1/NADPH oxidase signaling in diabetic hearts.

It is important to mention that the present study
demonstrated that Rac1 in cardiomyocytes contributes
to fibrosis, since the levels of Rac1 protein are not
altered in cardiac fibroblasts from cardiomyocyte-spe-
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cific Rac1 knockout mice compared with their WT
littermates. It is likely that Rac1 in fibroblasts, albeit
speculation, also plays a role in myocardial fibrosis in
diabetes, since mice containing a fibroblast-specific
deletion of Rac1 showed resistance to the bleomycin-
induced model of skin fibrosis (15) and impaired myo-
fibroblast formation in the dermal punch model of
cutaneous wound healing (14).
ER stress and diabetic cardiomyopathy. ER stress is
induced by accumulation of unfolded proteins, resulting
from oxidative stress, ischemia, disturbance of calcium
homeostasis, and overexpression of normal and/or incor-
rectly folded proteins (31). The resulting ER stress triggers
the unfolded protein response, which activates ER trans-
membrane sensors to initiate the adaptive responses.
These ER transmembrane sensors include protein kinase–
like ER kinase (PERK), inositol-requiring kinase 1 (IRE1),
and activating transcription factor 6 (ATF6), and their
activation results in phosphorylation of eukaryotic trans-
lation initiation factor-2� (eIF2�), transcription factor
ATF4 translation, XBP1 splicing, and finally the induction
of the unfolded protein response related genes, including
chaperones GRP78 and GRP94, XBP1, and CHOP. If ER
stress is prolonged or overwhelming, however, it can
induce cell death through CHOP and/or other pathways.
Studies have revealed that ER stress is implicated in the
pathophysiology of heart failure and ischemic heart dis-
ease (45). In diabetes, more recent studies have shown
that cardiac ER stress was induced and linked to cell death
in STZ-induced type 1 diabetes, which may play a part in
diabetic cardiomyopathy (30). Levels of ER stress makers
(phosphorylated PERK, IRE-1, and eIF2�) were signifi-
cantly elevated in cardiomyocyte from type 2 diabetic
db/db mice, presumably contributing to cardiomyocyte
dysfunction (46). ER stress was also observed in type 2
diabetic rats and compromised myocardial response to
cytoprotective signaling (47). These studies suggest that
ER stress may play a part in diabetic heart diseases. In
agreement with these previous studies, our data also
showed the induction of ER stress in STZ-induced diabetic
hearts. More importantly, we demonstrated for the first
time that deficiency of Rac1 inhibited the expression of ER
stress markers, suggesting a critical role of Rac1 signaling
in ER stress in diabetic hearts. To characterize whether
the role of Rac1 signaling in ER stress could be repro-
duced by high glucose levels, we extended our analyses to
cardiomyocytes. Direct exposure of cardiomyocytes to
high glucose induced ER stress. Selective inhibition of
Rac1 or NADPH oxidase prevented ER stress in high
glucose–stimulated cardiomyocytes. We further demon-
strated that high glucose–induced ER stress was associ-
ated with activation of PERK- and ATF-6–dependent
pathways. This is consistent with a previous report in
diabetic hearts (30). Furthermore, activation of PERK and
ATF-6 was dependent on Rac1/NADPH oxidase signaling
in high glucose–induced ER stress, since inhibition of
Rac1 or NADPH oxidase prevented phosphorylation of
PERK and reduced cleaved ATF-6 in cardiomyocytes.
Given the association of ER stress with apoptosis (31),
hypertrophy, and myocardial dysfunction (48), ER stress
may be one of the mechanisms by which Rac1/NADPH
oxidase induces diabetic cardiomyopathy.

In summary, whereas studies have implied the involve-
ment of Rac1 and NADPH oxidase in diabetic cardiomy-
opathy (39,49), this study provided conclusive evidence
that supports a critical role of Rac1/NADPH oxidase in the

development of cardiac hypertrophy, fibrosis, and inflam-
matory response, leading to myocardial dysfunction in
type 1 diabetic mice. The role of Rac1 signaling may be
associated with ER stress. Thus, targeting inhibition of
Rac1 and NADPH oxidase may be a therapeutic approach
for diabetic cardiomyopathy.
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