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Abstract

Signalling network inference is a central problem in system biology. Previous studies investigate this problem by
independently inferring local signalling networks and then linking them together via crosstalk. Since a cellular signalling
system is in fact indivisible, this reductionistic approach may have an impact on the accuracy of the inference results.
Preferably, a cell-scale signalling network should be inferred as a whole. However, the holistic approach suffers from three
practical issues: scalability, measurement and overfitting. Here we make this approach feasible based on two key
observations: 1) variations of concentrations are sparse due to separations of timescales; 2) several species can be measured
together using cross-reactivity. We propose a method, CCELL, for cell-scale signalling network inference from time series
generated by immunoprecipitation using Bayesian compressive sensing. A set of benchmark networks with varying
numbers of time-variant species is used to demonstrate the effectiveness of our method. Instead of exhaustively measuring
all individual species, high accuracy is achieved from relatively few measurements.
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Introduction

Inferring signalling networks from time series aims at revealing

the mechanisms behind biological processes and is an important

research subject in systems biology. Many local signalling networks

(e.g. [1–3]) have been inferred from the dynamic concentrations of

proteins typically quantified by immunoprecipitation [4]. Studies

for inferring local signalling networks are based on the assumption

that the target network is isolated from other networks in a cellular

system. In most cells, at least one species in a local signalling

network will have effects on other networks; that is known as

crosstalk. For example, the glucocorticoid receptor (GR) pathway

is vital for regulating anti-inflammatory and immunosuppressive

processes. Post-translational modification of GR, a potential

substrate for p38 mitogen-activated protein kinase (MAPK)

pathway, affects nuclear retention of GR as well as transactivation.

In some inflammatory diseases, such as severe asthma, the effect of

GR as an anti-inflammatory regulator is dramatically impaired

when the p38 MAPK is over-activated. This suggests that this is

crosstalk between the p38 MAPK and GR pathways, which can

potentially explain the reduced responsiveness to glucocorticoids

in chronic inflammation at the molecular level. Although recent

studies (e.g. [5–9]) have explored crosstalk and linked local

signalling networks together, their approach still artificially divides

the whole signalling system into many small-scale subsystems.

Since a cellular signalling system is in fact indivisible, such

reductionistic approach may have an impact on the accuracy of

the inference results. An alternative approach is to infer a cell-scale

signalling network without separation. This network captures the

emergent properties of a whole-cell signal transduction system. In

theory, a cell-scale signalling network can be inferred using

existing methods, such as maximum likelihood estimation [2],

least-squares estimation [10,11], non-linear optimization [12],

Kalman filters [13,14] and approximate Bayesian computation

[15,16]. However, this holistic approach suffers from three

practical issues, which limits the applications of the existing

methods:

N The scalability issue. A cell-scale signalling network includes a

huge number of proteins and their various forms. For instance,

there are 518 kinases [17] and approximately 150 phospha-

tases [18] that together mediate the signalling network in a

human cell. Exhaustively measuring all the proteins in a cell-

scale signalling network via immunoprecipitation is extremely

expensive and frequently impossible. Moreover, unlike regu-

latory network inference, in which gene expression levels can

be measured by high-throughput technologies (e.g., micro-

array), it is very challenging to precisely quantify a large

number of proteins and especially their post-translational

modifications [19]. Although the emerging mass spectrometry

technique can be successfully used to qualify proteomes [20],

measuring post-translational modified proteins in signalling

networks is highly dependent on enrichment methods whose

performance is influenced by various factors [21].

N The measurement issue. It is impractical to individually measure all

proteins via immunoprecipitation in a cell-scale signalling

network due to their various post-translational modifications

and complex formations. For example, in the JAK-STAT
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signalling pathway, unphosphorylated STAT5, tyrosine phos-

phorylated monomeric STAT5 and tyrosine phosphorylated

dimeric STAT5 are difficult to assess individually [21].

N The overfitting issue. Few studies have attempted to provide cell-

scale signalling networks, and as a result, little is known of their

structure. It has been reported that the existing inference

methods are likely to overfit for experimental data without

structural constraints [22].

As a result, the methodology of inferring cell-scale signalling

networks requires fundamental changes. This paper proposes a

new method, called CCELL, that responds to all the three

challenging issues described above and flows from the following

two key observations:

N Variations of concentrations are sparse due to separations of timescales.

The cell-scale signalling networks incorporate biological

processes occur over different timescales. Typically, the

receptor internalization (102s) process triggers phosphorylation

and catalysis of proteins (v1s) that in turn translocate into cell

nucleus and induce their target gene expression; the transcrip-

tional regulation process (102s), acting as a linkage point,

stimulates signal cascading of other signalling pathways [23].

As a result, the concentrations of only a few species in a cell

vary significantly at a specific timescale while the concentra-

tions of a large fraction of species remain stable [24,25]. This is

because the processes over faster timescales reach their steady

states instantaneously and the dynamics of the processes over

slower timescales can be reasonably ignored. Thus a large

number of variations of concentrations are zero or close to

zero under a specific timescale, if we define the variations of

concentrations as the differences between concentrations of

adjacent time points. In other words, variations of concentra-

tions are sparse.

N Combined-measurements can be implemented using cross-reactivity. Due

to the cross-reactivity of an antibody, the antibody may bind

not only the targeted protein but also other proteins, such as

the various molecular forms of the target protein or other

proteins in complex with the target protein [26]. This

phenomenon frequently affects measurements of the concen-

tration of the target protein in an immunoprecipitation assay.

The traditional way is to use an antibody with a high specific

affinity under stringent binding conditions in order to obtain

accurate results. In contrast to the traditional way, we attempt

to use the cross-reactivity of antibodies in order to measure the

aggregated concentrations of several proteins in one go. We

call this experimental method combined-measurement.

These two key observations motivated us to use compressive

sensing as the foundation of our inference method for cell-scale

signalling networks. Compressive sensing [27–29] is a revolution-

ary technique for signal reconstruction that uses a sampling rate

far lower than the Nyquist-Shannon rate. Assuming that the signal

of interest can be represented using a vector, compressive sensing

requires that one measurement can acquire an inner product of

the signal vector and a predefined measurement vector (i.e. a

weighted sum of several predefined elements of the signal vector).

All measurement vectors constitute a measurement matrix, while

all results of measurements form an observation vector. Recover-

ing the signal from an observation vector is a highly undetermined

problem since the number of measurements is typically far lower

than the number of elements of the signal vector. Compressive

sensing can recover the signal by adding sparse constraints on the

signal vector on the condition that the measurement matrix meets

a prerequisite called restricted isometry property. Another

approach is to use Bayesian compressive sensing that is a

probabilistic version of compressive sensing [30,31]. The primary

advantage of Bayesian compressive sensing is that it does not

require the measurement matrix to obey the restricted isometry

property, but infers a distribution of the signal vector.

To sum up, Bayesian compressive sensing is based on the

following two essential conditions: (I) the signal is sparse in some

domain; (II) one measurement can obtain a weighted sum of

several elements of the signal vector. Sparse variations and

combined-measurements exactly meet these two prerequisites;

therefore, Bayesian compressive sensing is a promising technique

that can be adapted to infer cell-scale signalling networks from

relatively few measurements. Moreover, it avoids measuring

proteins individually and uses sparse constraints to prevent the

estimated network model from overfitting for the observed data.

Our method, CCELL, is based on Bayesian compressive

sensing, aiming at inferring cell-scale signalling networks as a

whole from time series data generated by immunoprecipitation

assays. In this paper, CCELL is applied to biological networks

approximated by linear models. A set of benchmark networks with

varying numbers of time-variant species is designed to demonstrate

our method. These networks are derived from four well-studied

signalling pathways: JAK-STAT, GR, ERK and p38, as well as

crosstalk amongst them. Experimental results show that CCELL is

effective for inferring benchmark networks without structure

constraints. Instead of exhaustively measuring all individual

species, high accuracy can be achieved from relatively few

measurements.

Methods

In this section, the core algorithm of CCELL, Bayesian

compressive sensing, is first introduced. Then, we will explain

the three sequential steps of CCELL: concentration inference,

network inference and inference refinement. The structure of

CCELL is detailed in Figure 1.

Bayesian compressive sensing
Bayesian compressive sensing, introduced by Ji, Xue and Carin

[31], is a probabilistic version of compressive sensing based on the

relevance vector machine [30]. Let w be the signal of interest that

is represented using a N-dimensional column vector. The sparsity

of a vector is the proportion of (approximate) zero elements. A

vector is sparse if its sparsity is greater than a threshold (usually

80%). A measurement matrix W is a M|N-dimensional matrix,

where M is the number of measurements. Typically, M is far less

than N . Each row of W is a measurement vector, which is a N-

dimensional row vector. A measurement is to obtain the inner

product of the signal vector and a measurement vector. For

example, a measurement vector (i.e. a row of the measurement

matrix) is (0,1,0,1,0) and the signal vector is

(1,10,100,1000,10000)
0
. The prime symbol 0 means the transpose

of a vector or a matrix. The result of this measurement is the sum

of the second and fourth elements, which is 1010. An observation

vector g is M-dimensional column vector, each element of which

represents a measurement result of the corresponding measure-

ment vector. Assuming the measurement noises are independent

additive white Gaussian with mean 0 and the covariance matrix

s2I , we can get a system of linear equations as follows:

g~WwzN(0,s2I): ð1Þ

Inferring Cell-Scale Signalling Networks
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The symbol I denotes an identity matrix. For simplicity, the

dimension of I is various according to different equations without

notation in this paper. Equation 1 is usually underdetermined,

because the number of measurements M is far less than the

number of elements of the signal vector N . However, the

additional assumption that the signal w is sparse makes Equation

1 solvable. Bayesian compressive sensing is an inference algorithm

to solve Equation 1 using a sparse prior distribution, which is

typically Student’s t-distribution. Its input is an observation vectors

g and a measurement matrix W. The corresponding output is a

distribution of the signal w.

Bayesian compressive sensing is an EM style iterative algorithm.

Given a hyperparameter vector b of the signal w, the E-step is to

infer a posterior distribution of the signal w. The posterior is a

multivariate Gaussian distribution with the mean vector mw and

the covariance matrix Sw as follows:

Figure 1. The workflow of CCELL. The CCELL method consists of 3 steps: concentration inference, network inference and inference refinement
(including refined concentration inference and refined network inference). The core algorithm of the first two steps is Bayesian compressive sensing.
The two substeps in Step 3 are based on Bayesian linear regression and extended Bayesian compressive sensing respectively. The input of CCELL is a
measurement matrix C and its corresponding observation vectors yt that are time-series generated by immunoprecipitation assays. The output of

CCELL is a refined transition matrix ÂA representing the cell-scale signalling network.
doi:10.1371/journal.pone.0095326.g001

Inferring Cell-Scale Signalling Networks

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e95326



S{1
w ~diag(b)zs{2W

0
W ð2Þ

mw~s{2SwW
0
g ð3Þ

where diag(b) represents a diagonal matrix whose diagonal is the

hyperparameter vector b. The M-step, based on the variational

method[32], is to calculate an approximately optimal hyperpara-

meters vector b using the posterior of w calculated in the previous

E-step as follows:

b{
k ~Skk

w zmw
2 ð4Þ

where bk and mw denote the kth element of the hyperparameter

vector b and the mean vector mw respectively; Skk
w represents the

element in the row and column of the covariance matrix

Sw.

Before the execution of the Bayesian compressive sensing

algorithm, the hyperparameter vector is often set to a random or

given value. Then, a posterior distribution of the signal is inferred

by the E-step. Subsequently, the M-step update the hyperpara-

meter vector based on the mean vector and the covariance matrix

of the posterior distribution inferred in the previous E-step.

Afterwards, the updated hyperparameter vector is used to infer a

new posterior distribution in the E-step of the next iteration. The

Bayesian compressive sensing algorithm iteratively executes the E-

step and M-step until stop conditions are satisfied.

According to the workflow in Figure 1, the Bayesian compres-

sive sensing algorithm is used in the concentration inference and

network inference steps. This is because that both of the two steps

aiming at solving systems of linear equations with sparse

constraints, which have identical forms with Equation 1. Bayesian

compressive sensing can directly solve these systems of linear

equations. More specifically, in Figure 1 the concentration vector

yt, the measurement matrix C and the output concentration

vector xt in Step 1 correspond to the observation vector g, the

measurement matrix W and the signal vector w in Equation 1

respectively. Similarly, in Step 2 concentration vectors xt and

xt{1 at two consecutive time points correspond to the

observation vector g and the measurement matrix W, while the

transition matrix A refers to the signal vector w in Equation 1.

Step 1: Concentration inference
Mathematically, combined-measurements are modelled as a

system of linear equations:

yt~CxtzN(0,s2
mI): ð5Þ

xt is a concentration vector. Each element of xt represents the

concentration of a species at time t, which is an unknown variable

to be inferred. The dimension of xt equals to the number of

species in the network, denoted as N. C is a measurement matrix

that is given in advance. Each row of C represents a combined-

measurement. The dimension of C is M|N , where M is the

number of measurements and N is the number of species. yt is an

observation vector. Each element of yt represents the observed

value of a measurement at time t. The dimension of yt is the

number of measurements M. The random vector N(0,s2
mI) is

measurement noises with mean 0 and the covariance matrix s2
mI .

The variation of concentrations xt is defined as the difference

between the concentration vectors at two adjacent time points:

Dxt~xt{xt{1: ð6Þ

Similarly, the variation of observations is defined as the difference

between observation vectors at two adjacent time points:

Dyt~yt{yt : ð7Þ

The sparsity of variations is defined as the ratio between the

number of time-invariant species and the number of all species.

This definition is consistent with the definition of sparsity for a

vector. According to the observation that the concentrations of

only a few species in a cellular system vary significantly over a

specific timescale, variations of concentrations are sparse. There-

fore, Bayesian compressive sensing can be used to infer variations

of concentrations by solving the following system of linear

equations:

Dyt~CDxtzN(0,2s2
mI): ð8Þ

In wet lab experiments, a cell is perturbed from its steady state

by triggers. As a large fraction of species at steady state have zero

concentrations [3], the initial concentrations of all species can be

inferred by Bayesian compressive sensing directly. Therefore, it is

assumed that initial concentrations are known in this paper.

Concentration vector xt at other time points can be calculated

according to Equation 6.

Step 2: Network inference
This paper focuses on the biological networks that can be

modelled by a system of linear equations:

xt~Axt zN(0,s2
s I): ð9Þ

A is a transition matrix, whose elements are unknown variables to

be inferred. The dimension of A is N|N, where N denotes the

number of species. N(0,s2
s I) is system noises with mean 0 and

covariance matrix s2
s I . The networks modelled by differential

equations can be also approximated by linear equations. One

method is to define the transition matrix as a function of time,

which can be calculated according to Jacobian matrices of the

transition function [10]. The other method is to view higher order

derivatives of concentrations as first order variables [22].

According to Equation 9, the jth row of A, a
0

j , satisfies the

following equation:

½xj
2,x

j
3,:::,xj

T �
0
~½x1,x2,:::,xT �

0
ajzN(0,s2

s I) ð10Þ

where x
j
t denotes the jth element of concentration vector xt.

Equation 10 is only for the time-series profile of species under one

perturbation. It can be easily extended to any number of

perturbations by successively combining all profiles together.

Equation 10 can fit the form of Equation 1. The transpose of the

jth row a
0
j is the signal to be inferred. The matrix ½x1,x2,:::,xT �

0

and column vector ½xj
2,x

j
3,:::,xj

T �
0

can be viewed as a measurement

matrix and the corresponding observation vector respectively.

According to a widely accepted assumption that structures of

biological networks are usually sparse [3,33,34], Bayesian com-
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pressive sensing can be directly used to solve Equation 10. Thus, a

posterior of the jth row of the transition matrix A is calculated.

Other rows can be independently inferred in a same way.

Step 3: Inference refinement
Structural indicator. For an inferred transition matrix ~AA

outputted by Step 2, the structural indicator is defined as follows:

S(i,j,E)~
1, j ~AA

ij
j§E

0, otherwise

(
ð11Þ

where ~AA
ij

represents the inferred value of the element in ith row

and jth column of matrix ~AA; E is a threshold parameter. If

S(i,j,E)~1, there is a link from species j to i over the

predetermined timescale of experiments. If a species has no links

with other species, it is called as a silent species over the timescale;

otherwise, it is called as an active species. It is noteworthy that a

time-invariant species can be an active species, such as an enzyme

that catalyses other species without changing its concentration.

The process of refinement is to remove silent species in order to

formulate a small scale inference problem, which is detailed in

Figure 2.

Refined concentration inference. All silent species over the

predetermined timescale are removed. The refined concentration

vector, x̂xt, only contains the concentrations of active species. Each

element of x̂xt represents the concentration of an active species at

time t, which is an unknown variable to be inferred. The refined

measurement matrix ĈC is derived from C by removing all columns

associated with silent species. An element of the refined

measurements ŷyt are calculated by subtracting concentrations of

silent species involved in this measurement. Thus, the refined

measurement model is as follows:

ŷyt~ĈCx̂xtzN(0,s2
mI): ð12Þ

It is noteworthy that the variations of x̂xt are not sparse. The

assumptions of Bayesian compressive sensing are not satisfied.

Instead, Bayesian linear regression is used to infer the posterior

distribution of x̂xt. The posterior is a multivariate Gaussian

distribution with the mean vector mx̂xt
and the covariance matrix

S{1
x̂xt

as follows:

S{1
x̂xt

~�SS{1
x̂xt

zs{2
m ĈC

0
ĈC ð13Þ

mx̂xt
~Sx̂xt (

�SS{1
x̂xt

�mmx̂xt
zs{2

m ĈC
0
ŷyt) ð14Þ

Figure 2. The process of refinement. The equations at the left and right side of arrows are original and reduced respectively. According to
inferred transition matrix ~AA, there are two pathway and crosstalk between them. The 4th, 5th, 6th, 7th, 11th, 12th, 13th, 14th, 15th species are silent,
having no links with others. All elements associated with the silent species are removed from the transition matrix A to form the refined transition

matrix ÂA. All columns measuring the silent species are deleted from the measurement matrix C to form the refined measurement matrix ĈC. The
refined concentration vector, x̂x, only keeps the concentrations of active species (e.g., 1th, 2th, 3th, 8th, 9th, 10th ). An element of the refined observation
vector ŷy is equal to the corresponding element of the observation vector y subtracted by the concentrations of the silent species involved in this
measurement. If all species involved in a measurement are silent, simply remove this measurement.
doi:10.1371/journal.pone.0095326.g002
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where �mmx̂xt
and �SSx̂xt are the mean vector and the covariance matrix

of the prior distribution of x̂xt respectively. The prior distribution of

x̂xt can be calculated using the results of Step 1.

Refined network inference. All elements associated with

silent species are removed from the transition matrix A to form the

refined transition matrix ÂA. Therefore, the refined system model is

as follows:

x̂xt~ÂAx̂xt{1zN(0,s2
s I): ð15Þ

Although the refined transition matrix ÂA is sparse, it cannot be

inferred by Bayesian compressive sensing directly. This is because

Table 1. Characteristics of the benchmark network set.

ID Components
#
species

# time-variant
species # links

n-4 JAK-STAT 300 4 4

n-11 ERK 300 11 20

n-39 p38 300 39 61

n-50 ERK and p38 300 50 83

n-53 GR, ERK and p38 300 53 93

n-58 GR, JAK-STAT, ERK and p38 300 58 101

doi:10.1371/journal.pone.0095326.t001

Figure 3. Boxplots of RMSE of inferred concentrations. The 6 subplots depict the results of applying inference method to 6 benchmark
networks. For each network, its inference results under different numbers of perturbations, varying from 2 to 7, are shown individually. The median
values of RMSE approximate to 0 and the 3rd quartile values range from 0.0031 to 0.011.
doi:10.1371/journal.pone.0095326.g003

Figure 4. ROC curves of network structure inference. The performance of structure inference, under 6 different numbers of perturbations
(from 2 to 7), is evaluated by ROC curves. Each subplot contains the inference results for 6 benchmark networks. The average AUROC is 0.97. More
specifically, the maximum AUROC value 1.0 is achieved by the n-4 network (3–7 perturbations) and the n-11 network (6–7 perturbations), while the
minimum AUROC value 0.88 is obtained by the n-58 network (2 perturbations).
doi:10.1371/journal.pone.0095326.g004
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Bayesian linear regression infers a distribution of x̂xt rather than a

specific value. If we would like to apply Bayesian compressive

sensing to infer the distribution of âaj , then only the mean of x̂xt

distribution is used for calculation. In this case some information is

ignored. Thus, we extend Bayesian compressive sensing to extract

information from distributions not just from their mean.

The E-step of the extended Bayesian compressive sensing infers

a posterior distribution of âa
0
j , which represents the jth row of ÂA,

from the posterior distributions of the concentrations x̂x. The

posterior is a multivariate Gaussian distribution with the mean

vector mâaj
and the covariance matrix S{

âaj
as follows:

S{1
âaj

~diag(bj)zs{2
s

XT

t~1

vx̂xtx̂x
0
tw ð16Þ

mâaj
~s{2

s Sâaj

XT

t~2

vx̂xt{1x̂x
j
tw ð17Þ

Figure 5. Precision-recall curves of network structure inference. The performance of structure inference, under 6 different numbers of
perturbations (from 2 to 7), is evaluated by Precision-recall curves. Each subplot contains the inference results for 6 benchmark networks. The average
AUPR is 0.95. More specifically, the maximum AUPR value 1.0 is achieved by the n-4 network (3–7 perturbations) and the n-11 network (6–7
perturbations), while the minimum AUPR value 0.75 is obtained by the n-58 network (2 perturbations).
doi:10.1371/journal.pone.0095326.g005

Figure 6. Sensitivity/specificity v.s. threshold parameter. These graphs show the relationships between sensitivity (above) and specificity
(below) and threshold parameter E for 6 different benchmark networks with different numbers of perturbations varying from 2 to 7. For E~0, the
average specificity is 0.9989 and the average sensitivity reaches its maximum value of 0.9453. When E increases to 0:2, the average specificity is 0.9999
and the average sensitivity decreases to 0.8742. If E increases to a relatively large value 0:6, the average specificity achieves 1.000 but the average
sensitivity becomes 0.8188.
doi:10.1371/journal.pone.0095326.g006
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where we have:

vx̂xtx̂x
0
tw~vx̂xtwvx̂x

0
twzCov(x̂xt,x̂x

0
t): ð18Þ

bj denotes the hyperparameter of âaj . diag(bj) represents a

diagonal matrix whose diagonal is vector bj . The angled brackets

v
:
w denote the expectation of a distribution. Cov represents the

covariance of two random variables.

The M-step of the extended Bayesian Compressive sensing,

which is identical to Bayesian compressive sensing, aims to

calculate approximately optimal hyperparameters using the

variational method [32] as follows:

bjk
{1 ~Skk

âaj
zm âaj

2 : ð19Þ

Results

A set of benchmark cell-scale networks is designed to

demonstrate our method. Each cell-scale network contains 300

species, while only a fraction of species are time-variant over the

investigated timescale. The dynamics of these networks are

modelled using systems of linear functions. The dimensions of

the transition matrices are 300|300. For a time-invariant species

j, the elements of jth row in the transition matrix are all zero

except the jth element having the value of 1; for a time-variant

species, its corresponding row has more than one non-zero

elements to represent its interactions with other species in the

network.

The set of benchmark cell-scale networks has varying numbers

of time-variant species. The rows of transition matrices for time-

variant species are constructed by taking the structures of 4 well-

studied signalling pathways: JAK-STAT [2], GR [35], ERK [1],

Figure 7. Bar charts of RMSE for inferred transition matrices. These charts show the results of both Step 2 and Step 3 for 6 different
benchmark networks with different numbers of perturbations varying from 2 to 7. In Step 2, the RMSE values range from 1:9|10{6 to 2:1|10{2

with the mean value of 6:2|10{ ; in Step 3, the RMSE values range from 1:6|10{ to 5:9|10{ with the mean value of 1:3|10{3. The RMSE
ratios (Step 3/Step 2) vary from 0.14% to 51% with the mean value of 17%.
doi:10.1371/journal.pone.0095326.g007
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p38 [3], and crosstalk amongst them [5,6,35]. Details of the

benchmark set are listed in Table 1.

In order to study the effect of perturbations, where various doses

or types of inhibitors/stimuli perturb the initial state of the

network, different numbers of perturbations are used to simulate

benchmark networks. In our simulation, we check the perfor-

mance of CCELL with the number of perturbations varying from

2 to 7 as these values are frequently used in wet-lab experiments.

Under each perturbation, the initial concentration of each species

is randomly generated from a normal distribution with mean of

100, standard deviation of 30. Concentrations of 300 species at 5

sequential time points are generated using benchmark network

model and corresponding initial state. For each time point, 150

combined-measurements are carried out according to a predefined

measurement matrix. The measurement matrix is generated using

low-density parity-check code [36]. Our experiments only focus on

investigating the performance of our method when both system

noises and measurement noises are maintained at small level

(standard deviation ~0:01). The code and benchmark network set

are available at http://dsg.doc.ic.ac.uk/publications/ccell/.

Figure 3 depicts RMSE values of inferred concentrations for the

6 benchmark networks under 6 different numbers of perturba-

tions. RMSE values in Figure 3 are calculated using differences

between inferred concentrations and true concentrations. Almost

all RMSE values are below 0.05, except some outliers. Most of the

RMSE values are in the range between 0 and 0.011. This indicates

that our method accurately and stably infers the concentrations. It

can be clearly observed that the RMSE values are not influenced

by the number of perturbations, which is consistent with the

principle of our method that concentrations of each time point are

inferred independently. As can be seen in Figure 3, there are no

significant differences between the RMSE values of different

benchmark networks. However, the RMSE values of the two

networks with high sparsity of variations, n-4 and n-11, are slightly

greater than the other three networks. This might be because prior

distributions of Bayesian compressive sensing are not sparse

enough.

After obtaining the inferred transition matrix ~AA of a network in

Step 2, the structure of the network is calculated using structural

indicator S(i,j,E) according to Equation 11. A link from species j to

i are inferred, if S(i,j,E) = 1. Varying the threshold parameter E
results in different structures. To show the performance of

inferring real links in the target networks, ROC and Precesion-

recall curves of 6 benchmark networks under 6 different numbers

of perturbations are drawn in Figure 4 and Figure 5 respectively.

An inferred link is true positive, if it does exist in the network;

otherwise, it is false positive. The average of all AUROC and

AUPR values is as high as 0.97 and 0.95 respectively, which

demonstrates the effectiveness of our method. As evident from

Figure 4 and Figure 5, the AUROC and AUPR values rise up as

the number of perturbations increases. This indicates that adding

new perturbations is an effective way to boost the performance of

structure inference. The sparsity of variations is another factor to

affect the performance. The AUROC and AUPR values positively

correlate with the sparsity of variations. Figure 6 demonstrates

relationships between sensitivity or specificity and threshold

parameter E for 6 different benchmark networks with different

numbers of perturbations varying from 2 to 7. When E increases

from 0 to 0:2, the average sensitivity falls from 0:9453 to 0:8742
and the average specificity maintains close to 1. The decrease of

the average sensitivity is significant, while the change of the

average specificity is negligible. The stability of the average

Figure 8. Relationship between the average variance and RMSE. Each point represents an experiment for a benchmark network under a
specific number of perturbations. For example, 2-n-53 means the experiment for n-53 network under 2 perturbations. The x-coordinate indicates the
natural logarithm of the average variance for all elements in the refined transition matrix, while the y-coordinate indicates the RMSE values of the
refined transition matrix. The RMSE values range from 1:6|10{7 to 5:9|10{3 and the average variance varies from 4:2|10 5{ to 4:0|10 2{ .
doi:10.1371/journal.pone.0095326.g008
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specificity is caused by high sparsity of cell-scale signalling

networks. Thus, we fix E to be 0 in the following experiments.

For simplicity, we suggest that except special conditions users

should set E to be 0 for sparse networks.

Figure 7 illustrates the RMSE values of transition matrices

inferred by both Step 2 and Step 3 for 6 benchmark networks

under 6 different numbers of perturbations. RMSE values in

Figure 7 are calculated using differences between the elements of

the inferred transition matrix and the corresponding elements of

true transition matrix. Step 2 infers the transition matrices of a

whole network, while Step 3 only infers transition matrices of a

refined network only containing active species. In Step 3, the

threshold parameter E is chosen to be 0. In order to fairly compare

the results of Step 2 and Step 3, RMSE values in Figure 7 only

calculate the errors in refined transition matrices. Similar to

AUROC values, the RMSE value correlates with the number of

perturbations and the sparsity of variations. The correlation

between the RMSE value and number of perturbations is much

stronger than the correlation between the RMSE value and

sparsity of variations. It can be seen in Figure 7 thatz the RMSE

value decreases significantly to a stable and small value as the

number of perturbations increases. The number of perturbations

required to reach a stable RMSE value varies across different

networks with various sparsity of variations. For the results of Step

3, the n-4 network only needs 3 perturbations, while the n-39

network requires 5 perturbations. It is visible that the convergence

rate of results of Step 3 is higher than that of Step 2. What’s more,

the RMSE values of Step 3 are always smaller than those of Step 2.

The RMSE ratios (Step 3/Step 2) vary from 0.14% to 51% with

the mean value of 17%, which demonstrates Step 3 substantially

improves the performance of transition matrix estimation. It is also

clear that Step 3 is more robust than Step 2 under varying number

of perturbations.

Figure 8 shows the relationship between the average variance

for all elements of the inferred transition matrix according to

Equation 16 and their RMSE values. The RMSE values range

from 1:6|10{7 to 5:9|10{ , while the average variance varies

from 4:2|10{ to 4:0|10{ . As illustrated by Figure 8, the

RMSE value and the average variance have strong correlation

that can be well fitted by a quadratic curve, having the Spearman’s

correlation coefficient to be 0.94. Thus, the average variance is a

promising way to represent the accuracy of the inference results

when RMSE cannot be calculated due to the unavailability of the

real transition matrix. One potential usage of average variance is

to adjust the threshold parameter E. Specifically, when we get

different inference results using different E, we can choose the most

appropriate E value which results with lowest average variance.

We stress that the promising results obtained in the above

experiments are conditioned on stringent constraints of noises. To

investigate the performance of our method in the presence of

significant noises, the noises are set to be higher than those in

previous experiments. That is, the standard deviations of noises

vary from 10 to 1 (signal mean is 100). For n-39 network under 6

perturbations, Figure 9 reveals the relationship between noise

levels and the RMSE values of transition matrices inferred by both

Step 2 and Step 3. The RMSE values of Step 3 can be always

achieved larger or close to those obtained in Step2. The RMSE

values of both steps gradually decline with the reduced noise levels.

The RMSE values of Step 2 have been decreased by 94%, while

the decrease for Step 3 is 44%.

Figure 9. Relationship between noise levels and RMSE. This chart shows the RMSE values for inferred transition matrices of n-39 network
under 6 perturbations at different noise levels. The standard deviations of noises vary from 10 to 1. In Step 2, the RMSE values range from 7:0|10{2

to 4:0|10{3 ; in Step 3, the RMSE values range from 8:5|10 3{ to 4:7|10 3{ .
doi:10.1371/journal.pone.0095326.g009

Inferring Cell-Scale Signalling Networks

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e95326

3

25



Discussion

This paper addresses the problem of inferring a cell-scale

signalling network as a whole without dividing it into several local

networks. We propose a method, which is called CCELL, to solve

this problem. The core of this method is Bayesian compressive

sensing. To meet the prerequisites of Bayesian compressive

sensing, our method is based on two key observations: 1) variations

of concentrations are sparse due to separations of timescales; 2)

combined-measurements can be implemented using cross-reactiv-

ity. To the best of our knowledge, CCELL is the first attempt to

infer cell-scale signalling networks from a holistic perspective by

exploring separation of timescales and cross-reactivity. We

demonstrate that CCELL is effective for inferring benchmark

cell-scale networks without structure constraints. Instead of

exhaustively measuring all individual species, we show that M
combined measurements are sufficient to infer the network model

with acceptable accuracy, where M equals to the half of the total

number of species in the network.

This paper models biological networks as linear dynamical

systems. A classical algorithm to infer the parameters of a linear

dynamical system is the expectation maximization (EM) algorithm.

The E-step is to infer a distribution of hidden variables

(concentrations) using the forward-backward algorithm based on

current estimates of parameters. The M-step is to update

parameters based on the distribution of hidden variables inferred

in the E-step. The E-step and M-step are executed in an iterative

way. An advantage of the forward-backward algorithm is that it

uses the transition matrix of two adjacent time points of hidden

variables to boost the accuracy of hidden variables. However, the

transition matrix inferred in M-step is not very accurate, especially

when observed data is scarce, while the forward-backward

algorithm assumes the transition matrix is highly accurate. This

will usually make the EM algorithm overfit for the observed data.

Thus, CCELL uses a two-step style rather than an EM style to

avoid overfitting.

The measurement matrices in the experiments are generated

using low-density parity-check code. In the future, we will study

the similarity of all involved proteins, such as their sequence and

3D structures, in order to build a database holding candidates of

combined-measurements. All measurements in wet-lab experi-

ments will be selected from this database. This paper focuses on

inferring cell-scale signalling networks over a predetermined

timescale. By repeating the measurement and inference proce-

dures over different timescales, multiple timescale-specific network

models can be obtained. How to integrate them into a unified

whole is itself an attractive problem.

CCELL is a promising routine to reveal the mechanism of a

complex cellular signal transduction system from a holistic

perspective. The current situation, where cell-scale signal trans-

duction models are rarely built due to its difficulty, may be

changed. Signalling network databases can be built more

efficiently by incorporating much more cell level models to

comprehensively understand complex biological processes. Better

understanding of complex biological processes is fundamental to

understand life and design drugs.
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