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Background and Aims: Biliary atresia is the most common cause of liver disease and
liver transplantation in children. The accumulation of bile acids in hepatocytes and the
stimulation of the intestinal microbiome can aggravate the disease progression. This study
investigated changes in the composition of the gut microbiota and its metabolites in biliary
atresia and the possible effects of these changes on disease progression.

Methods: Stool samples of biliary atresia at different disease stages and matched control
individuals were collected (early stage: 16 patients, 16 controls; later stage: 16 patients,
10 controls). Metagenomic sequencing was performed to evaluate the gut microbiota
structure. Untargeted metabolomics was performed to detect and analyze the
metabolites and bile acid composition.

Results: A disturbed gut microbiota structure occurred in the early and later stages of
biliary atresia. Klebsiella, Streptococcus, Veillonella, and Enterococcus have always been
dominant. The abundance of V. atypica displayed significant changes between the early
and later stages of biliary atresia. Combined with clinical indicators, Spearman’s analysis
showed that Klebsiella and Veillonella atypica strongly correlated with liver enzymes.
Enterococcus faecium had an enormously positive relationship with lithocholic acid
derivatives. Metabolites involved in tryptophan metabolism were changed in the
patients with biliary atresia, which had a significant association with stool V. atypica and
blood total bilirubin (p < 0.05).

Conclusions: The liver damage of biliary atresia was directly or indirectly exacerbated by
the interaction of enriched Klebsiella (K. pneumoniae), Veillonella (V. atypica), and
Enterococcus (E. faecium) with dysmetabolism of tryptophan and bile acid.

Keywords: gut microbiota, metagenomic sequencing, metabolites, ultra-performance liquid chromatography/
tandem mass spectrometry, biliary atresia (BA)
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INTRODUCTION

Biliary atresia (BA) is an idiopathic neonatal biliary disease
characterized by progressive intrahepatic or extrahepatic bile
duct inflammatory occlusion (1–3). Biliary atresia is the most
common among the many conditions that cause neonatal
cholestasis (25%–55%) (4–6). The reported incidence of biliary
atresia is only 1 in 8,000 to 18,000 children but varies according to
geography and ethnicity (5, 7). Prolonged neonatal jaundice, pale
stools, and conjugated hyperbilirubinemia are typical biliary
atresia symptoms (8). The disease can damage hepatocytes and
lead to cirrhosis. There is no medical treatment for biliary atresia,
with >50% of patients needing liver transplantation by 2 years of
age (7, 9–11). Experimental and clinical studies have shown that
viral infection triggers the destruction of the biliary epithelium
and release of antigens, which trigger the Th1 immune response,
release proinflammatory cytokines, and further damage the bile
ducts. Infection by cytomegalovirus (CMV), rhinovirus, human
herpes virus, human papillomavirus, adenovirus, Epstein–Barr
virus (EBV), hepatitis B virus, parvovirus B19, and rotavirus in
the liver and hepatobiliary tree may be associated with the
occurrence of biliary atresia and other infantile obstructive
cholangiopathies (12). Besides, previous research demonstrated
that cholestasis, the accumulation of bile acids in the liver, fails to
promote liver injury in the absence of the microbiome in vivo (13).
Luo et al. (14) detected bacterial DNA from the gut in the blood of
patients with biliary atresia, including Escherichia coli, Klebsiella
pneumoniae, Shigella flexneri, and Enterobacteriaceae. These
bacteria adhere to the bile duct epithelium via the surface protein
adhesinand thendamage thebileduct epithelium.Ahmedet al. (15)
found that CD14 expression was more extensive in the liver tissues
of children with biliary atresia than normal and disease controls.
They considered that exposure to portal-derived LPS might lead to
CD14 overexpression in biliary atresia. LPS, also named endotoxin,
binds to its receptor CD14 and causes activation of macrophages
with consequent releaseof cytokines suchas interleukin(IL)-1, IL-6,
tumor necrosis factor (TNF)-a, and interferon (IFN)-g (16). Chou
et al. (16) also found that the plasma levels of endotoxin and CD14
were higher in patients with biliary atresia. Based on previous
literature and experiments, we hypothesized that the intestinal
microbiome constitutes a causal factor in the bile duct and liver
injury of biliary atresia.

The gut–liver axis is the anatomical and physiological bridge
connecting the intestine and liver (17, 18). Gut microbes and
their metabolites enter the blood circulation and bile to damage
the biliary tract and hepatocytes through the gut–liver axis (19).
Gut microbiota disorders have been found in various liver
Abbreviations: BA, biliary atresia; LCA, lithocholic acid; TLCA, taurolithocholate;
12-ketoLCA, 12-ketolithocholic acid; 7-ketoLCA, 7-ketolithocholic acid; LCA-3S,
lithocholic acid 3 sulfate; CMV, cytomegalovirus; EBV, Epstein–Barr virus; KO,
KEGG ortholog; KEGG, Kyoto Encyclopedia of Genes and Genomes; LEfSe, LDA
effect size; LDA, linear discriminant analysis; LPS, lipopolysaccharide; OPLS-DA,
orthogonal partial least squares discrimination analysis; VIP, variable importance
in the projection; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; ALP, alkaline phosphatase; GGT, g-glutamyl transferase;
TBA, total bile acids; TBIL, total bilirubin; IL, interleukin; TNFa, tumor
necrosis factor a; IFN-g, interferon-g; PELD, pediatric end-stage liver disease.
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diseases such as alcoholic hepatitis, l iver cirrhosis,
hepatocellular carcinoma, ischemic liver injury, and liver graft
rejection (20–23), which all show a particular influence on the
occurrence or progression of the disease. Concerning biliary
atresia, several studies have found that the intestinal flora is
maladjusted, increasing the abundance of opportunistic
pathogens (e.g., Proteobacteria, Klebsiella, Enterococcus, and
Streptococcus) and decreasing that of butyrate-producing
bacteria (24–26). However, the characteristics of intestinal
metabolites in biliary atresia and changes in gut microbes
during disease progression have not been studied.

In the current study, we characterized the structure of the gut
microbes in the early and late stages of biliary atresia and
searched for microbes related to disease progression. In
addition, we quantitatively analyzed the metabolites in stool
samples and examined the possible effects of these altered
products on the disease.
MATERIALS AND METHODS

Study Design and Sample Collection
We enrolled 16 patients with early-stage biliary atresia (age < 3
months) and 16 age-matched healthy control individuals. The
diagnosis of biliary atresia was confirmed by intraoperative
cholangiography and liver biopsy. The enrolled individuals met
the following criteria: (1) no diarrhea or constipation within 4
weeks of the study and (2) no antibiotics and probiotics within 4
weeks. We enrolled 16 patients with late-stage biliary atresia
(age <3 years) listed for liver transplantation at Beijing
Friendship Hospital, Capital Medical University. The diagnosis
and enrollment criteria were consistent with the early cohort. We
also recruited 10 healthy control individuals. Table S1 shows the
detailed demographic information and hepatic function indices
of the biliary atresia patients and healthy control individuals.

Ethical Approval
The study was approved by the Ethical Committee of Beijing
Friendship Hospital, Capital Medical University (Approval ID:
2019-P2–131-02), and informed consent was obtained from each
participant’s guardians. Patient consent for publication
was obtained.

Sample Collection and DNA Extraction
Fecal samples from patients and healthy controls were all freshly
collected and frozen at −80°C within four h after sampling.
Bacterial DNA was extracted using the QIAamp Fast DNA Stool
Mini Kit (51604; Qiagen, Hilden, Germany). One milliliter of
Inhibitex Buffer and glass beads (0.5 mm diameter; Qiagen) were
added to each 180–200 mg of feces. The mixture was
homogenized twice at 60 Hz for 1 min with a FastPrep-24
(Aosheng Biotech, China). Subsequent steps of the DNA
extraction protocol followed the manufacturer’s instructions
for bacterial DNA extraction. The DNA concentration was
measured with a NanoDrop (Thermo Scientific, Massachusetts,
USA) and Qubit® 2.0 (Invitrogen, Carlsbad, CA, USA), and the
molecular size was estimated by agarose gel electrophoresis.
September 2021 | Volume 12 | Article 698900
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Library Construction and
Metagenomic Sequencing
Following the Illumina TruSeq DNA Sample Prep v2 Guide (San
Diego, CA, USA), we constructed the DNA libraries with an
approximately 500-bp insert size for each sample. All libraries’
quality was evaluated using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Wokingham, UK) and the Agilent 2100 DNA
1000 kit (27). The gut microbiome composition and function in
feces were evaluated by metagenomic sequencing. All samples
were subject to 150-bp paired-end sequencing on a HiSeq X Ten
platform (Illumina).

Bioinformatic Analysis of
Metagenomic Sequencing
Illumina raw reads were screened according to the following
criteria: (1) adaptor contamination reads were removed;
(2) reads containing more than three ambiguous N bases were
removed; (3) reads containing low-quality (Q < 20) bases were
trimmed; and (4) reads containing less than 60% of high-quality
bases (Phred score ≥20) were deleted.

Clean reads were subjected to bacterial genomes from the
National Center for Biotechnology Information GenBank with
SOAPaligner (version 2.21), and reads mapped to the host
genome were abandoned.

For species classification, the NCBI database (National Center
for Biological Information, http://www.ncbi.nlm.nih.gov) aligned
the clean reads with known bacteria, fungi, viruses, and archaea by
SOAPaligner 2.21. Concerning the functional profiles, the non-
redundant genes were annotated against the KEGG (Kyoto
Encyclopedia of Genes and Genomes) database (KEGG, http://
www.genome.jp/kegg/) using BLAST (v. 2.2.28+). When the
assembled protein sequence was similar (score ≥60 and E value <
1e–5) to a protein sequence in the database, the produced protein
was considered to play the same role as the database protein. The
relative abundance of all orthologous genes was accumulated to
generate the relative lot of each KO (KEGG ortholog).

Analysis of Untargeted Metabolomics
Metabolite Extraction
A 50-mg sample was accurately weighed, and the metabolites were
extracted using a 400-µl methanol: water (4:1, v/v) solution. The
mixture was allowed to settle at -20°C and treated by high-
throughput tissue crusher Wonbio-96c (Shanghai Wanbo
Biotechnology Co., Ltd.) at 50 Hz for 6 min, followed by vortex
for 30 s and ultrasound at 40 kHz for 30 min at 5°C. The samples
were placed at -20°C for 30 min to precipitate proteins. After
centrifugation at 13,000g at 4°C for 15 min, the supernatant was
carefully transferred to sample vials for LC-MS/MS analysis.

Quality Control Sample
As part of the system conditioning and quality control process, a
pooled quality control sample (QC) was prepared by mixing equal
volumes of all models. The QC samples were disposed of and tested
in the same manner as the analytic samples. It helped represent the
whole sample set, which would be injected at regular intervals (every
eight samples) to monitor the stability of the analysis.
Frontiers in Immunology | www.frontiersin.org 3
LC/MC Analysis
Chromatographic separation of the metabolites was performed
on an ExionLC™ AD system (AB Sciex, USA) equipped with an
ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm i.d., 1.7
µm; Waters, Milford, USA). The mobile phases consisted of 0.1%
formic acid in water with formic acid (0.1%) (solvent A) and 0.1%
formic acid in acetonitrile:isopropanol (1:1, v/v) (solvent B). The
solvent gradient changed according to the following conditions:
from 0 to 3 min, 95% (A): 5% (B) to 80% (A): 20% (B); from 3 to 9
min, 80% (A): 20% (B) to 5% (A): 95% (B); from 9 to 13 min, 5%
(A): 95% (B) to 5% (A): 95% (B); from 13 to 13.1 min, 5% (A):
95% (B) to 95% (A): 5% (B), from 13.1 to 16 min, 95% (A): 5% (B)
to 95% (A): 5% (B) for equilibrating the systems. The sample
injection volume was 20 ml, and the flow rate was set to
0.4 ml/min. The column temperature was maintained at 40°C.
During the period of analysis, all these samples were stored at 4°C.

The UPLC system was coupled to a quadrupole time-of-flight
mass spectrometer (Triple TOF™ 5600+, AB Sciex, USA)
equipped with an electrospray ionization (ESI) source
operating in positive mode and negative mode. The optimal
conditions were set as follows: source temperature, 500°C;
curtain gas (CUR), 30 psi; both ion sources GS1 and GS2, 50
psi; ion-spray voltage floating (ISVF), -4,000 V in negative mode
and 5,000 V in positive mode; declustering potential, 80 V; and
collision energy (CE), 20–60 V rolling for MS/MS. Data
acquisition was performed with the data-dependent acquisition
(DDA) mode. The detection was carried out over a mass range of
50–1,000 m/z.

Multivariate Statistical Analysis
Multivariate statistical analysis was performed using ropes (Version
1.6.2, http://bioconductor.org/packages/release/bioc/html/ropls.
html) R package from Bioconductor on Majorbio Cloud Platform
(https://cloud.majorbio.com). Principal component analysis (PCA)
using an unsupervised method was applied to obtain an overview of
the metabolic data, and general clustering, trends, or outliers were
visualized. All of the metabolite variables were scaled to unit
variances before conducting the PCA. Orthogonal partial least
squares discriminant analysis (OPLS-DA) was used for statistical
analysis to determine global metabolic changes between comparable
groups. All of the metabolite variables were scaled to Pareto scaling
before conducting the OPLS-DA. Model validity was evaluated
from model parameters R2 and Q2, which provide information for
the interpretability and predictability of the model and avoid the
risk of overfitting. Variable importance in the projection (VIP) was
calculated in the OPLS-DA model. p values were estimated with
paired Student’s t-test on single-dimensional statistical analysis.

Statistical Analysis
The Wilcox rank-sum test was performed to analyze the
statistical significance of the alpha diversity, KEGG (Kyoto
Encyclopedia of Genes and Genomes database) module profiles,
KO (KEGG ortholog), and different taxonomic levels (phylum,
genera, and species) between the different cohorts. Linear
discriminant analysis (LDA) effect size (LEfSe) analysis was used
to identify the taxa or functional profiles most likely to explain
differences between the biliary atresia and control groups. A linear
September 2021 | Volume 12 | Article 698900
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discriminant analysis (LDA) score cutoff of 2.0 indicated a
significant difference. The Spearman correlation test was
conducted to investigate the relationship between the clinical
parameters, microbial composition, microbial metabolites, and
bile acid. We drew a heat map through the R software corrplot
package/gplots package to exhibit the results. Differences were
considered significant at p< 0.05 or false discovery rate (FDR)< 0.1.
RESULTS

Characteristics of Gut Microbiota Profiles
in Early-Stage Biliary Atresia
The indices of community richness (Chao and ace) were
significantly decreased in patients with biliary atresia compared
with controls (Figures 1A, B, p < 0.05). Principal coordinate
analysis demonstrated differences in the microbiome structure
between the two groups (Figure 1C, R = 0.2825, p = 0.001).
Frontiers in Immunology | www.frontiersin.org 4
Figure 1D shows the correlation between fecal microbiota
structure and samples. Proteobacteria were significantly increased
in patients with biliary atresia, whereas Actinobacteria and
Verrucomicrobia were decreased (Figure 1E). Klebsiella,
Streptococcus, Veillonella, and Enterococcus were enriched in
patients with biliary atresia, while Bifidobacterium and Blautia
were enriched in controls (Figure 1F and Table S1).

Characteristics of Gut Microbiota Profiles
in Later-Stage Biliary Atresia
We investigated the structural features of gut microbiota in
patients with end-stage liver disease and biliary atresia. The
overall fecal microbiota community structure was significantly
different between the later-stage biliary atresia and matched
control groups (Anosim, R:0.317, p = 5 × 10−4; Adonis, R:
0.106, p = 0.003; principal coordinate analysis, p = 0.007).

Proteobacteria were significantly increased while Bacteroidetes and
Verrucomicrobia were decreased (Figure 2A). In addition, species
A B

D

E F

C

FIGURE 1 | (A, B) Community richness (Chao and ace) of gut microbiota in patients with early-stage biliary atresia and controls (BA, biliary atresia; HC, controls)
(*P < 0.05, **P < 0.01). (C) Beta diversity (principal coordinates analysis based on the Bray–Curtis distance of species abundance) between the two groups (BA,
biliary atresia; HC, controls). (D) Correlation between fecal microbiota structure and samples. (E, F) Microbiota with significantly different abundances at the phylum
and genus level were identified (BA, biliary atresia; HC, controls) (*P < 0.05, **P < 0.01, ***P < 0.001).
September 2021 | Volume 12 | Article 698900
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enriched in the different groups at the genus and species levels are
displayed in Figures 2B, C. Klebsiella, Streptococcus, Veillonella,
and Enterococcuswere the dominant species in patients with biliary
atresia (Table S2). Additionally, we initially found several elevated
viruses and fungi in biliary atresia individuals (Table S2). We
concluded that Klebsiella, Streptococcus, Veillonella, and
Enterococcus were dominant in the progression of biliary atresia.

Relationship Between Gut Microbiota and
Liver Function Indicators
To identify correlations between liver function indicators and gut
microbiome in different stages of biliary atresia, we performed
Frontiers in Immunology | www.frontiersin.org 5
the Spearman correlation test (Table S3). The top 30 most
abundant microorganisms were selected to analyze with liver
indicators (Figure 2D). Klebsiella, Veillonella, Staphylococcus,
and unclassified Enterobacteriaceae were positively correlated
with liver enzymes (p < 0.05). Especially, Veillonella had a highly
positive correlation with liver enzymes and bilirubin (p < 0.01).
Furthermore, we discovered that Veillonella atypica was more
highly elevated in the later than in the early stage of biliary atresia
(22.71% versus 2.115%, Figure 2E). The above data indicated a
strong corre la t ion between Klebs ie l la , Vei l lone l la ,
Enterobacteriaceae, and the progression of biliary atresia,
especially V. atypica.
A B

D

E

F

C

FIGURE 2 | (A–C) Microbiota enriched in the different groups (patients with later-stage biliary atresia and controls) at the phylum, genus, and species levels
(*p < 0.05, **p < 0.01, ***p < 0.001). Different colors represent different groups. Orange denotes the control group and blue biliary atresia (BA). (D) Correlations
between liver function indicators and gut microbiome in different stages of biliary atresia (Spearman correlation test). The x-axis represents the environmental factors,
and the y axis the species. The depth of the color indicates the correlation between species and environmental factors. Blue denotes negative correlation and red
positive correlation (*p < 0.05, **p < 0.01, ***p < 0.001). (E) Changes in the abundance of V. atypica in early and later biliary atresia (BA1, early-stage biliary atresia;
BA2, later stage biliary atresia). (F) FishTaco analysis of species contribution to metabolic pathways. The x-axis represents the Wilcoxon test statistic scores, and the
y-axis the related functions. The driving factors for each differential function transformation were divided into four parts, represented by a histogram in two directions.
Gut microbiota in the biliary atresia group drove the increase in the corresponding functional abundance (top right). Gut microbiota in the biliary atresia group
inhibited the proliferation in the related practical quantity (top left). Gut microbiota in the control group drove the increase in the related functional mass (bottom right).
Gut microbiota in the control group inhibited proliferation in the corresponding available abundance (bottom left). Different color bars represent the related species.
The longer the bar, the greater the driving or inhibitory effect of the species on the corresponding function.
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Characteristics of Gut Microbiome’s
Functional Profiles in Biliary Atresia
We annotated the catalogs using the KEGG database to investigate
the gut microbiome’s functional profiles (https://www.kegg.jp/).
Pathogen-associated molecular patterns, including capsular
polysaccharide transport system (K10107 and K09688), LPS
biosynthesis (K05790), adhesins (K13735), adhesin transport
system (K12543 and K12542), and bacterial secretion system were
all elevated in the biliary atresia group (Table 1). Combined
enriched species and function analysis showed that Klebsiella spp.
and Enterobacteriaceae played a more prominent role in pathways
involving the bacterial invasion of epithelial cells, LPS biosynthesis,
and bacterial secretion (Figure 2F). Besides, ketone body
biosynthesis (M00088), polyamine biosynthesis (M00134), GABA
biosynthesis (M00136), aromatic amino acid metabolism (M00533,
M00545), and branched-chain amino acid metabolism (isoleucine
biosynthesis, M00570) were enriched in the biliary atresia group
(Figure 3A, Table S4).

Differential Metabolites Between Patients
With Biliary Atresia and Controls
We performed non-targeted metabolomic profiling of stools from
patients with biliary atresia and controls. Orthogonal partial least
squares discriminant analysis (OPLS-DA) showed pronounced
metabolic alterations between the two groups [Figure 3B, R2Y =
(0, 0.6409), Q2 = (0, −0.396)]. A total of 19,817 differential peaks
were selected, including 10,635 peaks in positive mode and 9,182
peaks in negative mode (Table S5). OPLS-DA identified 289 and
347 metabolites enriched in the biliary atresia and control groups,
respectively. Differential metabolites among the top 30 are shown in
Figure 3C (VIP > 2, p < 0.05) (Table S6).

Differential metabolites among the two groups were
summarized and mapped into their biochemical pathways
through metabolic enrichment and pathway analysis based on
database search (KEGG, http://www.genome.jp/kegg/). Here,
altered metabolites were mainly involved in lipid metabolism,
digestive system, metabolism of cofactors and vitamins, and
amino acid metabolism (Figure 3D). Bile acids are the primary
metabolites involved in lipid metabolism and the digestive
system. We detected a decrease in 15 bile acids and an increase in
Frontiers in Immunology | www.frontiersin.org 6
2 bile acids in biliary atresia individuals (Table S7). Lithocholic acid
(LCA) and its derivatives have been reported toxic to the liver (28).
However, its abundance was similar between the two groups. The
Spearman correlation test showed thatEnterococcus faeciumhad an
enormously positive relationship with taurolithocholate (TLCA),
12-ketolithocholic acid (12-ketoLCA), 7-ketolithocholic acid (7-
ketoLCA), and lithocholic acid 3 sulfate (LCA-3S) (Figure 3E).
Regarding differential metabolites involved in the metabolism of
cofactors andvitamins,we listed changedvitaminAandDproducts
in Table S3.

In amino acid metabolism, there was a significant change in
metabolites involved in aromatic amino acid metabolism
(especially tryptophan metabolism). We found that the
abundance of tryptophan accumulated in biliary atresia
individuals while kynurenic acid, kynurenine, and indole
propionic acid were consumed (Figure 4A). The Spearman
correlation test was performed to investigate the relationship
between altered species, metabolites, and liver function
indicators (Figure 4B). It displayed that Veillonella was
strongly positive with tryptophan abundance. Lactobacillus was
negative and positive with tryptophan and indoleacetic acid.
Further, tryptophan and kynurenine were positively and
negatively associated with total bilirubin concentration (TBIL).
Based on these results, we speculated that there might be a
relationship between Veillonella, tryptophan metabolism, and
liver injury in biliary atresia individuals.
DISCUSSION

Various studies have been demonstrated that gut microbes are
involved in the occurrence and development of many diseases.
The previous study has suggested that the progression of
dysbiosis can be associated with worsening liver disease (29).
Experiments in mice also show that intestinal microbes can
aggravate bile acid damage to liver cells (30). Besides,
microbiota-derived metabolites, notably bile acids, short-chain
fatty acids, tryptophan, and indole derivatives, have been
strongly implicated in the pathogenesis of metabolic
disorders (31).
TABLE 1 | Elevated or decreased gut microbiome’s functional profiles in biliary atresia individuals.

KO ID Description Median (control) Median (biliary atresia) p value

K10107 Capsular polysaccharide transport system permease protein 0 3.27 × 10^-6 0.0002
K09688 Capsular polysaccharide transport system permease protein 0 9.17 × 10^-7 0.002
K05790 Lipopolysaccharide biosynthesis protein WzzE 3.63 × 10^-6 1.18 × 10^-4 0.001
K13735 Adhesin/invasin 6.99 × 10^-6 5.94 × 10^-5 0.01
K12543 Outer membrane protein, adhesin transport system 5.98 × 10^-7 8.92 × 10^-6 0.01
K12542 Membrane fusion protein, adhesin transport system 6.03 × 10^-7 1.43 × 10^-5 0.03
K00290 Saccharopine dehydrogenase 1.78 × 10^-4 5.75 × 10^-6 0.0002
K00640 Serine O-acetyltransferase 4.18 × 10^-4 3.04 × 10^-4 0.02
K09470 Gamma-glutamylputrescine synthase 5.51 × 10^-7 4.84 × 10^-5 0.0009
K09471 Gamma-glutamylputrescine oxidase 4.31 × 10^-6 9.08 × 10^-5 0.001
K09472 Gamma-glutamyl-gamma-aminobutyraldehyde dehydrogenase 1.00 × 10^-6 6.70 × 10^-5 0.0003
K09473 Gamma-glutamyl-gamma-aminobutyrate hydrolase 7.19 × 10^-7 5.83 × 10^-5 0.004
K01442 Choloylglycine hydrolase 3.03 × 10^-4 8.27 × 10^-5 0.0005
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Biliary atresia is the most common disease of cholestatic liver
disease in children. It has been observed that the intestinal
microbiome is maladjusted in it (24, 26). However, critical
questions on microbiome-linked disease states and their
Frontiers in Immunology | www.frontiersin.org 7
relationship with disease course remain unexplored. Moreover,
the attributes of metabolites and their relationship with intestinal
microbiota and liver damage have also not been investigated.
Based on this, we aimed to (1) describe the gut microbial
A B

D

E

C

FIGURE 3 | (A) LEfSe analysis of gut microbiota functional profiles between the control and biliary atresia groups (BA, biliary atresia; HC, controls). Histogram of the
LDA scores calculated for a differential abundance of functional profiles in the two groups. LDA score cutoff of 2.0 indicated a significant difference. Different colors
represent different groups. (B) Significant differences in metabolite composition between the biliary atresia and control groups identified by OPLS-DA (above: OPLS-
DA map; below: model verification map of OPLS-DA; BA: biliary atresia; HC: controls). OPLS-DA map: the first prediction of Comp1 is mainly the decomposition
degree, and the first orthogonality of orthogonal Comp1 is the decomposition degree. Model verification map of OPLS-DA: the x-axis represents the replacement
retention of the replacement test; the y-axis represents the R2 (red dot) and Q2 (blue triangle) replacement test values. The two dashes represent the regression lines
of R2 and Q2, respectively. (C) Heatmap of differential metabolites between the two groups (VIP > 2, p < 0.05). The color represents the relative abundance of the
metabolites in the samples. On the right is the VIP bar graph of metabolites. The length of the bar represents the contribution value of the metabolite to the difference
between the groups (*p < 0.05, **p < 0.01, ***P < 0.001). (D) KEGG pathways on level 1 and level 2 are related to differential metabolites. The ordinate is the name
of pathway level 2, and the abscissa is the number of metabolites related to the pathway. Different colors represent different pathways on level 1. (E) Associations of
differential lithocholic acid and derivatives with top 30 genera in abundance. The depth of the color indicates the correlation between species and environmental
factors. Blue denotes negative correlation and red positive correlation (*p < 0.05, **p < 0.01, ***p < 0.001).
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composition in the early and later stages of biliary atresia;
(2) search for microorganisms that changed significantly
during disease progression and explored the potential
relationship between liver function index and targeted bacteria;
and (3) analyze the differential microbial function and fecal
metabolites in biliary atresia and explore their relationship
with gut microbiome and liver damage.

Overall, patients with biliary atresia showed a lower level of
microbial community richness compared to controls. Besides, the
microbial structure was visibly separated between the two groups,
whether in the early or later stage, which indicated that gut
microbiome disorder occurred in biliary atresia. Depleted bile
acids in the gut and fibrosis in the liver were the main factors
contributing to this outcome. Concerning species composition,
Frontiers in Immunology | www.frontiersin.org 8
Proteobacteria abundance increased significantly in the early and
late stages of biliary atresia. Proteobacteria contain various known
human pathogens. Their abnormal reproduction is often
associated with an increase in epithelial oxygen availability. It is
therefore considered a marker of inflammation and epithelial
dysfunction (32). Subsequently, the biliary atresia-enriched
Enterobacteriaceae family, which comprises Klebsiella, Shigella,
Salmonella, and Escherichia, is an ordinary member of the
Proteobacteria pathogenic bacteria in biliary tract infection (33).
Adhesins (K13735, enriched in biliary atresia), as biological
macromolecules on the surface of these bacteria, played an
essential role in bacterial colonization through adhesion to
biliary tract cells. By analyzing the gut microbial composition in
different disease stages, we found that Klebsiella, Streptococcus,
A

B

FIGURE 4 | (A) Differential metabolites related to tryptophan metabolism in biliary atresia and control groups (*P < 0.05, ***P < 0.001) (BA, biliary atresia; HC,
controls). (B) The relationship between altered species, metabolites, and liver function indicators. Left: Associations of differential metabolites with top 30 genera in
abundance. Right: Associations of differential metabolites with liver function indicators (*P < 0.05, **P < 0.01, ***P < 0.001).
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Veillonella, and Enterococcus were always dominant and may
serve as potential biomarkers. On this basis, combined functional
metabolism and clinical indicators showed that Klebsiella spp.
and V. atypica played a significant role in the evolution of biliary
atresia. It has been reported that K. pneumoniae can disrupt the
epithelial barrier and initiate bacterial translocation and hepatitis
through the virulence factors, capsular polysaccharide transport,
and bacterial secretion systems (34, 35).

Subsequently, a series of reactions such as cytokine release
and inflammation would have occurred. It is consistent with
higher IL-2, IL-4, IL-6, IL-10, TNFa, and IFN-g in patients with
biliary atresia (Table 2). A high level of K. pneumoniae may be a
stimulating factor for gastrointestinal perforation after
transplantation, although the cause of this remains unclear.
The risk factors include previous laparotomy, long duration of
surgery, subsequent laparotomy, portal vein thromboembolism
in the early period, treatment with high-dose steroids, and CMV
infection (36). Excluding surgery-related factors, some children
with biliary atresia developed bowel perforation after
transplantation in our center.

Enterococcus was another dominant genus in biliary atresia
individuals, whether in the early or later stage. It comprises a
ubiquitous group of Gram-positive bacteria that are of great
relevance to healthcare-associated infections (37). Among them,
E. faecium was one of the most abundant enterococcal species. In
primary sclerosing cholangitis (PSC), it has been demonstrated
that TLCA levels strongly correlated with Enterococcus abundance
(32). TLCA is one of the derivatives of lithocholic acid. Lithocholic
acid and its conjugates are considered the most harmful bile acids
(32, 38). They could cause segmental bile duct obstruction,
destructive cholangitis, and periductal fibrosis (32). In the
current study, most bile acids were reduced in biliary atresia
individuals. However, the level of lithocholic acid and its
derivatives was similar between controls and biliary atresia
individuals. Significantly, we found a strong positive relationship
between E. faecium and lithocholic acid derivatives. Based on the
above, we believed that E. faecium promoted the progression of
liver injury in biliary atresia through bile acid metabolism.

In the disease progression of biliary atresia, there was a
significant increase in the abundance of V. atypica. Veillonella is
a lactate-fermenting bacteria that generally reside in the oral cavity
(39). Previous literature found thatVeillonella abundance is related
to the disease states of nonalcoholic steatohepatitis (NASH) (40).
Moreover, Wei et al. also concluded that expansion of another
species of Veillonella (V. dispar) was associated with the disease
status of autoimmune hepatitis (AIH) (41). The present study
Frontiers in Immunology | www.frontiersin.org 9
discovered that theV. atypica concentration was strongly related to
the liver enzyme in biliary atresia.We observed thatVeillonella and
tryptophan derivatives were associated with liver damage
combined with gut microbiome and metabolites. It has been
known that tryptophan dysmetabolism is associated with liver
inflammation, steatosis, and insulin resistance (31). The kynurenic
acid, kynurenine, and indole propionic acid products of
tryptophan from different catabolism pathways (42). Among
them, metabolites generated from kynurenine may regulate
diverse cellular functions, including viability, adhesive and
migratory properties, and inflammatory potential (43). Besides,
defective catabolism for indole and its derivatives also contributes
to intestinal permeability and LPS translocation (31). Consistently,
the levels of tryptophan, kynurenic acid, kynurenine, and indole
propionic acid were all significantly changed in this subject. Based
on these, we believed that V. atypica was associated with the
disease status in biliary atresia. Besides, tryptophan dysmetabolism
also participated in the progress of the biliary atresia.

In addition to the growth of pathogenic bacteria,
Bifidobacterium and some butyrate-producing bacteria like
Faecalibacterium prausnitzii, Roseburia spp. (Roseburia faecis,
Roseburia inulinivorans, Roseburia intestinalis, and Roseburia
hominis), Eubacterium hallii, and Anaerostipes caccae were
reduced in patients with biliary atresia (Table S8).
Bifidobacterium and most butyrate-producing bacteria belong
to the phyla Actinobacteria and Firmicutes, respectively (44). It
could explain the decrease in Actinobacteria in patients with
biliary atresia. Butyrate is a short-chain fatty acid that can reduce
gut mucosal inflammation and protect the gut epithelial barrier
integrity in several diseases (27, 45–48). These anti-inflammatory
effects are partly associated with secreted metabolites capable of
blocking nuclear factor-kB activation (49).

In conclusion, gutmicrobiota disorder occurred in patients with
biliary atresia, whether in the early or later stage, and Klebsiella,
Streptococcus, Veillonella, and Enterococcus were dominant. In
addition, the liver damage of biliary atresia was directly or
indirectly exacerbated by the interaction of enriched Klebsiella
(K. pneumoniae), Veillonella (V. atypica), and Enterococcus
(E. faecium) with dysmetabolism of tryptophan and bile acid.
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