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Background. Evolutionary theory predicts that organisms should evolve the ability to produce high fitness phenotypes in the
face of environmental disturbances (environmental robustness) or genetic mutations (genetic robustness). While several
studies have uncovered mechanisms that lead to both environmental and genetic robustness, we have yet to understand why
some components of the genome are more robust than others. According to evolutionary theory, environmental and genetic
robustness will have different responses to selective forces. Selection on environmental robustness for a trait is expected to be
strong and related to the fitness costs of altering that trait. In contrast to environmental robustness, selection on genetic
robustness for a trait is expected to be largely independent of the fitness cost of altering the trait and instead should correlate
with the standing genetic variation for the trait that can potentially be buffered. Several mechanisms that provide both
environmental and genetic robustness have been described, and this correlation could be explained by direct selection on
both forms of robustness (direct selection hypothesis), or through selection on environmental robustness and a correlated
response in genetic robustness (congruence hypothesis). Methodology/Principal Findings. Using both published and novel
data on gene expression in the yeast Saccharomyces cerevisiae, we find that genetic robustness is correlated with
environmental robustness across the yeast genome as predicted by the congruence hypothesis. However, we also show that
environmental robustness, but not genetic robustness, is related to per-gene fitness effects. In contrast, genetic robustness is
significantly correlated with network position, suggesting that genetic robustness has been under direct selection.
Conclusions/Significance. We observed a significant correlation between our measures of genetic and environmental
robustness, in agreement with the congruence hypothesis. However, this correlation alone cannot explain the co-variance of
genetic robustness with position in the protein interaction network. We therefore conclude that direct selection on robustness
has played a role in the evolution of genetic robustness in the transcriptome.
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INTRODUCTION
Organisms are faced with the challenge of functioning and

reproducing in the midst of both internal and external perturba-

tions. Internal genetic changes arise due to mutation and

recombination, while externally, organisms might experience

a range of environments over various spatial and temporal scales,

leading to variable selection pressures [1,2]. How a species

responds to these variable selection pressures depends on the

details of the selective environment and the genetic variances and

covariances for the traits under selection [3]. The genetic

architecture of the traits of interest and the nature of intrinsic or

extrinsic variability will, in turn, determine whether fitness is

maximized by, on the one hand, plastically varying phenotype to

match the external environment or internal genetic background,

or on the other hand by producing a constant, robust phenotype

[4,5]. The idea that phenotypic insensitivity to the environment

might be under selection was advanced by Waddington,

Schmalhausen, and Thoday in the 1940s and 50s [6–9]. Of these

early ideas, Waddington’s concept of developmental canalization

has perhaps incited both the most debate and the most theoretical

modeling [10–12].

Theoretical models for the evolution of robustness have made

clear the importance of distinguishing between environmental and

genetic robustness (ER and GR, respectively) [10,13–16]. We

define environmental robustness as the insensitivity of a phenotype

to environmental perturbations, while genetic robustness refers to

the constancy of a phenotype when some component of the

genotype is altered. In general, the strength of selection on

robustness to some form of perturbation is limited by the fitness

load that the perturbation can create [16]. However, theory

suggests that the extent and causes of robustness evolution differ

for ER versus GR. For environmental disturbances, selection on

robustness depends on both the frequency and fitness cost

associated with environmental changes [13,16,17]. Unlike envi-

ronmental perturbations, the strength of selection on GR is not

strongly related to the fitness cost associated with each genetic

perturbation, but is instead related to the fraction of the overall

mutational load that can be buffered by the focal gene [10,13,16].

This is because the mutation load is largely insensitive to the per-

mutation fitness effect [18]. This leads us to predict that selection
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for genetic robustness will not be related to any measure of how

important the trait of interest is to overall fitness. Rather, selection

for genetic robustness is predicted to be related to the total

frequency of deleterious effects that the focal gene can potentially

buffer [16].

Given these theoretical results, we expect mutational robustness

to be typically weakly selected while environmental robustness

should be under strong selection [10,13,16,19–22]. Several well

known systems exhibit genetic robustness, but it is often linked to

the mechanism of environmental robustness [23–26]. What, then,

might account for the evolution of GR? Two main hypotheses

have been proposed. The first, known as the congruence

hypothesis, argues that genetic robustness has arisen as a byproduct

of environmental robustness [10,20,25,27,28]. An alternative

hypothesis, direct selection, argues that selection can act directly

on both mutational and environmental robustness, and that

selection has been strong enough to have an observable effect on

mutational robustness in particular [10,13,16].

These two hypotheses lead to different sets of predictions.

Under the congruence hypothesis, we expect that the traits that

are most robust to environmental perturbations will also be those

that are robust to genetic perturbations. This could occur, for

instance, if enzymes that are selected to have excess capacity in

order to produce consistent output under variable environmental

conditions also turn out to have excess capacity in the face of

genetic perturbations that reduce enzyme efficiency [27]. Fur-

thermore, traits with high GR and ER will be those that are under

the strongest selection.

The direct selection hypothesis argues that natural selection can

favor both ER and GR independently. However, the means by

which this occurs differs for the two types of robustness. Traits that

are strongly correlated with fitness are expected to evolve high ER.

In contrast, traits with high GR will be those that have the greatest

potential to buffer other traits. For example, if we measure

robustness in levels of gene expression across genes in the genome,

theory predicts that GR will be greatest for genes whose protein

products have the potential to buffer the largest number of

mutations. Proteins that interact with the largest number of other

proteins in the protein-protein interaction network could poten-

tially buffer mutations at each interacting locus, and are therefore

predicted to be under stronger selection to create robustness

(Figure 1). The direct selection hypothesis does not predict that ER

will be strongly correlated with network structure, although we

might expect to see some relationship due to the fact that highly

connected proteins tend to be under stronger selection [29],

though the correlation is relatively weak. The ability of a particular

gene to buffer or amplify environmental variability is likely to

depend on both direct interactions with the environment and

indirect interactions, such as through signal transduction path-

ways. However, the fitness effects of altering expression at a focal

gene could easily swamp out the effects of network position or, at

a minimum, reduce the importance of network position. Thus, we

have a distinct set of predictions that differentiate GR from ER,

and congruence from direct selection.

While we have a clear body of theory and predictions, until now

it has been difficult to obtain measures of genetic robustness,

environmental robustness, selection intensity and network con-

nectivity for a large number of traits in a single species. For

example, detailed work on the segment polarity network of

Drosophila has shown how genetic and environmental robustness

are related in that specific network [26]. Induced mutation in

Drosophila suggests that, for life history traits, both genetic and

environmental robustness are correlated with the traits importance

to fitness [20]. The structure of the chemotaxis network of bacteria

has been shown to produce robustness to both genetic mutation

and environmental perturbation [23]. Likewise, heat shock

proteins have been shown to buffer both temperature effects and

individual mutations in proteins that the chaperone interacts with

[24]. However, each of these cases concerns robustness of a single

trait. If we could study robustness at multiple traits simultaneously,

we would have much more power to test theories of robustness.

Datasets obtained from large-scale genomic studies now make this

possible.

Here we use gene transcription data from the yeast, Saccharo-

myces cerevisiae, to test hypotheses for the evolution of robustness. By

defining our traits of interest as the level of gene expression, a single

organism provides us with measures of robustness for over 5000

traits (i.e., genes) simultaneously. While RNA production alone

does not constitute a classical trait, it is an important step in

producing functional proteins that contribute to adaptation. This

gives us substantial power to examine the statistical relationships

between robustness and potential causal variables using a common

framework. For each trait, the phenotype within a given

environment or genetic background is simply the level of gene

expression relative to that of a control strain. Robustness for

a single gene is defined as the relative constancy (i.e., the inverse of

the variance) of that gene, measured across a series of environ-

ments or genotypes.

Our measures of ER and GR are derived from measures of

variation in levels of gene expression across 15 different stressors in

a total of 35 environments [ER, 30], and across a set of 167 non-

lethal knockout mutations [GR, 31]. Gene knockouts are

a particularly severe form of genetic perturbation, and are

probably rare in nature. Cellular responses to such large

perturbations could be different from responses to smaller-scale

genetic changes. Accordingly, we also obtained measures of

variation in gene expression across a set of 30 wild yeast strains

collected from vineyards in California (genetic background

Figure 1. A schematic diagram illustrating the role that network
position can play in propagation of noise through the network. The
circles in the diagram represent genes while the lines represent bi-
directional interactions (like protein-protein interactions). The diagram
shows how a focal node, shown in red, can affect noise produced by
a perturbed node, shown in blue. The noise produced by the blue gene
is represented by the blue oscillating arrows, and is dampened after
passing through the red gene. Because the red gene lies on pathways
between many other genes it has a large potential to buffer genetic
noise.
doi:10.1371/journal.pone.0000911.g001
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robustness, or ‘BR’). These strains represent genomes that are

capable of living and reproducing in the environment, and so

represent a particularly interesting kind of genetic variation. These

wild yeast strains were brought into the laboratory and then grown

under identical conditions before RNA was extracted. Therefore,

expression levels measured for each gene show their response to

a change in the genetic background.

We found that these three forms of robustness were significantly

correlated at a genomic scale. However, environmental and

genetic robustness differ in their relationships to putative causal

variables that represent both the evolutionary history and network

position of genes. These causal variables include essentiality

(whether a gene knockout is lethal or not), evidence of purifying

selection as measured by Ka/Ks ratios, and knockout growth effects,

which we assume to be measures of ‘gene importance’. We also

include several measures of the structure of protein networks and

gene regulatory networks [5,29,32]. Environmental robustness was

significantly correlated with several measures of gene importance,

while genetic and background genotype robustness were correlat-

ed with position in the protein network. While we cannot rule out

the possibility that congruence explains a portion of the observed

genetic robustness, our analysis provides evidence that direct

selection has a measurable effect on genetic robustness.

RESULTS

Correlations between traits
We found that environmental robustness was positively and

significantly correlated with both measures of genetic robustness

(GR and BR) (figure 2), and that all three measures of robustness

were positively correlated with one another (Spearman’s r, ER-

GR: r= 0.26, ER-BR: r= 0.13, GR-BR: r= 0.18; P,10220 in all

cases). In addition to the non-parametric correlations, we used

linear regression to determine the correlations between each of the

three measures of robustness. Each of the three possible pairwise

regressions were highly significant with p,10220.

The congruence hypothesis posits that both GR and BR are

byproducts of selection on ER. If GR and BR had evolved solely in

response to ER, we would expect that GR and BR would no

longer be correlated after removing the effects of ER through

partial regression. Put another way, under the direct selection

hypothesis, we expect a correlation between GR and BR even

after controlling for the statistical effects of ER. The two measures

of genetic robustness are, in fact, correlated with one another after

removing the effects of ER. We also used both non-parametric and

regression based approaches to assess the partial correlation

between GR and BR. We performed a multiple regression with

ER and BR as factors and GR as the response variable. The model

was highly significant with p,10230 and had partial regression

coefficients that were significantly positive. In particular, the two

measures of genetic robustness were positively related (b = 0.16,

s.e. = 0.014). Further, the multiple regression explained 8.6% of

the total variance. We also took another, partially non-parametric

approach to calculate the correlation between GR and BR. We

computed residual GR and BR from a linear regression against

ER. Their residual values are highly correlated with a coefficient

similar to that of their raw values (figure 3; Spearman’s r= 0.15,

p,0.0001).

The direct selection hypothesis predicts that only the environ-

mental robustness of a trait should be correlated with the intensity

of selection acting on that trait, while the congruence hypothesis

predicts that both ER and GR should be correlated with the

intensity of selection. We used three measures of gene importance

as proxies for the intensity of selection; whether a gene was lethal

when knocked out, the Ka/Ks ratio and whether colony growth was

affected by heterozygous gene knock-outs. We found that all three

types of robustness were higher in genes that are lethal when

knocked out (Table 1). However, the other measures of gene

importance were correlated with ER but not with GR or BR.

While the lethality data suggested that genes that are more

important determinants of fitness have greater environmental

robustness, our analysis of Ka/Ks showed the opposite pattern.

Genes that historically have experienced the strongest intensity of

selection (i.e., low Ka/Ks values) showed the least robustness. The

relationship between the effect of a heterozygous gene knockout on

growth rate and ER depended on the medium. Genes that reduce

growth in complete media are associated with lower robustness

while genes that reduce growth in minimal media are associated

with higher robustness.

We also tested whether genes that have environment specific

growth responses show a relationship with expression robustness.

We defined a gene as having a differential growth effect if

Figure 2. The relationship between environmental expression
robustness and two forms of genetic robustness. The data were
separated into 15 bins based on ranked environmental robustness. For
each bin the mean and standard error of each form of robustness was
calculated. Filled squares indicate robustness to knockouts while open
squares indicate robustness to background genotype. All statistical
analyses were carried out on the un-binned data.
doi:10.1371/journal.pone.0000911.g002

Figure 3. Correlation between residual GR and residual BR. We
independently fit GR and BR to ER and performed a linear regression.
Residual values of GR and BR were calculated and are shown here. The
measures are significantly correlated with Spearman’s r of 0.15 and
a Pearson’s r of 0.16.
doi:10.1371/journal.pone.0000911.g003
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a heterozygous knockout mutant caused lower growth in one

media (YPD or minimal) but not the other [32]. We found

a significant relationship between ER and differential growth, with

differential growth associated with low robustness (F = 12.76,

DF = 1, p,0.001). In contrast, GR and BR were not significantly

associated with differential growth (GR F = 1.24, DF = 1, p = 0.26;

BR F = 0.0024, DF = 1, p = 0.96).

Under the congruence hypothesis, GR and BR evolve as

byproducts of ER and would therefore not be expected to have

statistical relationships with gene importance once the effects of

ER were statistically controlled for. We calculated the residual

values of GR and BR from linear regressions against ER and used

those residual robustness values to test for effects on each of our

measures of gene importance. Lethal genes were associated with

higher residual robustness. In contrast, high Ka/Ks was associated

with lower residual robustness. This indicates that genes under

stronger purifying selection are more genetically robust than

expected, given their level of ER (GR: F = 6.61, p = 0.01,

slope = 20.018 (0.0076); BR: F = 17.89, p,0.0001,

slope = 20.031 (0.0074) ). Colony growth and differential colony

growth were not significantly associated with either measure of

residual genetic robustness.

Network structure
The direct selection hypothesis for the evolution of robustness

predicts that genetic, but not environmental, robustness should be

correlated with the ability of a gene to buffer changes in a network

of interacting genes. Of the three measures of network centrality

(degree, closeness and betweenness), ER was positively correlated

with degree but not with closeness or betweenness (table 2). In

contrast, both GR and BR were correlated with all three measures

of network centrality (P,1027 in all cases). More central and

higher degree proteins had higher robustness than less central

proteins. After adjusting for multiple comparisons using a Bonfer-

roni adjusted critical a = 0.0056, however, only GR and BR were

significantly correlated with any measure of network position.

The number of genes that regulate a focal gene is known to be

positively correlated with ER [5]. The number of regulators was

also positively correlated with both GR and BR. Position in the

protein network is also correlated with position in the regulatory

network, and this could produce the observed relationship

between robustness and protein centrality. Because the number

of regulatory factors has been previously shown to effect

expression robustness [5], we wanted to ensure that these observed

patterns were not simply caused by correlations with the number

of regulatory binding sites (and putative regulators) at a gene (Kin).

All measures of robustness were negatively correlated with Log-

transformed values of Kin (ER b = 20.07060.013, GR

b= 20.1160.014, BR b= 20.03760.013). In order to statistically

correct for the effect of Kin we first performed linear regression

with of each measure of robustness against Log Kin and calculated

the residual robustness. We then measured the correlation

between residual robustness and network position and found that

more central proteins had higher residual GR and BR (P,0.00001

for degree, P,0.05 for closeness and betweenness). No measure of

centrality was correlated with residual ER.

Relationship to Protein Variability
We obtained data from [33] on cell-to-cell variation in protein

abundance. These data were collected from a library of fluores-

cently tagged yeast strains in a constant environment. Data were

available both for yeast raised in complete (YPD) and minimal

media. We first calculated the residual of the log variance in protein

abundance from a cubic spline fit (l = 0.1) with log protein

abundance (LRV). This allowed us to remove the effect of protein

abundance per se and determine if proteins with noisier expression

were associated with robustness. We calculated correlations

between our measures of robustness and LRV using both Spear-

man’s r and Pearson’s r. Table 3 shows that all measures of

robustness are always significantly negatively associated with protein

variability. We performed a multiple regression with LRV and Kin

as factors and found that, for each measure of robustness, LRV still

had a significant effect and that this effect was in the same direction

as the pairwise correlation (Table 4). Thus, genes that had relatively

high levels of variation in expression between environments and

genetic backgrounds also had relatively high levels of variation in

protein abundance within a single environment.

DISCUSSION
Two competing hypotheses—direct selection and congruence—

have been put forward to explain why some traits might be more

robust than others when faced with environmental or genetic

perturbations. Our study of variation in transcription levels in the

yeast genome provides us with the first large-scale and simulta-

neous test of these two hypotheses.

Our results provide support, albeit mixed, for both hypotheses.

In line with the congruence hypothesis, all three measures of

robustness (ER, GR and BR) were correlated with one another.

However, if congruence alone were responsible for the evolution of

GR and BR, then we would not expect GR and BR to be

independently correlated with other causal variables. Since we find

that GR and BR are correlated with each other once the effects of

ER are statistically removed, that GR and BR are not correlated

with Ka/Ks or growth effects, and that GR and BR are each

correlated with network position, we conclude that there has been

direct selection for genetic robustness.

Table 1. Predictors of robustness (correlation coefficient, 6s.e.).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Log Ka/Ks Lethality
Het KO
Complete

Het KO
Minimal

ER 0.081 (0.0073) 0.011 (0.0033) 0.38 (0.16) 20.16 (0.062)

GR 0.011 (0.0077) 0.023 (0.0035) 0.0039 (0.17) 20.041 (0.065)

BR 20.014 (0.0078) 0.017 (0.0035) 0.18 (0.17) 20.0047 (0.067)

We analyzed a multiple regression model with Ka/Ks ratio, lethality, and colony
growth of heterozygous knockouts in complete and minimal media as potential
predictors of robustness. Bold numbers indicate P,0.01, bold italics P,0.05.
For ER, Ka/Ks ratio, lethality, and heterozygous knockout growth rates, each are
significant predictors of robustness. In contrast, lethality was the only measure
of gene importance that was significantly correlated with GR and BR.
doi:10.1371/journal.pone.0000911.t001..

..
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..
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..

..
..

..
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..
..
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Table 2. Spearman’s r correlation between measures of
robustness and protein centrality.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ER GR BR

Degree 0.037 0.097 0.11

Closeness 0.0034 0.067 0.087

Betweenness 0.027 0.0792 0.086

We calculated the ranked correlation using all genes, regardless of whether they
were in the central component or not. This means that unconnected genes
were assigned a closeness and betweenness of 0. Numbers in bold have
P,0.0001 while bold italics indicate P,0.05.
doi:10.1371/journal.pone.0000911.t002..
..

..
..

..
..

..
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..
..
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We measured several traits associated with the relative

importance to fitness of each gene. The direct selection hypothesis

predicts that only ER should be correlated with measures of gene

importance. In fact, we found that ER was significantly correlated

with each measure, whereas GR and BR were only correlated with

lethality. On the face of it, this would appear to support the direct

selection hypothesis. However, one result was unexpected, and in

direct contrast to our prediction. The direct selection hypothesis

predicts that robustness should be greatest in genes that exhibit the

highest measures of selection intensity. In fact, we found just the

opposite. Genes with low Ka/Ks ratios and genes that lowered

growth rate when knocked out in minimal media had low

environmental robustness. We return to this result later in the

discussion.

Further supporting the direct selection hypothesis, GR and BR

were more strongly correlated than was ER with measures of

network centrality. This is in line with the theoretical prediction

that genes that are better able to buffer genetic mutations at other

loci will evolve higher genetic robustness. Our results show that

more central proteins have higher GR and BR, indicating that

highly connected genes maintain relatively constant levels of

mRNA expression under a range of genetic perturbations. This

would lead to robustness in terms of biological function if the

presence of these robustly expressed proteins could buffer or

compensate for changes in abundance or sequence of other

proteins with which they interact.

Perhaps the most surprising result was that genes with high

environmental robustness appeared to be under less intense

selection than those that varied more across environments. This

may seem to indicate that natural selection is favoring a lack of

robustness. However, an alternative interpretation of these results

is possible if we think of high variability across environments not as

low robustness, but rather as high, and potentially adaptive,

phenotypic plasticity. Phenotypic plasticity can evolve as an

adaptive response to variation in the environment when selection

favors alternative phenotypes in different environments [4,5].

Thus, our observation that genes under strong stabilizing selection

also have low ER is consistent with the evolution of adaptive

plasticity in expression levels.

The observation that low Ka/Ks was associated with low ER

suggested that our analysis of heterozygous knock-outs may have

been incomplete. If the optimal level of expression of a gene were

environment specific, then we would expect that that gene would

have environment specific effects on fitness when its expression

was artificially altered. To this end, we defined a gene as having

a differential growth effect if a heterozygous knockout mutant

caused lower growth in one growth media but not the other.

Genes that have differential growth effects are likely to have

different optimal expression levels in different environments,

because the experimental protocol manipulates expression level

in an environment independent way. We found that low ER was

associated with differential growth effects, suggesting that genes

that are highly variable in expression with respect to environment

are likely to have environment specific fitness consequences when

perturbed.

Previous work has suggested that plasticity in expression is

functionally related to the number of transcription factors that

regulate a focal gene [5]. Because transcription factor genes are

themselves responsive to changes in environmental conditions, it is

not surprising that genes with more regulatory inputs have

increased environmental plasticity. We found that genetic

plasticity also increased with the number of regulatory inputs,

although to a lesser degree than for environmental plasticity. On

the other hand, genes that are more connected and more central

in the protein interaction network have increased expression

robustness to genetic perturbations even when we controlled for

the number of regulatory inputs.

Further evidence regarding the congruence hypothesis is

provided by analyzing the residual levels of GR and BR from

a regression with ER. If GR and BR had evolved solely as a by-

product of ER, then we would also expect that their residual values

would have no relationship with lethality, purifying selection, or

differential growth. Surprisingly, high residual GR and BR was

associated with low Ka/Ks, opposite to the pattern that we saw with

raw ER and Ka/Ks. Because genes with lower Ka/Ks values had

higher residual genetic robustness, we can infer that there is weak

canalizing selection on expression robustness to genetic perturba-

tions, but that this is often overwhelmed by selection for

environmental plasticity. This implies that observed robustness

represents a balance between congruence acting to allow

transcription responses to environmental change and direct

selection of genetic robustness to remain insensitive to genetic

perturbations.

We were also interested in determining if within-environment

variability in expression explained our robustness data. We

examined the correlation between robustness and protein

variability among cells as measured by [33]. We found that

relative variance in protein expression, when the effects of protein

Table 3. Correlations between robustness and log residual protein abundance (LRV).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LRV, Complete LRV, Minimal

r p R p r P R p

ER 20.11 1.9E-7 20.22 1.2E-26 20.12 1.5E-7 20.19 1.9E-18

GR 20.20 4.9E-22 20.26 4.2E-35 20.19 1.4E-17 20.22 2.2E-24

BR 20.12 3.9E-9 20.13 3.3E-9 20.061 0.0058 20.10 3.0E-6

Proteins that have low variability for their expression levels tend to have high robustness.
doi:10.1371/journal.pone.0000911.t003

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

Table 4. Multiple regression results for robustness as
predicted by log protein abundance (LRV) and Kin.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kin p LRV, Complete p

ER 20.064 0.00080 20.32 3.1E-11

GR 20.091 1.8E-6 20.38 2.0E-14

BR 20.027 0.15 20.19 1.0E-4

Genes with larger numbers of binding sites and increased protein variability
have lower robustness.
doi:10.1371/journal.pone.0000911.t004..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..
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abundance were removed, was negatively correlated with

robustness, indicating that genes with greater robustness had

relatively lower cell-to-cell variability in protein abundance. One

possible explanation for this relationship is that genes that have

larger numbers of regulators are more responsive to changes, both

because of stochastic variation in a constant environment and in

response to larger magnitude environmental and genetic changes

[5]. However, a multiple regression with the number of regulators

and protein variability as factors predicting both forms of

robustness showed an independent effect of protein variability

on robustness. This surprising result reinforces our conclusion that

variability in gene expression represents the outcome of evolu-

tionary pressures to maintain robust expression under some

situations while allowing plastic expression under others.

While we found a highly significant correlation between

network position and genetic robustness, the rank correlation

coefficients were in the range of 0.05 to 0.11, leaving much

variation in robustness unexplained. Our measures of network

position were relatively crude and required separate analysis of

information from the protein network and transcription network.

An important future goal is to develop a better understanding of

the topological features of gene networks that make them

vulnerable to damage [34]. This approach is likely to provide

additional insight into the complex relationships between genetic

and environmental robustness.

Final Thoughts
We used whole genome expression data to evaluate two competing

hypotheses for the evolution of expression robustness. The

congruence hypothesis posits that selection for environmental

robustness leads to the evolution of genetic robustness as

a correlated response. In contrast, the direct selection hypothesis

posits that selection acts independently on environmental and

genetic robustness. In their strictest interpretation, these hypoth-

eses have different predictions. However, direct selection on both

forms of robustness could potentially create unexpected auxiliary

correlations. For instance, if the same sets of genes were under

selection to become both more environmentally and more

genetically robust, then we might expect correlations between

our measures of environmental and genetic robustness even

without correlated evolution. Likewise, since measures of gene

importance are often correlated with network position, direct

selection on ER might produce a correlation between ER and

network position. These effects would only cloud our analysis if the

correlation between gene importance and network position were

tight, but regressions of protein degree against lethality, Ka/Ks, and

heterozygous knockout growth rate have R2 values less than seven

percent. In addition, we did find significant relationships between

measures of genetic robustness and measures of network position

that could not be explained by congruence alone.

While we cannot entirely rule out the possibility that direct

selection on both forms of robustness is responsible for all of our

results, we can rule out the possibility that congruence alone

explains the observed pattern of genetic robustness. First, we

observed a strong correlation between GR and BR even when the

effect of ER was statistically controlled for. For this to be explained

by the congruence hypothesis it would need to be the case that the

correlated responses of both GR and BR with ER had a common

mechanistic basis. Second, GR and BR did not show the same

pattern of correlation as ER with our measures of gene

importance. This suggests that, to the extent that correlated

evolution plays a role in genetic robustness evolution, it is not any

more intense when direct selection is acting on ER. Third and

most significantly, GR and BR showed tighter correlations with

measures of protein network centrality than did ER, and this

pattern is only predicted by the direct selection hypothesis.

Further, when we statistically controlled for the effect of the

number of regulatory inputs on expression robustness, only GR

and BR were significantly correlated with network position.

Taken together then, our results show a clear signature of direct

selection acting on genetic robustness and further suggest that

similar forces act on robustness to knockouts and robustness to

changes in the genetic background. While we observe a correlation

between our measures of environmental robustness and genetic

robustness, the pattern of correlation between the putative causal

variables (gene importance and network position) and each form of

robustness is intriguing. In particular, while all measures of gene

importance were correlated with environmental robustness, only

lethality was correlated with genetic robustness. Conversely, all

measures of network centrality were strongly correlated with GR

and BR, but only network degree was correlated with environ-

mental robustness, and the correlation was weak. Finally, there

was no significant correlation between Ka/Ks and absolute

measures of GR, but for a given value of ER, genes that have

higher GR are under stronger purifying selection.

How can we understand this suite of results? One possible

explanation is that environmental and genetic robustness share

a common mechanistic basis, but the direction of selection acting on

these two traits may be divergent. Thus, genes under weaker selection

for robustness would contribute to a positive correlation between

environmental and genetic robustness. Genes under strong and

divergent selection for robustness would reveal distinct correlations

between each form of robustness and variables that are related to

selection on robustness. For expression robustness, variation in the

number and type of transcription regulators could be a mechanism

that affects both expression robustness and adaptive plasticity [5]. For

instance, when a gene acquires additional regulatory elements that

allow it to respond adaptively to environmental change, it may

necessarily make expression of that gene sensitive to genetic changes

at other loci, a trade-off predicted by recent complex systems theory

[35]. If this trade-off is an unavoidable feature of gene expression

networks, then it may well be that one cost of phenotypic plasticity is

a reduction in genetic robustness.

METHODS

Expression Data
We analyzed expression for the yeast Saccharomyces cerevisiae that

had been exposed to environmental perturbations (ER), gene

knockouts (GR), and changes in genetic background (BR). We

measured the expression variability by calculating the mean and

variance of expression changes of each gene in the yeast genome in

response to each form of perturbation. In all datasets analyzed

here, we find a strong mean-variance correlation—genes with

large changes in expression levels relative to controls also show

increased variance. We controlled for the possible bias created by

the mean-variance correlation by calculating the residual of

variance in expression versus mean expression using a cubic spline

fit (l = 0.1). Thus, the corrected measure of variance for the ith

gene is Vci. We calculated robustness as the relative invariance of

expression by linearly transforming each measure of residual

variance so that values with the lowest variance had a robustness

value of 1 while values with the highest variance had robustness

values of 0. Thus, the robustness of the ith gene is given by

Ri~1{
Vci{Min(Vc)

Max(Vc){Min(Vc)
,
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where the minimum and maximum functions are taken over all

genes in our sample. We independently performed this trans-

formation on each of our gene expression datasets to obtain ER,

GR, and BR.

Data on gene expression were obtained from Gasch et al. [30]

and Hughes et al. [31]. Additional experiments, described below,

were performed by S. Nuzhdin using wild yeast strains from the

UC Davis collection. Gasch et al. and Hughes et al. reported

expression ratios of unique mRNA sequences in response to

genetic and environmental perturbations as compared to a wild-

type strain. The Gasch et al. dataset included 6,152 genes while the

Hughes et al. dataset included 6,287 genes. We limited our analysis

to genes that correspond to known proteins as listed in the

Comprehensive Yeast Genome Database (http://mips.gsf.de/

genre/proj/yeast/)[36], reducing our dataset to 5266 genes.

To calculate ER, we used the Gasch data on expression ratios

for the set of environmental perturbations to calculate the mean

expression ratio and the variance in the expression ratio for each

gene. This included 167 experiments with 15 specific stressors,

including heat shock, hyper- and hypo-osmolarity, and a number

of chemical exposure treatments. We selected a subset of

environmental perturbations from the dataset consisting of 35

experiments and 15 stressors. These experiments were selected to

minimize pseudoreplication of similar environmental perturba-

tions. For example, only one experiment that involved a temper-

ature shift from 37uC. to 25uC. was retained out of five such

experiments. The dataset that we used can be obtained from

http://www-genome.stanford.edu/yeast_stress/data/rawdata/

complete_dataset.txt. The experiments that we used correspond to

columns 11, 18, 20, 24, 35, 38, 48, 57, 65, 70, 80, 87, 92, 93, 96,

101, 108, 110, 116, 125, 126, 137, 151, 152, 153, 154, 155, 156,

157, 158, 159, 160, 161, 162, 163. Descriptions of these

experiments can be found at http://www-genome.stanford.edu/

yeast_stress/materials.pdf [30].

To calculate GR we used the Hughes et al. dataset, which

included 276 unique gene knockout experiments. We calculated

the mean expression ratio and the variance in the expression ratio

over all experiments. We calculated BR using 30 wild yeast strains

of S. cerevisiae.

If we find that genes differ in how variable their expression

levels are across genotypes or environments, this difference could

be due to intrinsic differences in variability among genes, and not

to their response to environmental or genetic perturbations.

Accordingly, we also compared our measures of robustness with

intrinsic measures of variability for protein levels within a constant

environment, using data from [33]. We tested for rank correlations

between each of our measures of expression robustness and the

coefficient of variation for protein expression (CV) measured in

both complete and minimal media.

Expression analysis of wild S. cerevisiae stocks
The genetic background data (GR) were collected from 30 stocks

from the UC Davis collection of natural S. cerevisiae (kindly

provided by Linda Bisson, UC Davis). Microarrays were

performed between overlapping pairs of strains in a dye-swapped

design. Data were normalized to correct for dye effects using

Agilent software. The expression of each gene was inferred using

an ANOVA technique to estimate the expression level of each

gene in each strain [37]. This allowed us to estimate the effect of

each genetic background on the expression of each gene and

calculate the variance in log expression over all strains (See

supplemental Data S1). We also calculated the mean expression

level of each gene. Because these analyses did not include a single

control wild-type strain to generate log expression ratios, the mean

expression across all strains was used as the baseline expression

value for each gene.

Gene Importance
We used three approaches to determine how important each gene

is to fitness in a yeast cell. First, genes were classified as viable if

a knockout mutant could grow and survive. Viability data were

obtained from the Comprehensive Yeast Genome Database [36].

Second, we obtained data on the historical strength of purifying

selection as measured by Ka/Ks ratios, estimated in reference [38]

(data available at ftp://ftp-genome.wi.mit.edu/pub/annotation/

fungi/comp_yeasts/S4.MutationCounts/b.KaKs_details.xls] . Be-

cause there is a significant relationship between Ka/Ks ratio and

viability (d.f. = 2746, t = 7.93, p,0.0001) we performed ANCOVA

with viability as a fixed effect and log10 Ka/Ks as the covariate.

Third, we used data from [32] to determine which genes had

significant effects on colony growth when their expression levels

were altered, assuming that heterozygous knockouts have reduced

expression. We used measurements of the reduced growth rate of

heterozygous knockout lines in both complete and minimal media.

We used a linear model with the four measures of gene importance

as causal variables to test for effects on each form of robustness.

Network Position
We measured network statistics of genes in both the yeast gene

regulatory network [39] and the yeast protein-protein interaction

network [40]. The regulatory network is a directional network

with a small number of regulators (94 genes used in this study) and

a larger number of regulated genes (1482 genes used in this study,

31 of which were also regulators). We calculated both the out

degree, Kout (number of genes regulated by the focal gene) and the

in degree, Kin. We used the dataset from Lee et al. to find

predicted regulatory interactions at the P = 0.001 level.

Data on physical protein interactions were obtained from Yeast

Grid (http://biodata.mshri.on.ca/yeast_grid/servlet/SearchPage)

[41]. We excluded data based on synthetic lethal and dosage lethal

interactions because they are not necessarily based on physical

interactions and have not been systematically determined. Our

network contained 4,692 genes involved in 15,035 interactions

[40,42–48]. We used Pajek [49] to calculate the degree,

betweenness, and closeness of all genes in the network.

Statistical Methods
All statistical calculations were performed using JMP 5.1.2 (SAS

Institute). We calculated the Spearman’s r statistic to determine

non-parametric correlations of untransformed data. For regres-

sions and all other parametric tests we used transformed data to

minimize deviations from normality. Expression variance was log

transformed before calculating the cubic spline residuals. Log10

transformations were also performed on Ka/Ks ratios, Kin, and

Kout.

SUPPORTING INFORMATION

Data S1 Wild yeast strain expression data.

Found at: doi:10.1371/journal.pone.0000911.s001 (3.66 MB

XLS)
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