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Abstract The purpose of this study is to develop and

quantitatively assess whether fusion of EEG and MEG

(MEEG) data within the maximum entropy on the mean

(MEM) framework increases the spatial accuracy of source

localization, by yielding better recovery of the spatial ex-

tent and propagation pathway of the underlying generators

of inter-ictal epileptic discharges (IEDs). The key element

in this study is the integration of the complementary in-

formation from EEG and MEG data within the MEM

framework. MEEG was compared with EEG and MEG

when localizing single transient IEDs. The fusion approach

was evaluated using realistic simulation models involving

one or two spatially extended sources mimicking

propagation patterns of IEDs. We also assessed the impact

of the number of EEG electrodes required for an efficient

EEG–MEG fusion. MEM was compared with minimum

norm estimate, dynamic statistical parametric mapping,

and standardized low-resolution electromagnetic tomogra-

phy. The fusion approach was finally assessed on real

epileptic data recorded from two patients showing IEDs

simultaneously in EEG and MEG. Overall the localization

of MEEG data using MEM provided better recovery of the

source spatial extent, more sensitivity to the source depth

and more accurate detection of the onset and propagation

of IEDs than EEG or MEG alone. MEM was more accurate

than the other methods. MEEG proved more robust than

EEG and MEG for single IED localization in low signal-to-

noise ratio conditions. We also showed that only few EEG

electrodes are required to bring additional relevant infor-

mation to MEG during MEM fusion.

Keywords Fusion � Electro-encephalography � Magneto-

encephalography � Inter-ictal epileptic discharges � Spatio-
temporal propagation � Maximum entropy on the mean

framework

Introduction

A successful pre-surgical evaluation in epilepsy entails the

accurate detection of the onset of epileptic discharges, their

spatial extent and propagation patterns (Stefan 2009; Tanaka

and Stufflebeam 2014). Inter-ictal epileptic discharges

(IEDs), occurring between seizures in epilepsy, are com-

monly used as markers of epilepsy (Staley and Dudek 2006).

These are spontaneous transient activities that are clearly

distinguishable frombackground activity. The high temporal

resolution of electro-encephalography (EEG) and magneto-

encephalography (MEG) allows the detection of the fast

propagating IEDs more efficiently than other imaging
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techniques (Stefan 2009; Ebersole andEbersole 2010).MEG

can detect epileptic activity frombackground activitieswhen

a cortical area greater than 4 cm2 is synchronously involved

(Mikuni et al. 1997). EEG requires the activation of a larger

region of the cortex (at least 10 cm2) to detect epileptic ac-

tivity on the scalp recordings (Ebersole 1997; Tao et al. 2007;

Von Ellenrieder et al. 2014). Source analysis of EEG and

MEG data is commonly used to localize the generators of

brain activities that are detectable on the scalp (Stefan et al.

2003; Knowlton and Shih 2004; Noachtar and Rémi 2009;

Wendel et al. 2009). Spatio-temporal source analysis of EEG

and MEG data may be useful for accurate detection and

estimation of propagation patterns of epileptic discharges

(Tanaka et al. 2010, 2014). In order to detect the onset and

propagation patterns of IEDs, source localization of single

spike is more appropriate than averaged spike. Indeed, av-

eraging spikes may enhance the signal-to-noise ratio but the

differences in the origin between single spikesmay get lost in

the averaging process (Bast et al. 2004, 2006). EEG and

MEG are sensitive to different aspects of neuronal activity

(Cohen and Cuffin, 1983; Sutherling et al. 1987; Hämäläinen

et al. 1993; Baumgartner and Pataraia 2006; Funke et al.

2009; Yu et al. 2010; Haueisen et al. 2012). Integrating these

two modalities can bring in complementary information

thereby allowing better accuracy in source imaging. Sym-

metrical fusion of EEG and MEG data is possible since the

two modalities can relate to the same neuronal dynamics

(temporal information) when acquired simultaneously

(Molins et al. 2008).

Several studies have reported the added value of com-

bining the complementarities of EEG and MEG data when

performing source localization. These so-called EEG–MEG

fusion methods allows improving the spatial resolution of

source analysis by increasing the number of recording

channels (EEG electrodes ? MEG sensors) and the overall

head surface coverage. Using single equivalent current

dipole (ECD) approach on simulated EEG/MEG and elec-

trical median nerve stimulation data, Fuchs et al. 1998 sug-

gested that deep sourcesmainly contribute to EEGdatawhile

superficial and tangential sources contribute mainly to MEG

data. Baillet et al. (1999) proposed a joint EEG/MEG ana-

lysis, aiming at minimizing the mutual information between

the two modalities, thus enhancing their respective com-

plementarities. This EEG/MEG fusion strategy demon-

strated reduced sensitivity to noise and improved

localization accuracy. Using L2-based minimum norm es-

timate (MNE) and its variants, such as dynamic Statistical

Parametric Mapping (dSPM), several studies demonstrated

the added value of fusing EEG/MEG data using either

simulated data (Liu et al. 2002), visual evoked responses

(Sharon et al. 2007) and electrical median nerve stimulation

(Molins et al. 2008). The advantage of combining EEG and

MEG data was also evaluated using other inverse operators,

such as sparse source reconstruction (Ding and Yuan 2013)

on simulated data, linearly constrained minimum variance

beamformer approach on simulated and auditory data (Hong

et al. 2013) orMultiple Sparse Prior methods on face evoked

responses (Henson et al. 2009). However, to the best of our

knowledge, there exists no prior study that performed source

analysis using EEG/MEG fusion data to optimize the source

localization of spatially extended generators of propagating

epileptic discharges.

ECD solutions have been extensively used for localizing

the sources of focal interictal spikes but distributed source

localization methods are ideal for estimating distributed

network of brain activity seen during most IEDs (Barkley

and Baumgartner 2003; Kobayashi et al. 2005). Some of the

well-known and widely used distributed methods are MNE

(Hämäläinen and Ilmoniemi 1994) and low resolution

electromagnetic tomography (LORETA) (Pascual-Marqui

et al. 1994).We proposed themaximum entropy on themean

(MEM) (Amblard et al. 2004) as an interesting framework

with good sensitivity in recovering the spatial extent of the

sources, when using simulated EEG data (Grova et al. 2006),

simulated MEG data (Lina et al. 2012; Chowdhury et al.

2013), when comparing EEG/MEG sources to fMRI BOLD

responses to epileptic discharges (Grova et al. 2008; Heers

et al. 2014) and when comparing EEG/MEG sources to in-

tracranial EEG findings (Heers et al. 2015). When applied to

EEG or MEG data, MEM proved to be more accurate in

recovering the source spatial extent, than MNE, LORETA

and their variants within the hierarchical Bayesian frame-

work (Friston et al. 2008). Therefore, the purpose of this

study is to assess whether symmetrical fusion of EEG and

MEG data within the MEM framework increases the spatial

accuracy of the localization, by yielding better recovery of

the spatial extent and propagation patterns of the underlying

generators of epileptic discharges.

Methods and Materials

EEG–MEG Inverse Problem Using Distributed

Sources

The EEG–MEG inverse solution presented in this study

uses a distributed source model where a large number of

dipolar sources are distributed along the cortical surface.

Considering the anatomical constraint that the orientation

of each dipole is fixed perpendicular to the local cortical

surface (Dale and Sereno 1993), the linear relationship

between the source amplitude and the data is given by:

M ¼ GJþ E ð1Þ

where M is the (q 9 s) signal matrix acquired on q EEG or

MEG channels at s time samples. E models an additive
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measurement noise ((q 9 s) matrix). J is a (p 9 s) un-

known matrix of the current intensity of the p dipolar

sources along the tessellated cortical surface. G is the

(q 9 p) lead field matrix obtained by solving the forward

problem i.e., by estimating the contribution of each unit

dipolar source on the sensors (Hallez et al. 2007).

Maximum Entropy on the Mean (MEM)

Framework

To regularize the ill-posed inverse problem, the MEM

framework incorporates prior information on J in the form

of a reference distribution dmðjÞ. This reference distribution
is a realistic spatial model that assumes brain activity to be

organized into K (K � p) cortical parcels showing ho-

mogenous activation states. This type of spatial clustering

into K parcels (Fig. 1a) was obtained using a data driven

parcellization (DDP) technique (Lapalme et al. 2006). To

do so, first a projection method, namely the Multivariate

Source Pre-localization (MSP) (Mattout et al. 2005) was

applied to estimate a probability-like coefficient (MSP

score) between 0 and 1 for each dipolar source on the

cortical mesh, characterizing its contribution to the data.

Then, using a region growing algorithm starting from the

local optima of the MSP map, a parcellization of the full

cortical surface into K non-overlapping parcels was esti-

mated (see (Chowdhury et al. 2013) for further details).

Starting from this DDP, the reference distribution was

modelled as follows:

dmðjÞ ¼
YK

k¼1

ð1� akÞdðjkÞ þ akNðlk;RkÞðjkÞ½ �dj ð2Þ

Each cortical parcel k, assumed to be independent from

the others, is characterized by an activation state Sk, de-

scribing if the parcel is active ðSk ¼ 1Þ or not ðSk ¼ 0Þ.
ak ¼ ProbðSk ¼ 1Þ is the probability of the kth parcel to be

active, which was initialized as the median of the MSP

scores of the dipoles within the corresponding parcel.

When the parcel is active ðSk ¼ 1Þ, the dipole intensities

within the kth parcel are modeled using a Gaussian distri-

bution Nðlk;RkÞ where lk and Rk represent respectively

the mean and the covariance of the pk dipoles within the kth

parcel. When the parcel is inactive ðSk ¼ 0Þ, the dipole

intensities are modeled using a Dirac distribution d, thus
allowing to ‘‘shut down’’ the corresponding parcel.

Within the MEM framework, we consider the amplitude

of the sources J to be estimated as a multivariate random

variable described by a probability distribution

dpðjÞ ¼ f ðjÞdmðjÞ, where f is a m-density of dp. Given the

prior information on J in the form of reference distribution

dm, the relative m-entropy (SmðdpÞ) measures the amount of

information brought by the data, with respect to the ref-

erence distribution dmðjÞ (Amblard et al. 2004). Defining

CM as the set of probability measures on J that explains the

data, M ¼
R
Gjf ðjÞdmðjÞ, on average (see Fig. 1b), the

MEM solution consists in selecting dp̂ that maximizes the

m-entropy and is the closest distribution to the reference

distribution dm:

-e
nt
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p y

of

Reference distribution 
expressing   
knowledge on J

 - Set of all distributions explaining the data M 
on average

ν

νν

ν

ν
ν

 State variable ( = 0 or 1) associated 

with the activation of the k     th  parcel

Dirac distribution
Inactive parcel (    = 0)

Gaussian distribution
Active parcel ( = 1)

The spatial clustering leads to parcelling of the whole cortical 
surface into K cortical parcels. 

ν

(a) (b)

Fig. 1 Maximum entropy on the mean (MEM) framework. a MEM

initialization of the reference distribution dm: spatial clustering model

that assumes brain activity to be organized into K cortical parcels

showing homogenous activation state. This type of spatial clustering

is obtained using data driven parcellization technique. After the

definition of the state variable of the parcel, this dm will be used to

regularize the inverse problem. b MEM regularization algorithm: CM

represents the set of all the probability densities dp that satisfy the

data goodness of fit. Given the prior information on J in the form of

reference distribution dm, the relative m-entropy (SmðdpÞ) measures the

amount of information brought by the data M, with respect to the

reference distribution dmðjÞ
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dp̂ ¼ arg max
dp2CM

SmðdpÞ ð3Þ

under the constraints:M�GEdp½J� ¼ 0 and
R
dpðjÞ ¼ 1,

where Edp½J� ¼
R
jdpðjÞ. The MEM estimate of the source

intensities Ĵ is then found to be the expected value of the

distribution dp̂:

Ĵ ¼ Edp̂½J� ð4Þ

Such a regularization framework allows estimating the

MEM solution through the optimization of a convex

function within a q dimensional space, iteratively for each

time sample. During the MEM optimization process, a

noise covariance model is considered which is estimated as

a diagonal matrix with a different value for each channel;

thus taking into account the noise levels of each individual

channel. For details on the MEM formulation, please refer

to (Chowdhury et al. 2013).

In the present study, we will consider the coherent-MEM

(cMEM) implementation, as described in (Chowdhury et al.

2013). In cMEM, additional constraint of local spatial

smoothness in each parcel was introduced using diffusion-

based spatial priors (Friston et al. 2008) in the initialization of

the source covariance of every parcel (Rk). The mean inten-

sity of every parcel (lk) was initialized to zero. The spatial

neighborhood order considered during the region growing

procedure (cluster scale) has been fixed to a scale of 4, leading

to approximately K = 200 parcels of size&2.5 cm2.

Multimodal EEG–MEG Fusion Within the MEM

Framework

The proposed EEG–MEG fusion within MEM framework

consists of a 3-step fusion process, summarized in Fig. 2:

Step 1 Normalization and concatenation of the data and

lead field matrices from the two modalities. In order to inte-

grate the two modalities, it is important to scale them to a

common basis since they have different units and orders of

magnitude. To do so,we applied a globalmean signal to noise

ratio (SNR) transformation of the data and the lead field, as

described in (Fuchs et al. 1998) and (Ding and Yuan 2013).

This SNR transformation consisted in estimating normalized

dimensionless measures of EEG and MEG, using the mean

standard deviation of somebaseline data. Baseline data (EEEG

and EMEG) consisted of real EEG and MEG background

segments with the same duration (s) as the data of interest

M and exhibiting no epileptic discharges.

r�ðiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps

t¼1

E�ði; tÞ � �E�ðiÞð Þ2

s� 1

vuuut
with

�E�ðiÞ ¼
1

s

Xs

t¼1

E�ði; tÞ

ð5Þ

where * refers to EEG or MEG, i is the index of the EEG

or MEG channels, and t is the index of the s time samples.

The mean standard deviation of the baseline over all

sensors was then estimated as follows:

�r� ¼

Pq

i¼1

ðr�ðiÞÞ

q�
ð6Þ

where q� is the number of EEG or MEG channels. The

SNR transformation consisted in scaling the data and lead

field matrices as follows:

Ms
� ¼ M�=�r� ð7Þ

Gs
� ¼ G�=�r� ð8Þ

Based on the scaled data and lead field matrices, the

EEG-MEG fusion could be formalized using the following

concatenation along the rows of the matrices (Fuchs et al.

1998; Henson et al. 2009; Ding and Yuan 2013):

Ms
EEG

Ms
MEG

� �
¼ Gs

EEG

Gs
MEG

� �
Jþ Es

EEG

Es
MEG

� �
ð9Þ

where (Es
EEG and Es

MEG) refer to the scaled noise matrices.

The symmetrical fusion of EEG and MEG will be further

denoted by MEEG.

Step 2 Parcellization of the cortical surface using the

fusion of MSP scores (MSPMEEG). An originality of the

MEM framework is to incorporate the complementary in-

formation provided by EEG and MEG through the refer-

ence distribution dm. To do so, MSP scores were first

computed from each modality separately (MSPEEG and

MSPMEG), to assign for each modality a coefficient of

activation of the sources. MSP was actually applied on a

singular value decomposition of the scaled data:

Ms
� ¼ U�Y�V

T
� where � ¼ EEG or MEG ð10Þ

where U� is an orthogonal q 9 q matrix in which the lth

column vector is the sensor signature of the lth component.

V� is an orthogonal s 9 s matrix, VT
� denotes the transpose

of V�. Y� is an q 9 s matrix whose diagonal contains the

singular values of Ms
�. With a selection of l functionally

informed vectors U�, MSP scores were quantified by pro-

jecting the normalized lead field G� onto the normalized

data U� (normalization by the norm of each column).

MSP� ¼ diag Gs
�
T
U�U

T

�G
s
�

� �
; where �¼EEGorMEG

ð11Þ

With such a projection MSPEEG or MSPMEG scores

estimated a probability-like coefficient assessing the con-

tribution of each dipolar source to the corresponding EEG

and MEG data. A second level of EEG/MEG fusion was
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then introduced, using a logical OR operation (_) on

MSPEEG and MSPMEG scores, in order to taken into ac-

count the contribution of the dipolar sources either to EEG

or MEG or both data.

MSPMEEG ¼ MSPEEG _MSPMEG

¼ MSPEEG þMSPMEG � ðMSPEEG

�MSPMEGÞ ð12Þ

where � denotes the Schur (Hadamard) product of the two

matrices leading to element-wise multiplication of their

elements. DDP was then applied using these fused MSP

scores (MSPMEEG) in order to obtain parcellization of the

full cortical surface driven by information provided by

MEEG fusion data.

Step 3 Initialization of the probability of activation of

each parcel ak using MSPMEEG. Given the parcellization

obtained in Step 2, we then considered a 3rd level of the

EEG/MEG fusion by using the median of the fused MSP

scores (MSPMEEG) within the kth parcel to initialize ak i.e.,
the probability of each parcel to be active (cf. ‘‘Maximum

entropy on the mean (MEM) framework’’ section, Eq. 2).

This three-level fusion scheme was proposed to inte-

grate the complementary information provided by both

modalities within the MEM framework. Then starting from

the initialized reference model dm estimated from fused

MEEG data, MEM regularization was used to find a so-

lution from SNR-transformed concatenated MEEG data, as

illustrated in Fig. 2.

Minimum Norm Estimate and Other Variants

with L-Curve Method

In the present study, we will compare the performance of

cMEM with MNE method and two noise-normalized

variants of MNE—dynamic statistical parametric mapping

(dSPM) (Dale et al. 2000) and standardized low-resolution

electromagnetic tomography (sLORETA) (Pascual-Marqui

2002).

(a) MNE: With the assumption that all sources are in-

dependent and have same energy, MNE solution (Ĵmne)

provides the minimum energy of the current distribution J

(Dale and Sereno 1993; Hämäläinen and Ilmoniemi 1994).

The L-curve method (Hansen 2000) was used to estimate

the regularization hyper-parameter (k), allowing the best

balance between data fit ( M�GJk k2) and the a priori

constraint ( Jk k2), within the following optimization

scheme:

Ĵmne ¼ argmin
J

M�GJk k2þk Jk k2
� �

¼ ~G
T
Rd

~Gþ kRs

� ��1
~G
T
Rd

~M ¼ ~WMNE
~M

ð13Þ

where, ~M ¼ R�1=2
d M and ~G ¼ R�1=2

d G are the spatially

whitened data and gain matrices, respectively. ~WMNE is the

classical MNE inverse operator with Rs as the identity

source covariance matrix and Rd as the diagonal noise

covariance matrix of the whitened data resulting in an

identity matrix. In order to evaluate EEG/MEG fusion

using MNE, data were normalized as in Eqs. (7) and (8),

spatially pre-whitened and concatenated as in Eq. (9), and

MNE was then directly applied to concatenated matrices.

Both dSPM and sLORETA are derived from ~WMNE by

normalizing the rows of the inverse operator.

(b) dSPM (Dale et al. 2000): The estimated current at

each source location is divided by an estimate of the noise

at that location, which can be obtained by applying ~WMNE

to the signal covariance matrix as follows:

               Logical 
                 OR 

EEG data

MEG data

     MSP Reference
distribution
initialization

   
   

   
M

E
M

 
   

 r
eg

ul
ar

iz
at

io
n

     MSP

         MEM 
       solution

EEG

MEG

MEEG

C    for MEEG 

Spatial
Clustering

MSP EEG

MSPMEG distribution

distribution

MEG

EEG

MSPMEEG distribution
MEEG

ν

ν

       EEG data

       MEG dataSNR

SNR

Transformation

Transformation

( )MEEG EEG MEG MEGMSP MSP MSP= + −MSP EEGMSP

Step 1 Step 2 Step 3

o

Fig. 2 Multimodal EEG–MEG data fusion within the MEM frame-

work. Step 1: normalization and concatenation of the data and lead

field matrices from the two modalities. Step 2: parcellization of the

cortical surface using the fusion of MSP scores (MSPMEEG). Step 3:

initialization of the probability of activation of each parcel using

MSPMEEG and MEM regularization
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~WdSPM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagð ~WMNERd

~W
T

MNEÞ
q� �

~WMNE

JdSPM ¼ ~WdSPMM

ð14Þ

(c) sLORETA (Pascual-Marqui 2002): consists in a

similar approach, but the normalization is obtained from

the variance of the estimated sources, instead of using just

the variance due to the noise component.

~WsLORETA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagð ~WMNEðGGT þ RdÞ ~W

T

MNEÞ
q� �

~WMNE

JsLORETA ¼ ~WsLORETAM

ð15Þ

whereas MNE localization is biased towards more super-

ficial sources, dSPM and sLORETA actually implicitly

perform some ‘‘depth weighting’’ because of the noise

normalization—sources with generally higher amplitude

will be normalized by higher noise levels or source vari-

ances (Hauk et al. 2011).

Evaluation Procedure

The proposed MEM fusion approach was evaluated in a

well-controlled environment using realistic simulations of

EEG and MEG inter-ictal epileptic spikes. The geometry

and the anatomy of our simulation environment were

derived from a real patient’s dataset.

Realistic Simulations

Geometry dataset Simultaneous EEG/MEG acquisition

was performed on a patient with focal epilepsy using a 275

channel CTF-MEG system (272 active sensors) and a 54

channel EEG-cap (Easy-cap, Herrsching, Germany) at a

sampling rate of 1200 Hz. The 54 EEG electrodes were

placed according to the 10–20 system with additional

electrodes according to the 10–10 system especially cov-

ering the inferior temporal and parietal regions (FT9, P9,

FT10, and P10). Written informed consent for this study

was obtained from the patient. EEG and MEG data con-

taining no traces of IEDs were recorded from this patient,

which was used in the simulation model to create realistic

noise.

Anatomy dataset A high resolution T1-weighted anato-

mical MRI of the same patient was used to segment the

surfaces of the brain to obtain a realistic head model. The

distributed source model was obtained by segmenting the

grey-white matter interface from the MRI using Brain-

VISA-4.2.1 software1 (Mangin et al. 1995). The source

model consisted in a realistic 3D mesh of the cortical

surface (8000 vertices, 4 mm resolution). Using the

OpenMEEG (Gramfort et al. 2011) implementation in

Brainstorm software (Tadel et al. 2011), we generated a

3-layer EEG boundary element method (BEM) model

consisting of the inner skull, outer skull and the scalp

(conductivity values of 0.33:0.0165:0.33 S/m) and a

1-layer MEG BEM model consisting of the inner skull

(conductivity value of 0.33 S/m).

Static Simulation Model These simulations were similar

to the ones considered in (Chowdhury et al. 2013). 100

simulation configurations involving one spatially extended

source exhibiting spiking activity were randomly generated

on the cortical mesh. The position of each source was se-

lected by choosing a seed point randomly on the cortical

surface mesh. The spatial extent of each source was ob-

tained by region growing around the seed following the

cortical surface using spatial neighborhood order se = 3

(&4 cm2) and se = 4 (&12 cm2). The time course of the

simulated sources was the time course of an epileptic spike

modeled with three Gamma functions, although only signal

around the main peak of the spike was analyzed. Let us

refer Jth as the simulated theoretical current distribution

obtained from the spatial distribution of the simulated

sources together with the corresponding time course. EEG

and MEG data were then simulated by applying the for-

ward model GEEG and GMEG to the simulated current

density, respectively. Realistic physiological noise was

extracted from a 3 min segment of EEG/MEG background

activity acquired on the selected patient and added to the

simulated data. The amplitude of the background activity

trials was scaled to ensure a signal-to-background ratio of 1

(0 dB) for most superficial sources when using reference

source amplitude of 9.5 nA m for each dipolar source

along a patch of 6 cm2. Consequently, the SNR of the re-

alistic simulated data varied depending upon the location

and extent of the underlying sources. In this set of 100

simulations, the SNR ranged approximately between 1 and

12. Note that as opposed to our previous study (Chowdhury

et al. 2013), here only 1 trial of background EEG/MEG

data was used in the simulations, thus mimicking the oc-

currence of single non-averaged spikes.

We considered the following indicators to characterize

the simulations:

1. Eccentricity—Eccentricity is defined as the mean

Euclidean distance between all vertices of the simulated

patch and the center of the head model.2 Most superficial

sources had an eccentricity value higher than 80 mm.

1 http://www.brainvisa.info.

2 The center of head was defined with the fiducial points marked

during EEG/MEG acquisition. It is the point which is equidistant to

the left and right peri-auricular points, at the same height of the

location of the nasion.
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Sources with eccentricity ranging between 60 and 80 mm

corresponded mainly to mesio-temporal sources and the

ones with eccentricity lower than 60 mm corresponded to

the sub-cortical sources.

2. Cancellation index—This index estimates the amount

of overlap between signal patterns of individual sources

within an active patch leading to signal cancellation (no-

tably caused by dipolar sources oriented in opposite di-

rections on both walls of a sulcus), as proposed by (Ahlfors

et al. 2009).

Ic ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
l2N

Pq

i¼1

Gði; lÞ
� �2

s

Pq

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l2N

G2ði; lÞ
r ð16Þ

where i is the index of summation over all q sensors, l is the

index of summation over all elements in the set of N active

dipoles located within the simulated patch. G(i,l) is the

value of the ith row and lth column of the lead field matrix

G. This index ranges between 0 and 1, Ic = 1 indicates full

cancellation and Ic = 0 indicates no cancellation effect.

Spatio-temporal Simulation Model Hundred simulation

configurations were randomly generated on the cortical

mesh, involving activation of two spatially extended

sources following the same time course but presenting a

15 ms delay between them. These simulations were pro-

posed to mimic axonal propagation between two distant

spike generators, with significant overlap between the

time courses of the two generators. The sources were

spatially separated by a fixed geodesic distance of 73 mm

(i.e., a spatial neighborhood order of 10) and both sources

were located in the same hemisphere. The velocity of this

simulation model mimics the velocity of real propagating

spikes (varying from 1 to 40 m/s) (Emerson et al. 1995).

This type of propagation is concordant with literature and

can express a remote activation of a neural network

connected to an active population by a fiber tract

(Baumgartner et al. 1995; Huppertz et al. 2001). For this

set of 100 simulations, the spatial neighborhood order was

se = 3 consisting of sources with spatial extent ranging

from 2 to 6 cm2. One trial of real background was added

on noise-free simulated data. The amplitude of the

background activity trials was scaled to ensure a larger

signal-to-background ratio (3&4.7 dB) than the static

simulations as the spatio-temporal simulations involve

more complex source patterns to recover. Consequently

the SNR for this set of propagating spikes ranged ap-

proximately between 2 and 9.

Impact of the Number of EEG Electrodes Considered

During MEEG Fusion The static simulation model was

considered to generate EEG and MEG data, while the

impact of three different EEG configurations derived from

the 10–10 electrode placement system was evaluated: A

complete EEG setup involving 54 EEG electrodes (see

Fig. 7a EEG topography for the 54 EEG electrodes set-up),

and two down-sampled montages involving respectively 32

and 20 EEG electrodes (see Fig. 9a EEG topographies for

the two down sampled EEG electrodes set-up). Note that

the 20 EEG electrodes set-up was similar to the conven-

tional 10-20 EEG system used in most clinical centers.

Impact of Model-Error We are aware that the use of same

head model during forward and inverse problem can lead to

the best case scenario in any simulation study. In order to

mimic real data scenario, one can introduce noise in the

measurement through mis-modelling in simulations (Wang

and Ren 2013). We evaluated the robustness of cMEM

method by varying the tissue conductivities in the EEG

forward model during EEG and MEEG source localization.

The correct modeling of head tissue conductivities, espe-

cially the conductivity ratio of the skull relative to brain

and scalp is an important parameter that determines the

accuracy of the forward and inverse solution especially in

EEG. In the literature (Oostendorp and Delbeke 1999; Lai

et al. 2005; Zhang et al. 2006; Lew et al. 2009), similar

conductivity values for the brain and scalp (ranging from

0.12 to 0.48 S/m) have been reported. However, estimation

of the skull conductivity has been reported to be more

inconsistent with values ranging between 0.006 and 0.080

S/m (Hoekema et al. 2003). We extrapolated from past

studies (Oostendorp and Delbeke 1999; Malmivuo and

Suihko 2001; Lai et al. 2005; Zhang et al. 2006; Huiskamp

2008; Vallaghé and Clerc 2009; Fangmin Chen 2010) a

range of brain-to-skull conductivity ratio (that will be de-

noted Rbs) to be tested: Rbs ranging between 1:15 and 1:25

was found acceptable for the adult brain. For this test, we

performed two sets of simulations. In the first set, we

simulated EEG signals using different Rbs (randomized

between 1:15 and 1:25 following a normal distribution with

mean 1:20 and standard deviation of 1:3.3) of the EEG

head model for 50 randomly placed sources and localized

these sources using EEG head model at one Rbs (1:20). In

the second set, we considered the same Rbs of 1:20 for both

simulation and localization over the same 50 sources as the

first set. Then we compared the localization accuracy

(AUC) of cMEM on the two set of simulations for EEG

and MEEG data.

Validation Metrics As the Ground Truth was fully con-

trolled using simulated data, we considered the following

validation metrics to evaluate the performances of MNE

and cMEM source localization methods when applied on

EEG, MEG or MEEG data. Some of the metrics have been
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described in further details in our previous studies,

(Chowdhury et al. 2013) and (Grova et al. 2006).

1. Area Under the Receiver Operating Characteristic

(ROC) curve, AUC—was used to assess the detection

ability of the localization methods. The AUC index looks

at the normalized energy of each source at a specific time

sample. In case of static simulations, the energy at the main

peak (s0) of the simulated spike was considered. For the

2-source spatio-temporal simulations, the AUC index was

estimated separately at the peak of each source spike while

removing the contribution of the vertices of the second

source. Since the spatio-temporal simulation involved ac-

tivation of two sources separated by a temporal delay of

15 ms (with some temporal overlap), it was possible to

estimate AUC for each source separately at the time of

their peak.

This detection accuracy index (between 0 and 1) inte-

grates sensitivity and specificity of the source localization

methods to reconstruct the spatial extent of the source

against the Ground Truth, by varying a detection threshold

between 0 and the maximum of reconstructed current

density. More details on AUC estimation can be found in

Appendix. An AUC value greater than 0.8 was considered

good detection accuracy.

2. Spatial dispersion (SD)—proposed in (Molins et al.

2008), measures both the spatial spread of the estimated

source distribution around the true source location and the

localization error between the estimated source distribution

and the true source location. Let us denote by Ĵ the result of

the source localization method to be evaluated. Then,

Ĵði; s0Þ represents the amplitude of the current density

distribution estimated for a dipolar source i on the cortical

surface at the main peak of IED (s0). To measure the SD of

this solution, we weight the amplitude of all the p cortical

sources by their minimum distances from the simulated

patch using the following formula:

SDðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pp

i¼1

minj2HðDði; jÞÞĴ2ði; s0Þ
	 


Pp

i¼1

Ĵ2ði; s0Þ

vuuuuut ð17Þ

where minj2HðDði; jÞÞ provides the minimum Euclidean

distance between the source i and the sources j in the

simulated patch. H denotes the set of indices of the dipoles

in the simulated patch and this minimum distance is zero

when the source i belongs to H. SD values close to zero

means there is no active source outside the simulated patch.

Large SD values could be caused either by the presence of

sources far away from the true source that are contributing

to the estimated solution (spurious sources) or by the

spatial spread of the reconstructed source around the true

extent of the simulated patch.

3. Shape error (SE)—In order to assess the accuracy of

the reconstructed time courses within the simulated patch,

we proposed the metric SE as the root mean square of the

difference between the normalized theoretical source dis-

tribution (Jth) and the normalized estimated source dis-

tribution (Ĵ). Therefore, SE for a simulated source was

estimated as follows:

Let us consider Jthði; tÞ and Ĵði; tÞ, where i 2 H and t is

the time parameter.

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

s

Xs

t

mðJthðtÞÞ
maxt mðJthðtÞj jð Þ �

mðĴðtÞÞ
maxt mðĴðtÞÞ

�� ��	 

� �2

s

ð18Þ

with mðJthðtÞÞ ¼ 1
H

P
i2H

Jthnði; tÞ and

mðĴðtÞÞ ¼ 1
H

P
i2H

Ĵnði; tÞ. The subscript ‘‘n’’ in Jthn or Ĵn

denotes the normalization of the matrix Ĵ so that its values

are between -1 and 1, for example:Jnði; tÞ ¼ Jði;tÞj j
maxj Jði;tÞj jð Þ.

maxt is the maximum over t time samples.

Application of MEM Fusion on Clinical Data

We evaluated our proposed MEEG fusion method on

clinical data acquired from two patients with intractable

focal epilepsy. We selected IEDs that occurred simulta-

neously in both EEG and MEG signals, while making sure

that the individual IED on either EEG or MEG had high

SNR (at least SNR of 1). SNR was estimated as the ratio

between the maximum signal measured at the peak of the

spike (over all channels) and the standard deviation of

some baseline data (2 s of data showing normal traces with

no epileptic activity). We also carefully checked that the

selected IEDs exhibited similar topographic maps.

Patient 1 is suffering from a cryptogenic focal epilepsy

with a left fronto-temporal epileptic focus (defined by EEG

telemetry and seizure semiology). In Patient 2 a Focal

Cortical Dysplasia (FCD) was diagnosed based on the MRI

in the left frontal opercular region. These patients par-

ticipated as research subjects of the project entitled: ‘‘Ap-

plication of magnetoencephalography in the assessment of

the epileptic focus’’ (Dr. E. Kobayashi being the principal

investigator for this project). Written informed consent for

this study was obtained from the patients.

Analysis of the IEDs involved:

1. Data acquisition—simultaneous EEG/MEG record-

ings were acquired using a 275 channel CTF-MEG-system

using a 54 channel EEG-cap. EEG electrodes were placed

according to the 10/20 system, with additional electrodes

according to the 10/10 system covering the inferior tem-

poral and parietal regions. EEG/MEG signals were

recorded with patients at rest in a supine position. No filters

were applied to the MEG recording and a hardware high
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pass filter of 0.03 Hz was used for the EEG. The sampling

rate was 2400 Hz.

2. Pre-processing of EEG/MEG data—standard CTF

software was used to process the data offline. Data were

down-sampled to 600 Hz and DC-offset was removed.

Filtering included 0.3–70 Hz bandpass filter (butterworth,

4th order) and 60 Hz notch filter (and its harmonics). Any

bad channels were removed.

3. Visual analysis and marking of EEG/MEG data—

IEDs were visually marked by a clinical neurophysiologist

(MH). Only simultaneous EEG and MEG spikes were

analyzed.

4. Pre-processing of image data—preprocessing of MRI

data, co-registration and forward model estimation were

done similarly to the simulated data in ‘‘Realistic simula-

tions’’ section Anatomy dataset.

5. Solving the inverse problem—we performed single

spike localization of EEG, MEG and MEEG data using

cMEM.

Single spike source localization was performed within a

time window of 700 ms around the peak of the marked

spike (200 ms before and 500 ms after). For each single

spike, we identified (based on the SNR level), the first

significant MEG peak and the first significant EEG peak,

since these two peaks were not always synchronous.

Results

Performance of Fusion Approach on Static

Simulation

We observed an overall good detection accuracy for

cMEM on all modalities (median AUC[0.8) for sources

with spatial extents se = 3 and 4 (Fig. 3a, b). Similarly to

our previous findings in (Grova et al. 2006) and (Chowd-

hury et al. 2013), MNE was less sensitive than cMEM to

the spatial extent of the sources, showing overall lower

AUC values. For the first time, we also clearly demon-

strated that cMEM performed better than dSPM and

sLORETA when recovering the spatial extent of the un-

derlying generators. Notice the better performance for all

the methods when using MEEG, as opposed to EEG or

MEG alone. The validation metric SD exhibited clearly

lower values for cMEM when compared to MNE, dSPM

and sLORETA (Fig. 4), suggesting less spatial spread

around the true source and/or less distant spurious sources.

From Fig. 4a and b, we observed that for all the methods

the median of SD distribution for MEG was larger than for

EEG and MEEG suggesting the presence of more spurious

sources mis-localized outside the active region for MEG.

The shape of the distribution for SD values when using

MEG had long tails towards larger values. We checked that

this was caused by misleading reconstructions for

simulated mesial or deep generators. Interestingly, for all

the methods, SD values for MEEG were the lowest indi-

cating a more accurate estimation of the spatial extent of

the generators and less spurious sources outside the

simulated region, when compared to EEG and MEG

localizations.

The behavior of AUC as a function of the eccentricity of

the simulated sources is presented in Fig. 5. As expected,

for all the three modalities, we noticed better localization

for superficial sources (eccentricity [80 mm, AUC [0.8

for cMEM) than for mesial and deeper sources (eccentricity

\60 mm) for MNE and cMEM. EEG performed slightly

better than MEG for most mesial sources (60 mm\ ec-

centricity\ 80 mm). However, dSPM and sLORETA

provided similar localization accuracy for sources at all

eccentricities; thus confirming that these methods are in-

deed less biased towards superficial sources. MEEG im-

proved the detection accuracy of the methods for sources at

all eccentricities. Overall, cMEM on MEEG data proved to

be the most accurate (AUC [0.8) method showing good

spatial accuracy for most sources, mainly superficial but

also for some deeper ones. We also checked that the largest

SD values in Fig. 4a and b were mainly due to mis-local-

ized deep sources with low eccentricity (results not shown).

As a particular example, Fig. 6 illustrates the ability of

cMEM, MNE, dSPM, and sLORETA to localize a right

superior frontal simulated source using EEG, MEG and

MEEG data. Source localization results are presented over

the inflated cortical surface, using Brainstorm software

(Tadel et al. 2011). AUC and SD values were in agreement

with visual inspection. We observed the largest AUC val-

ues (0.97) and smallest SD value (1.9) for cMEM when

localizing MEEG data (Fig. 6b). This result along with the

findings from Figs. 3 and 4 suggests that MEEG localiza-

tion using cMEM was the most accurate method in de-

tecting the spatial extent of the source. SD for MNE was

very large, especially for EEG and MEG localizations

whereas for dSPM and sLORETA, SD was very large for

all the three modalities. This corroborates with the visual

analysis, showing an overestimation of the spatial extent

and the presence of several spurious sources located far

from the active region (in fronto-mesial and temporal re-

gions notably), whereas the maximum of reconstructed

activity was indeed accurately estimated. Overall, for all

the methods, we noticed an improvement in spatial accu-

racy when localizing MEEG data, when compared to

monomodal EEG and MEG localizations.

Figure 7 illustrates the localization of a left deep

cingulate simulated source with cMEM, MNE, dSPM,

and sLORETA when considering EEG, MEG and MEEG

data. Overall, for all the methods, AUC and SD values

showed that MEEG improved the localization, especially
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since fusion lead to higher AUC values and lower SD

values than when considering MEG and EEG alone.

MEEG localization using cMEM involved sources well

localized on the left hemisphere, but with larger ampli-

tudes towards the more superficial and fronto-polar

vicinity of the generator. As expected, due to the implicit

depth-weighting behavior of dSPM and sLORETA, these

methods were able to recover the deeper aspects of the

source (anterior cingulate sulcus) more accurately than

cMEM or MNE. However, despite the fact that the main
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              (b) AUC for source spatial extent se = 4

Fig. 3 Distribution of AUC

results over 100 simulations of

randomly placed single static

source for source localization

methods, MNE, cMEM, dSPM

and sLORETA on the three

modalities (EEG, MEG and

MEEG). a Boxplot

representation of AUC values

for simulated sources with

spatial extent se = 3, b Boxplot

representation of AUC values

for simulated sources with

spatial extent se = 4.

(Horizontal line, AUC = 0.8).

Color code for each modality:

EEG in green, MEG in blue and

MEEG in red (Color figure

online)
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generator was found, both sLORETA and dSPM pre-

sented also spurious sources in the deeper regions of

both hemispheres (including posterior cingulate gyrus

and thalamus), resulting in misleading evaluation (i.e.,

high SD values and low AUC values). We noticed these

spurious deep sources even in the previous example in-

volving just a superficial source (Fig. 6d, e).

Impact of the Number of EEG Electrodes

Considered During MEEG Fusion

Figure 8a presents the distribution of AUC values obtained

on 100 static simulations, when decreasing the number of

EEG electrodes. As expected, we observed a decrease of

AUC for EEG source localization when reducing the

                 (a) SD for source spatial extent se = 3
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Fig. 4 Distribution of SD

results over 100 simulations of

randomly placed single static

source for source localization

methods, MNE, cMEM, dSPM

and sLORETA on the three

modalities (EEG, MEG and

MEEG). a Boxplot

representation of SD values (in

mm) for simulated sources with

spatial extent se = 3. b Boxplot

representation of SD values (in

mm) for simulated sources with

spatial extent se = 4. Color

code for each modality: EEG in

green, MEG in blue and MEEG

in red (Color figure online)
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number of EEG electrodes, for both MNE and cMEM

methods (in green). However, the accuracy of MEEG lo-

calization (in red) using cMEM was quite robust to the

number of EEG electrodes involved, reaching excellent

performances (median AUC[0.8) even when only 20 EEG

electrodes were added to the 272 MEG sensors. Figure 8b

presents the distribution of SD values obtained on 100

static simulations, when decreasing the number of EEG

electrodes. cMEM on MEEG showed the smallest SD

values suggesting a more accurate sensitivity to the spatial

extent, whatever was the number of EEG electrodes con-

sidered. These results are suggesting that the addition of

only 20 EEG electrodes to the 272 MEG sensors will be

sufficient to bring relevant information in the fusion, thus

providing localization with good spatial accuracy.

Figure 9 illustrates cMEM localization for the left deep

cingulate source presented in Fig. 7, when considering two

subsampled EEG electrodes configurations. Localization of

this deep source was difficult as none of the configurations

were able to recover accurately the deeper aspects of the

source. The SD values showed that MEEG improved the

localization, especially since any fusion configuration lead

to lower SD values than EEG for the three EEG electrodes

configurations (see Figs. 7b, 9). For EEG source
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Fig. 5 AUC as a function of eccentricity of the sources for 100

simulations involving randomly placed single static source at

different locations for source localization methods MNE, cMEM,

dSPM and sLORETA on the three modalities (EEG, MEG and

MEEG). a AUC values obtained for MNE, b for cMEM, c for dSPM,

and d for sLORETA when localizing simulated sources with spatial

extent se = 3. Solid lines are the moving average of the AUC values

for the respective methods. Horizontal line, AUC = 0.8, vertical

lines: eccentricity = 60 and 80 mm. Color code for each modalities:

EEG in green, MEG in blue and MEEG in red (Color figure online)
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localization, the maximum amplitude source was localized

on the wrong hemisphere for all three EEG configurations.

However, from Fig. 7b for the 54 EEG electrodes con-

figuration, EEG localization improved as it was indeed able

to find a strong source within the simulated patch along

with the strong source on the opposite hemisphere. MEEG

localization for the three EEG configurations involved

more accurately the deeper aspects of this anterior cingu-

late source, with sources well localized on the left hemi-

sphere, but with larger amplitudes towards the more

superficial and fronto-polar vicinity of the generator. Note

that some spurious sources in the left frontal neocortex

were also localized.

Performance of Fusion on Spatio-temporal

Simulations

Figure 10 reports the distribution of AUC values obtained

for source 1 and source 2 (at their respective peak,

separated by a 15 ms delay) when using spatio-temporal

simulations of propagating epileptic spikes. For each

source, AUC distributions over 100 configurations are
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Fig. 6 Qualitative assessment for example of static simulation.

Visual analysis of source localization results together with AUC

and SD values for a single static simulated source with

area = 4.4 cm2 and eccentricity 75 mm. All source localization

results are presented as the absolute value of the current density at the

peak of the spike, normalized to its maximum activity and thresh-

olded upon the level of background activity. a Theoretical simulated

source: area and eccentricity of the cortical source; associated

simulated EEG and MEG signal and topography for all 54 EEG and

272 MEG channels respectively; Cancellation index for the simulated

source in EEG, Ice = 0.41 and in MEG, Icm = 0.71; SNR for EEG

signal, SNREEG = 6.3 and for MEG signal, SNRMEG = 2.7. b Source

localization results obtained using cMEM on EEG, MEG and MEEG

data. c Source localization results obtained using MNE on EEG, MEG

and MEEG data. d Source localization results obtained using dSPM

on EEG, MEG and MEEG data. e Source localization results obtained

using sLORETA on EEG, MEG and MEEG data
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presented for cMEM and MNE methods and each mod-

ality. We observed that for all the modalities cMEM per-

formed better than MNE in detecting the spatial extent of

the propagating sources (higher AUC median values for

both the sources when using cMEM). MEEG localization

using cMEM provided the highest AUC values for both

source 1 and source 2. EEG source localization was found

slightly less accurate for source 2 than for source 1 (lower

AUC median value). For both MEG and MEEG, similar

level of detection accuracy was found for both sources.

This could be explained by the fact that the electrical po-

tentials of the two sources will further mix because of

larger overlap of the topographies of the two sources in

EEG for the given sensor arrays, which is less the case with

the magnetic fields measured in MEG. Consequently, MEG

and the information from MEG provided in the fusion

helped to separate the two sources.

Analysis of the reconstructed time courses is shown in

Fig. 11. We observed that SE was clearly smaller for MNE

(Fig. 11a) than for cMEM (Fig. 11b) for both sources in

EEG localization. For MEG and MEEG localizations, SE

for MNE was still slightly smaller than SE for cMEM, but

we found a clear improvement on cMEM SE for MEG and

MEEG when compared to EEG. Moreover, MNE was able

  Simulated source 
   Area =  4 sq.cm
   Eccentricity = 63mm 
   Cancellation Index for EEG signal, Ic   = 0.49
   Cancellation Index for MEG signal, Ic   = 0.25
   SNR       = 2.8
   SNR        = 3.8

EEG AUC = 0.86
SD = 16

MEEG AUC = 0.87
SD = 13

(a) Ground Truth

MEG AUC = 0.57
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(d) Single spike localization obtained using dSPM method

(e) Single spike localization obtained using sLORETA method
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(b) Single spike localization obtained using cMEM method

(c) Single spike localization obtained using MNE method
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Fig. 7 Qualitative assessment for an example of static simulation.

Visual analysis of source localization results together with AUC and

SD values for a single static simulated source with area = 4 cm2 and

eccentricity 63 mm. All source localization results are presented as

the absolute value of the current density at the peak of the spike,

normalized to its maximum activity and thresholded upon the level of

background activity. a Theoretical simulated source: area and

eccentricity of the cortical source; associated EEG and MEG

topography; Cancellation index for the simulated source in EEG,

Ice = 0.49 and in MEG, Icm = 0.25; SNR for EEG signal,

SNREEG = 2.8 and for MEG signal, SNRMEG = 3.8. b Source

localization results obtained using cMEM on EEG, MEG and MEEG

data. c Source localization results obtained using MNE on EEG, MEG

and MEEG data. d Source localization results obtained using dSPM

on EEG, MEG and MEEG data. e Source localization results obtained

using sLORETA on EEG, MEG and MEEG data
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to reproduce the shape of the time course of first source

better than the second source (larger SE for source 2). This

could be explained by the fact that the SNR for source 1

was higher than source 2 since there was no mixing be-

tween the first and second source at the time of localization

of source 1. The excellent performance of MNE in re-

constructing the shape of the time course was rather ex-

pected, because MNE is a linear estimator. On the other

hand, we provided here the first evaluation of the temporal

behavior of cMEM localization. As cMEM sources

consisted in non-linear estimates for each time sample in-

dependently, it was not obvious that it would reconstruct

temporally smooth time courses. These first results are

quite encouraging, especially for MEEG estimates pro-

viding almost similar temporal accuracy as MNE.

Figure 12 presents our results for a simulated spatio-

temporal propagation from a left pre-frontal region to a left

posterior superior frontal region. MNE and cMEM were

able to localize accurately these two superficial sources,

but with different sensitivity when recovering the spatial
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Fig. 8 Evaluation of the source localization methods for three

configurations of EEG electrodes using the detection accuracy index

AUC and SD values. a Distribution of AUC values using boxplot

representation over 100 simulated sources with spatial extent se = 3

for MNE and cMEM methods applied on: (from left to right) 272

MEG sensors in blue, 54, 32, and 20 EEG channels in red and 272

MEG ? 54 EEG, 272 MEG ? 32 EEG, 272 MEG ? 20 EEG

channels in red. b Distribution of SD values using boxplot represen-

tation over 100 simulated sources with spatial extent se = 3 for MNE

and cMEM methods applied on: (from left to right) 272 MEG sensors

in blue, 54, 32, and 20 EEG channels in red and 272 MEG ? 54

EEG, 272 MEG ? 32 EEG, 272 MEG ? 20 EEG channels in red

(Color figure online)
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extents and the time courses. EEG localizations for both

methods over-estimated the spatial extent by presenting

large spatial spread around the true extent of the source

(higher SD values than for MEG and MEEG). MEG lo-

calizations slightly under-estimated the spatial extent of the

sources and also showed few distant spurious sources. This

is probably due to the fact that the cancellation effect in

MEG was very high (Icm = 0.78 for source 1 and 0.82 for

source 2) and MEG was not able to recover the radial

aspects of these generators. On the other hand, MEEG

localizations provided a better estimation of the source

spatial extent. From the visual inspection which is also in

agreement with the metrics (Source 1: AUC = 0.97,

SD = 4.7, and SE = 0.21; Source 2: AUC = 0.94,

SD = 6.4, and SE = 0.15), MEEG localization using

cMEM provided the most accurate detection of the sources

with their respective spatial extents and time courses. The

normalized mean time courses of source reconstruction for

these two sources are presented in Fig. 11c. We observed

that MNE was the most accurate in reconstructing the time

course of source 1 (in green, blue and red solid lines for

EEG, MEG and MEEG respectively). This behavior is in

agreement with the lowest SE values (SE\0.15) estimated

for source 1 when using MNE (Fig. 12). SE for source 2

using MNE and cMEM were the highest (SE [0.35) in

EEG localization, which is also evident from the shape of

the reconstructed time course in Fig. 11c. Both MNE and

cMEM were able to recover the time courses of the two

sources better in MEEG than EEG or MEG (Fig. 11c).

Note that for MEEG, cMEM provided very accurate time

course reconstructions around the peaks of source 1 and 2,

whereas the amplitude decreased faster than MNE for

lower SNR signals more distant from the peaks, illustrating

the ability of cMEM to shut down the parcel.

Robustness to Model-Error

Figure 13 presents the effect on localization accuracy when

using correct Rbs versus incorrect Rbs on EEG (black plus

signs) and MEEG (green circle) data using cMEM method.

  Simulated source 
   Area =  4 sq.cm
   Eccentricity = 63mm 
   Cancellation Index for EEG signal, Ic   = 0.49
   Cancellation Index for MEG signal, Ic   = 0.25
   SNR       = 2.8
   SNR        = 3.8

EEG AUC = 0.84
SD = 18

MEEG AUC = 0.89
SD = 13

EEG  AUC = 0.87
SD = 21

MEEG AUC = 0.85
SD = 15

(a) Ground Truth

32 EEG topography

20 EEG topography

e
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(b) Single spike localization obtained using cMEM for 20 EEG electrodes configuration

(c) Single spike localization obtained using cMEM for 32 EEG electrodes configuration

Fig. 9 Qualitative assessment to evaluate the impact of the number

of EEG electrodes using static simulation presented in Fig. 7. Visual

analysis of source localization results together with AUC and SD

values for a single static simulated source with area = 4 cm2 and

eccentricity 63 mm. a Theoretical simulated source. b Source

localization results obtained using cMEM method for 20 EEG

electrode configuration on EEG and MEEG data. c Source localiza-

tion results obtained using cMEM method for 32 EEG electrode

configuration on EEG and MEEG data
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We found that the cMEM method is robust to this mis-

modelling in the simulation protocol as the localization

accuracy when using incorrect Rbs in the EEG head model

does not differ much from results obtained when using

correct Rbs. In a recent study, (Wang and Ren 2013) tested

the effect of correct and incorrect Rbs using simulations of

EEG data when adding background noise or not. They

showed that despite using the same Rbs in the EEG head

model for simulation and localization there still exist lo-

calization errors in EEG source localization. This error was

caused by contamination of the EEG data with background

noise. This supports our simulation protocol where we

added real background noise to both EEG and MEEG data.

Application of cMEM Fusion Approach on Clinical

Data

For patient 1, we identified six left fronto-temporal spikes

fulfilling our selection criteria. Source localization was

performed on each of these single spikes and results from

all the spikes were then averaged (Supplementary Figure

S1). Fig. 14 presents one of the single spike source local-

ization results on EEG, MEG and MEEG data obtained

using cMEM. For each spike, we identified two peaks in

MEG (the first MEG peak occurring 26.7 ms before the

second MEG peak) and one in EEG (second MEG peak

was synchronous with the EEG peak). All single spike

source localizations demonstrated propagation of activity

from the left orbitofrontal region (at time point

1 = -26.7 ms, MEG peak) to the left temporal neocortex

(time point 2 = 0 ms, EEG/MEG peak) in MEEG local-

izations. In MEG localizations, we observed the left or-

bitofrontal source along with a right fronto-mesial source at

time point 1. On the other hand, EEG localizations (at time

point 2, EEG peak) found mainly a left temporo-polar

source while presenting also a right temporal source. When

averaging the localization of the six spikes (Supplementary

Figure S1), we found mainly the left orbito-frontal source

in MEG at time peak 1, a left temporal neocortical source

in EEG at time peak 2, while MEEG fusion described

nicely the propagation between these two regions, sug-

gesting the benefit of integrating EEG and MEG data using

cMEM. The clinical seizure semiology of this patient

suggested that the seizures originated from the left frontal

lobe. Left fronto-temporal IEDs were recorded in EEG and

MEG. This propagation from orbito-frontal to temporal

neocortex identified by MEEG using cMEM is quite a

plausible pattern of propagation for this type of epilepsy,

following a well-known white-matter connection pathway.

For Patient 2, we identified four left frontal spikes ful-

filling our selection criteria. Single spike localizations were

performed on these four spikes and then average of these

four source localization results were obtained. In all the

four single spike localization results (Fig. 15), we noticed

that EEG localization found a left frontopolar source,

whereas, MEG localization presented mainly two sources:

e AUC for source 1 and source 2 in the spatio-temporal simulations with s  = 3 
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Fig. 10 Evaluation of the source localization methods on the three

modalities using AUC values over 100 spatio-temporal simulation

configurations involving two randomly placed sources showing

propagation within 15 ms duration between source 1 and source 2.

Boxplot representation of AUC values for source 1 and source 2 with

spatial extent se = 3. Color code for each modalities: EEG in green,

MEG in blue and MEEG in red for the methods MNE and cMEM

(Color figure online)
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one in the left inferior frontal gyrus and another in the

inferior part of the left pre-central gyrus. However, MEEG

fusion identified the main source in the inferior part of the

left pre-central gyrus but with a slightly different spatial

distribution than MEG pre-central source. The average of

four single spikes localization (Supplementary Figure S2)

reproduced similar results as seen in each single spike,

suggesting good reproducibility. These results are rather

interesting, since MEEG identified mainly a source in the

inferior part of left pre-central gyrus, that was in perfect

overlap with the FCD of the patient, whereas sources

identified by EEG or MEG did not overlap with the ana-

tomical lesion. The clinical seizure semiology of this

patient also suggested an involvement of the inferior cen-

tral region.

Discussion

The purpose of this study was to propose and validate a

new symmetrical EEG/MEG fusion strategy using the

MEM framework. We provided an extensive evaluation of

MEEG fusion when localizing single, non-averaged,

epileptic spikes, using either realistic simulations or clin-

ical data. Our results demonstrated the robustness of MEM-

based fusion approaches to low SNR conditions of single
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Fig. 11 Evaluation of the source localization methods on the three

modalities using SE estimates over 100 spatio-temporal simulation

configurations involving two randomly placed sources showing

propagation within 15 ms duration between source 1 and source 2.

a Boxplot representation of SE values obtained for reconstruction of

source 1 and source 2 using MNE method. b Boxplot representation of

SE values obtained for reconstruction of source 1 and source 2 using

cMEM method. Color code for each modalities: EEG in green for

source 1 and black for source 2, MEG in blue for source 1 and cyan

for source 2 and MEEG in red for source 1 and magenta for source 2.

c Normalized mean time course of source reconstruction obtained for

source 1 (left plot) and source 2 (right plot) using MNE and cMEM on

EEG, MEG and MEEG data. Color code: black (solid line) for

theoretical time course, EEG in green, MEG in blue, MEEG in red,

solid line for MNE and dashed line for cMEM (Color figure online)
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spike localization and when recovering spatio-temporal

propagations of epileptic discharges.

Why Applying Fusion to Single Spike Localization?

For EEG and MEG to detect IEDs from background ac-

tivity, the underlying generators should be spatially ex-

tended (Mikuni et al. 1997; Tao et al. 2007; Huiskamp

et al. 2010). Although, single dipole fitting is currently the

most common and clinically accepted method for the

purpose of epileptic focus localization (Bast et al. 2004),

distributed source models are more suitable for localizing

the spatially extended generators of IED (Tanaka and

Stufflebeam 2014). When localizing IEDs, several epileptic

spikes showing a similar morphology and field maps are

usually averaged to improve the SNR and then source

analysis is performed on the averaged spikes (Bast et al.

2004; Hara et al. 2007; Tanaka et al. 2010). Several studies

(Bast et al. 2004, 2006) explored the pros and cons of

averaging spikes and suggested that averaging will con-

found any important spatio-temporal information present in

each individual spikes due to cancellation of signals.

Therefore, spatio-temporal source analysis of single spike

will be more appropriate to provide information on the

spike onset and propagation pattern by creating a balance

between increasing SNR and spike variability (Tanaka

et al. 2014). Moreover, single spike analysis of combined

EEG and MEG recordings is favorable to take full benefit

of the complementarities between these two modalities

(Pataraia et al. 2005).

Spatio-temporal simulation involving 2 sources
Source at peak 1 in Red 
Area =  3.9 sq.cm
Eccentricity = 85mm 
EEG signal Cancellation Index,
Ic  = 0.29
 MEG signal Cancellation Index, 
Ic   = 0.74

Source at peak 2 in blue 
Area =   5.9 sq.cm
Eccentricity = 90mm 
EEG signal Cancellation Index,
Ic   = 0.68
 MEG signal Cancellation Index,
 Ic   = 0.82

EEG source 1
AUC = 0.97
SD = 11.1
SE = 0.27 

MEG source 1
AUC = 0.96
SD = 6.9
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(b) Single spike localization obtained using cMEM method 

(c) Single spike localization obtained using MNE method 
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Fig. 12 Qualitative assessment for example of spatio-temporal

simulation. Visual analysis of source localization results together

with AUC, SD, and SE values for an example of spatio-temporal

simulation configuration. Source 1 with area = 3.9 cm2 and eccen-

tricity 85 mm and Source 2 with area = 5.9 cm2 and eccentricity

90 mm. All source localization results are presented as the absolute

value of the current density at the peak of the spike, normalized to its

maximum activity and thresholded upon the level of background

activity. a Theoretical simulated sources: area and eccentricity of the

cortical source 1 and 2; associated EEG and MEG topography;

Cancellation index for source 1 in EEG, Ice = 0.29 and in MEG,

Icm = 0.74; Cancellation index for source 2 in EEG, Ice = 0.68 and

in MEG, Icm = 0.82. b Source localization results obtained using

cMEM on EEG, MEG and MEEG data. c Source localization results

obtained using MNE on EEG, MEG and MEEG data
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Why cMEM Based Fusion Approach?

With the present study, we were able to show that single

spike analysis using cMEM on EEG/MEG fusion data

improved the spatial accuracy of spatially extended source

reconstruction.

Symmetrical fusion of EEG and MEG within the MEM

framework took place at three levels: (1) normalization and

concatenation of the data and lead field matrices, (2) data

driven parcellization, and (3) initialization of the prob-

ability of activation of each parcels. As a first step, the data

and the lead field matrices of each modality were nor-

malized by the standard deviation of the respective back-

ground activity, using the SNR transformation method

described in (Fuchs et al. 1998) and (Ding and Yuan 2013).

Different normalization methods have been proposed in

previous works for combining EEG and MEG data. The

motive behind using the SNR transformation method in our

study was to account for the different physical units of

MEG (Tesla) and EEG (Volt) and for their different noise

content. Therefore, this modality-specific normalization

seems appropriate for multimodal fusion of EEG and

MEG. Most of other EEG/MEG fusion approaches differed

in the way data were normalized and concatenated before

applying the inverse operator. Some of the proposed

methods consist in channel-wise SNR transformation

(Fuchs et al. 1998), incorporation of intermodal noise co-

variance (Ko and Jun 2010), minimization of mutual in-

formation for channel selectivity (Baillet et al. 1999), row

normalization of lead-field matrices, weighted normaliza-

tion (Hong et al. 2013), and integration within a Bayesian

framework (Henson et al. 2009). Note that we have tested

our simulations with both global and channel-wise SNR

transformation and there is no significant difference in the

final result of fusion. However it is important to mention

that a more accurate noise covariance model was taken into

account during the MEM optimization process, rather than

starting by a pre-whitening of the data as it is usually

considered. In the present study, the noise covariance

model was estimated as diagonal but with a different value

for each channel, thus taking into account the noise level of

each individual channel.

However, the second and third levels described in the

present MEM fusion framework are specific to our pro-

posed method. We believe that using fusion MSP scores

(MSPMEEG) for the whole cortex parcellization and for the

initialization of the probability of each parcel to be active

played an important role in combining the complementary

information from EEG and MEG in the fusion process. In

Eq. 12, we estimated MSPMEEG using a logical OR op-

erator to integrate MSPEEG and MSPMEG maps. Note that

other fusion strategies could have been investigated at this

level as well, as for instance using minimized mutual in-

formation for each source (proposed in (Baillet et al.

1999)) to reduce the redundancy between the two

modalities.

Static Simulations of Realistic IEDs

Using AUC metric to assess the detection accuracy of the

source localization methods, we have demonstrated an

overall higher spatial accuracy of MEEG localization when

compared to the mono-modal localizations for all the

evaluated methods (cMEM, MNE, dSPM and sLORETA).

We also observed that the single spike localization of

MEEG data improved the detection accuracy of the sources

at all eccentricities when compared to EEG or MEG lo-

calizations (Fig. 5). This suggests that deeper sources can

be localized more accurately with the fusion due to the

increase in the number of recording channels and fusion of

complementary information from EEG and MEG. We in-

deed showed that EEG data were likely to be more sensi-

tive to deeper sources than MEG data measured using

gradiometers, whereas MEEG fusion provided most accu-

rate results.

SD seems an interesting metric for the evaluation of

EEG, MEG and MEEG localizations. SD is influenced by

both the spatial spread around the source and the presence

of spurious sources. In Figs. 4a, b and 8b, we noticed that
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Fig. 13 Test for robustness to model-error in simulation protocol.

Plot showing the effect on localization accuracy when using correct

Brain-to-skull conductivity (Rbs) ratio versus incorrect Rbs on EEG

and MEEG data using cMEM method: EEG (black plus sign) and

MEEG (green circle) (x-axis: AUC value for incorrect Rbs, y-axis:

AUC value for correct Rbs) (Color figure online)
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all the methods provided overall lower SD values for

MEEG localization when compared to MEG and EEG lo-

calizations while cMEM performed better than MNE,

dSPM and sLORETA for all modalities. This indicates that

MEEG localizations presented less spatial spread of the

solution around the true extent of the source or less spu-

rious activities distant from the true source than EEG or

MEG localizations. The simulation model used in this

study involves a static patch of uniform activity, which has

been extended to simulate different spatial extents of the

source. In this model, the patch extends in all direction with

uniform intensity, which is not fully realistic. This can

indeed be a drawback, especially for MEG, when the patch

included two opposing walls of sulcus leading to an in-

creased amount of signal cancellation and low SNR signal.

EEG simulated signals showed overall higher SNR due to

the contribution of gyral sources. Therefore, most of the

sources simulated in this study provided lower SNR for

MEG simulated signals than for EEG simulated signals.

This simulation bias explains the large variance observed

in the distribution of SD values in MEG localizations;

especially showing long tails towards large SD values (see

one example in Fig. 6). We also checked that most results

involving large SD values corresponded to simulations

exhibiting a low SNR (deep sources or large cancellation

effect).

Impact of the Number of EEG Electrodes for Fusion

Scalp EEG is sensitive to both radial and tangential com-

ponents of the sources, whereas MEG is mainly sensitive to

the tangential components of the sources (Hämäläinen

et al. 1993). As a result, in addition to the spikes seen by

both modalities, it is not rare to detect EEG spikes where

no MEG spikes are visible and vice versa (Iwasaki et al.

2005; Knake et al. 2006; Ramantani et al. 2006; Kakisaka

et al. 2013). Spike visible on EEG only are explained by

the better sensitivity of EEG to deeper and radially oriented

source. Spikes visible on MEG only are explained by the

sensitivity of MEG to mainly tangentially oriented sources

and less influence of the skull resistivity leading to better

SNR of MEG signal for sources in superficial, neocortical
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areas (Goldenholz et al. 2009; Huiskamp et al. 2010;

Kakisaka et al. 2013). It would therefore be important to

consider fusion of both modalities even when the spike is

detectable on only one of the two modalities (Zijlmans

et al. 2002). With fusion, we could probably improve these

conditions where the spike is at low SNR in one of the

modality but this was out of the scope of this study and will

be considered in further studies. Difference in the EEG and

MEG source analysis results can also be explained by the

difference in the number of measurement sites between

EEG and MEG. Most MEG systems are equipped with

more than 100 sensors uniformly distributed around the

whole head, which provides high spatial sampling. On the

other hand, when recording EEG data only, high density

montages involving 64, 128 or 256 channels are needed to

ensure reliable EEG source analysis (Lantz and Grave de

Peralta 2003; Babiloni et al. 2009; Brodbeck et al. 2011;

Yamazaki et al. 2013). However, most clinical centers

commonly use the conventional 10–20 EEG system for

recording epileptic patients, which lacks the high spatial

sampling required for the improved localization accuracy

in EEG (Zelmann et al. 2013).

Analysis of combined EEG and MEG measurements

from simultaneous recording was suggested to bring ad-

ditional information missed by either modalities (Stefan

et al. 1990; Fuchs et al. 1998; Iwasaki et al. 2005; Sharon

et al. 2007; Babiloni et al. 2009). But, recording simulta-

neous EEG and MEG data is time consuming to set-up

many EEG electrodes and can be associated with some

discomfort for the subject wearing the EEG cap inside the

MEG helmet, thus limiting the duration of the acquisition.

We were able to show that MEEG localization using

cMEM was quite robust to the number of EEG electrodes

involved, reaching excellent performances (median AUC
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[0.8 and median SD values\10) even when only 20 EEG

electrodes were added to the 272 MEG sensors (Fig. 8).

These results suggest that the addition of only 20 EEG

electrodes to the 272 MEG sensors, making sure that these

electrodes were covering the lower aspects of both tem-

poral lobes, will be sufficient to bring relevant information

for the fusion, thus providing localization with good spatial

accuracy. However, the example in Figs. 7b and 9 showed

that all the 54 EEG electrodes were needed for recovering

the deeper aspects of the source even in fusion. This could

be explained by the fact that MEG performs poorly in

detecting deep source locations in medial areas such as

cingulate gyrus (Molins et al. 2008). Therefore, for most

sources only 20 EEG electrodes in the fusion were suffi-

cient but for few other sources the addition of well-placed

EEG electrodes might be needed to cover the sites of in-

terest. This raises an important question whether what are

the best positions of EEG electrodes such that EEG’s in-

formation about the deeper and radially oriented sources

can be effectively added to the MEG information in fusion.

This point will be addressed in further details in a subse-

quent study but was out of the scope of this one.

Spatio-temporal Simulations of Realistic IEDs

Assessing neuronal propagation during interictal spikes

may take benefit from spatio-temporal source analysis of

EEG and MEG data (Hara et al. 2007; Tanaka et al. 2010,

2014). Using dSPM (Shiraishi et al. 2005; Hara et al. 2007)

and MNE (Tanaka et al. 2014), previous studies investi-

gated the spatio-temporal source reconstruction of

propagated MEG spikes. Although they based their results

on averaged spikes localization due to the difficulty in lo-

calizing the low SNR individual spikes, it is more reliable

to perform single spike localization to recover accurate

information on the spike onset and propagation (cf. ‘‘Why

applying fusion to single spike localization?’’ section). In

addition, by combining simultaneously occurring EEG and

MEG spikes, the SNR for individual spikes can be in-

creased and complementary information from both mod-

alities will lead to better representation of the propagation

patterns (Bast et al. 2004). Therefore, in the present study,

simulations of two spatially extended propagating sources,

with overlapping time courses, were used to assess the

performance of MEEG localization using cMEM. We ob-

served that MEEG localization using cMEM provided the

highest detection accuracy for both source 1 and source 2

(Fig. 10). Because of the overlap of topographies of the

two sources in EEG, detection accuracy of source 2 was

lower than source 1 in EEG localizations for both MNE

and cMEM. On the other hand, MEG localizations pro-

vided similar detection accuracy for both sources due to

smaller overlap between the topographies of the two

sources. MEEG localization using MNE behaved similarly

to EEG localization in detecting source 2 indicating the

influence of spatial blurring effect of EEG in the fusion.

Interestingly, MEEG localization using cMEM showed

good performance in separating the two sources with the

help of additional key information brought by MEG that

was nicely taken into account with the MEM fusion

framework (Figs. 10, 12). This shows that the fusion of

EEG and MEG within the MEM framework is able to

improve upon the spatial resolution of EEG localization

due to the complementarities of the two modalities.

In this study, through shape error metric (‘‘Validation

metrics’’ section), cMEM reconstructed time courses were

evaluated for the first time. cMEM being a non-linear lo-

calization procedure applied independently and iteratively

on each time sample of the data, the reconstruction of

smooth time courses was not obvious, as opposed to MNE

that consists in applying a linear projector to the data.

While MNE provides excellent accuracy in reconstructing

the shape of the time courses of spatio-temporal overlap-

ping sources, it was an important finding that cMEM es-

timates for MEEG data were able to provide very good

accuracy as well (Fig. 11).

The main interest of this study was the fusion of EEG

and MEG data within the MEM framework and compar-

ison of cMEM method with MNE as the reference method

was sufficient for this study. To address the issue of bias

towards superficial sources known in MNE, we also in-

cluded in our evaluation two noise-normalized variants of

MNE: dSPM and sLORETA. Based on the results on static

simulations, we concluded that despite the depth weighting

property of dSPM and sLORETA, cMEM still provided an

overall better spatial accuracy than dSPM and sLORETA,

especially in the context of recovering source spatial ex-

tent. We did not provide a comparison of the cMEM

method with the previously compared Hierarchical Baye-

sian methods (namely, Independent and Identically

Distributed model-IID and spatially Coherent model—

COH) as proposing MEEG fusion in this Bayesian frame-

work was not the purpose of the study. However, in a

recent paper from our group (Heers et al. 2015), we

demonstrated the excellent performance of cMEM when

compared to IID and COH, evaluating EEG/MEG source

localization of IEDs on 15 patients, using intracranial EEG

as a reference. Whereas we are fully aware that analysis

using realistic simulations suffers from some bias, these

recent results demonstrated the applicability of our meth-

ods on real data. Moreover, following a similar strategy

than the one proposed by (Wang and Ren 2013), we

showed that EEG and MEEG source localization using

cMEM method was robust to the model-error introduced in

the simulation protocol, and especially errors in brain-to-

skull conductivity ratios. Currently, studies are in progress
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(Chowdhury et al. 2014) based on improved simulation

paradigms: realistic simulations generated by neural mass

model (Cosandier-Rimélé et al. 2010) and comparison of

cMEM with other non-linear method such as 4-ExSo-

MUSIC (Birot et al. 2011). Different variants of the MEM

approach are now available for users as a toolbox (namely,

BEst: Brain Entropy in space and time) in the Brainstorm

software (Tadel et al. 2011), and the tutorial introducing

this toolbox can be found here.3

Performance of Fusion on Clinical Data

A detailed clinical validation of cMEM fusion was out of

our scope and will be considered for future studies. How-

ever, we illustrated the behavior of cMEM fusion on two

clinical cases. For patient 1, MEEG localization found

mainly the propagation of activity from left orbito-frontal

to left temporal neocortex when MEG found mainly the

orbito frontal and EEG found the temporal neocortex ac-

tivity. This is interesting to see that we were able to find

clear propagation pathway between the frontal lobe and the

ipsilateral temporal lobe only when using MEEG local-

izations. Such reproducible findings on few single spikes

suggest a good accuracy of the fusion cMEM method.

However, for the purpose of providing clinically useful

results, the consensus between many spikes should be

certainly investigated. Recently, (Aydin et al. 2015)

showed that combined EEG-MEG source analysis reveals

the propagation pathways in complete agreement to ste-

reo—EEG (sEEG), while single modality EEG or MEG

might only be sensitive to complementary parts of the

epileptic activity. A study using Diffusion Tensor Imaging

(Lin et al. 2008) described the connection between the

anterior temporal lobe and the inferior frontal lobe to be

mediated by the uncinate fasciculus (Makris and Pandya

2009); thus supporting a well-known anatomical substrate

for the propagation patterns identified for patient 1. Gen-

erally ipsilateral cortical propagation occurred within

30 ms (Zumsteg et al. 2006); which was also what we

noticed in the propagation pattern presented in patient 1

(within 26.7 ms). It was shown in (Tanaka et al. 2010) that

spatio-temporal analysis of averaged MEG data provides

more accurate information on spike propagation than av-

eraged EEG data. This was consistent with our findings in

patient 1, even though we did not localize averaged data

but we presented the average of six single spike localiza-

tion results. The propagation pattern was not found by EEG

localization but both the primary (orbitofrontal) and sec-

ondary (temporal neocortex) source were found in the av-

erage of MEG localization results (Supplementary Figure

S1). It was shown in (de Jongh et al. 2005) that the SNR of

MEG is higher than EEG for frontal areas so MEG yields

more spikes than EEG for frontal lobe epilepsy. The lower

SNR spikes in EEG for frontal areas may explain why it

was difficult to localize the orbito-frontal onset when using

EEG only.

For Patient 2, MEEG using cMEM identified mainly a

source in the inferior part of the left pre-central gyrus,

which was in perfect overlap with the FCD of the patient.

On the other hand, EEG and MEG localization identified

mainly frontal sources which were probably secondary

sources. A source closely related to the FCD was identified

with MEG only on single spike localization. However, only

MEEG enhanced the generators in the lesion as the primary

source with largest amplitude. (Bast et al. 2004) investi-

gated nine patients with localization-related epilepsy and

FCD, and showed that it was important to average the EEG

and MEG spikes from lesional zone to obtain an accurate

localization of the MRI-defined lesion (Bast et al. 2004).

(Heers et al. 2012) showed that the localization of averaged

interictal MEG spikes was useful in locating subtle MR

imaging abnormalities showing peri-insular lesion.

(Hisashi Itabashi 2014) studied six patients with FCD and

showed that source localization of averaged EEG and MEG

spikes can confirm the existence of abnormalities associ-

ated with FCD based on MR imaging. On the other hand,

we showed that localization of single spike of MEEG data

found the origin of the spike consistently within the FCD

lesion in patient 2. This confirms the advantage of local-

ization of combined EEG and MEG data even in low SNR

conditions. This is also in complete agreement with a re-

cent study (Aydin et al. 2015), which investigated the

contribution of combined EEG/MEG in comparison to

single modality EEG or MEG source analysis of the

epileptic activity using a dipole scanning approach. They

validated their results with sEEG, where no major dipole

cluster was noticeable neither with EEG nor with MEG

around the active contacts in sEEG, while there were clear

clusters around the active contacts in MEEG. They showed

that MEEG localizations were not simply the union of EEG

and MEG results but a rather complex interplay of both

modalities compensating their relative shortcomings.

Conclusion

In this paper, we proposed symmetrical fusion of EEG and

MEG within MEM framework as a novel method for lo-

calizing the onset and propagation patterns of spatially

extended generators of IEDs. Effective integration of the

complementary information from EEG and MEG in cMEM

was demonstrated based on realistic simulations and il-

lustrated on real epileptic data. Overall, for both mono-

modal and multimodal data we noticed better performance3 http://neuroimage.usc.edu/brainstorm/Tutorials/TutBEst.
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of cMEM than MNE, dSPM and sLORETA in detecting

the spatially extended and propagating sources. Our find-

ings suggest that it is better to perform EEG-MEG fusion

when localizing single spikes using cMEM: (1) To yield

better recovery of the source spatial extent. (2) To improve

the sensitivity to source depth. (3) To represent better the

spatio-temporal propagation patterns of the underlying

generators of epileptic discharges. We also showed that the

addition of only few EEG electrodes brings additional in-

formation missed by MEG, in order to allow an optimal

EEG-MEG fusion.
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Appendix: AUC Estimation

To assess how a source localization method could be

sensitive to the spatial extent of the underlying generator,

AUC metric was adapted by (Grova et al. 2006) to fit the

context of a distributed source model, in order to take into

account that there are quite more inactive dipolar sources

than active sources in our simulation schemes.

This detection accuracy index is estimated when the

Ground truth is available, where ROC curves are generated

by plotting the sensitivity against the false positive detec-

tion rate for different detection thresholds, ðb 2 ½0; 1�Þ.
Normalized energy for both the estimated and the

simulated current distribution were used to quantify the

amount of true positive (TP), true negative (TN), false

negative (FN), and false positive (FP) for each threshold b.

sensitivityðbÞ ¼ TPðbÞ=ðTPðbÞ þ FNðbÞÞ
specificityðbÞ ¼ TNðbÞ=ðTNðbÞ þ FPðbÞÞ

However, to interpret the area under the ROC curve as a

detection accuracy index, one should provide the same

number of active and inactive sources to the ROC analysis.

Considering the p dipolar sources on the cortical surface,

only few dipoles were actually active (pa) compared to the

large number of inactive dipoles (p–pa). Therefore, selec-

tion of same number of inactive sources as the active

sources is required. This was done by randomly selecting

inactive sources among the p–pa sources located within the

immediate spatial neighborhood of the simulated source

(AUCclose) or among the local maxima of the reconstructed

activity located far from the simulated source (AUCfar).

Final AUC index was then computed as a mean of the

AUCclose and AUCfar.
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De Jongh A, de Munck JC, Gonçalves SI, Ossenblok P (2005)

Differences in MEG/EEG epileptic spike yields explained by

regional differences in signal-to-noise ratios. J Clin Neuro-

physiol 22(2):153–158

Ding L, Yuan H (2013) Simultaneous EEG and MEG source

reconstruction in sparse electromagnetic source imaging. Hum

Brain Mapp 34(4):775–795

Ebersole JS (1997) Defining epileptogenic foci: past, present, future.

J Clin Neurophysiol 14(6):470–483

Ebersole JS, Ebersole SM (2010) Combining MEG and EEG source

modeling in epilepsy evaluations. J Clin Neurophysiol

27(6):360–371

Emerson RG, Turner CA, Pedley TA, Walczak TS, Forgione M

(1995) Propagation patterns of temporal spikes. Electroen-

cephalogr Clin Neurophysiol 94(5):338–348

Fangmin Chen HH (2010) Influence of skull conductivity perturba-

tions on EEG dipole source analysis. Med Phys 37(8):4475–4484

Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-

Barreto N, Henson R, Flandin G, Mattout J (2008) Multiple

sparse priors for the M/EEG inverse problem. NeuroImage

39(3):1104–1120

Fuchs M, Wagner M, Wischmann H-A, Köhler T, Theißen A,
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