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Bulk and surface topological 
indices for a skyrmion string: 
current‑driven dynamics 
of skyrmion string in stepped 
samples
Wataru Koshibae1* & Naoto Nagaosa1,2

The magnetic skyrmion is a topological magnetic vortex, and its topological nature is characterized 
by an index called skyrmion number which is a mapping of the magnetic moments defined on a 
two-dimensional space to a unit sphere. In three-dimensions, a skyrmion, i.e., a vortex penetrating 
though the magnet naturally forms a string, which terminates at the surfaces of the magnet or in the 
bulk. For such a string, the topological indices, which control its topological stability are less trivial. 
Here, we study theoretically, in terms of numerical simulation, the dynamics of current-driven motion 
of a skyrmion string in a film sample with the step edges on the surface. In particular, skyrmion–
antiskyrmion pair is generated by driving a skyrmion string through the side step with an enough 
height. We find that the topological indices relevant to the stability are the followings; (1) skyrmion 
number along the developed surface, and (2) the monopole charge in the bulk defined as the integral 
over the surface enclosing a singular magnetic configuration. As long as the magnetic configuration is 
slowly varying, the former is conserved while its changes is associated with nonzero monopole charge. 
The skyrmion number and the monoplole charge offer a coherent understanding of the stability of the 
topological magnetic texture and the nontrivial dynamics of skyrmion strings.

Magnetic skyrmion, a swirling magnetic vortex has attracted much attention in recent years1–10. The main focus 
is on its topological nature: the skyrmion is topologically distinguished from ferromagnetic state for instance, 
i.e., these magnetic textures cannot be related to each other within continuous deformation. This topological 
difference is characterized by the skyrmion number N sk . To make the definition of the index N sk clear, for given 
normalized magnetic moments {nr}r∈� on the set of lattice sites � , we define

where bnormal = b · e with the emergent b-field bi = (1/4)εijkn · (∂jn× ∂kn)
11–13 and e is the normal unit vector 

to the two-dimensional domain of integral � ⊂ � . (This N topol is a functional of {nr}r∈� and depends on time 
for the dynamics, but we will not explicitly write those degrees of freedom in the expression Eq. (1).) Usually, 
the skyrmion number is defined as N sk,� = N topol (�) where � is a plane perpendicular to the external mag-
netic field and the direction e is taken to be parallel to the magnetic field. Under the condition where nr → e for 
|r| → ∞ , N sk ,� = −1 for a skyrmion on �.

In the three dimensional magnets, the skyrmion usually forms rod-like object along the external magnetic 
field14–25. When the meandering degree of freedom is introduced, it is better to consider it as skyrmion string. 
When the skyrmion string terminates or branches into two skyrmion strings in the bulk, the singular points 
appear. (Figure 1 is a schematic for the skyrmion string (right) and that with a singular point (left).) The study of 
such singular points goes back over more than a half-century26–30. In those earlier studies26–29, the Bloch point, 
namely, the topological defect on the Bloch line was extensively studied. The topologically the same defects are 
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sometimes called (anti)hedgehog or (anti)monopole14,16,20–22,30. In the present paper, we use the word, (anti)
monopole, to express the topological defect on the skyrmion string.

Kotiuga31,32 described the topological nature of (anti)monopole by the Hopf extension theorem of algebraic 
topology. (The references33,34 give a more extensive discussion on the group theoretical description of topological 
matters.) It is nothing but the Gauss’ low for the topological charge and flux: the (anti)monopole is character-
ized by the topological index Nmp called monopole charge. This Nmp is defined by the integral of the solid angle 
formed by the magnetic moments over the surface enclosing the (anti)monopole: Using Eq. (1), the monopole 
charge is defined as Nmp = N topol (�rmp) = +1 ( Nmp = N topol (�ramp) = −1 ) for �rmp ( �ramp ) enclosing a 
monopole at rmp (an antimonopole at ramp ) with e pointing outward the domain of integral. For a closed surface 
� which does not enclose the spatial defects such as void(s), Eq. (1) gives

for (anti)monopoles enclosed in � and (anti)skyrmions on � . For the flux density b/(2π) , this Gauss’ law relates 
the skyrmion string and the (anti)monopole, i.e., those are corresponding to the flux line and its source (sink) 
point. The total monopole charge for the (anti)monopoles enclosed by � is always the same as the total skyrmion 
number on the surface � , Nsk,�.

In some cases, the endpoints of a skyrmion string on the surface of magnet might be regarded as the monopole 
and antimonopole. However, Nmp cannot be defined for the surface magnetic texture since half of the space is 
“vacuum” where magnetic moment is absent. In particular, the (anti)monopole point rmp ( ramp ) defined above 
cannot be on the surface of magnet. On the other hand, one can define N sk,� = N topol (�) for the magnetic 
texture on the surface � , i.e., in this case, the surface of a magnet gives a well-defined orientable two-dimensional 
manifold �.

The topological nature discussed above is essential to discuss the stability of the magnetic texture. For the 
magnetic moments on a two-dimensional lattice, the topological stability is based on the energy scales of the 
excitation. For example, in the chiral magnets with the ferromagnetic interaction J and Dzyaloshinskii–Moriya 
(DM) interaction D35–37, the length scale of the skyrmion size is characterized by ∼ (J/D)a with the lattice 
constant a, which is much larger than a when D ≪ J . This fact validates the continuum approximation, and the 
energy density is ∼ (D2)/(Ja2) . This energy density and the skyrmion size result in the order of J for the energy 
scale of the stability for a skyrmion. Therefore, a change in N sk , i.e., the topological transition of magnetic texture 
requires an overcome of the energy barrier of the order of J. When a skyrmion string is broken at a point rb in 
bulk, a monopole-antimonopole pair appears at the point. In other words, at the two-dimensional cross section 
� including the broken point rb , the skyrmion number N sk,� changes. Therefore, this change also requires the 
overcome of the energy barrier of the order of J.
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Figure 1.   Skyrmion string ending with the skyrmion on the surface (right) and that terminates at the monopole 
(left). This figure is made by Mari Ishida. (See also “Supplementary Information” and Supplementary Movie S8.
avi for the magnetic texture of a magnetic monopole.).
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In the present paper, we show that the surface N sk plays a crucial role together with Nmp for the skyrmion 
string stability and dynamics. To this end, we numerically investigate the current driven dynamics of the skyr-
mion string in the magnet with step edges on the surface. The step edges act as the pinning center of the motion 
of a skyrmion string, which sometimes leads to the detachment of the skyrmion from the surface or the splitting 
of the string into pieces. By the numerical simulation, we examine the stability of the surface (anti)skyrmion and 
the dynamics including (anti)skyrmion–(anti)monopole collision leading to skyrmion string annihilation. These 
stability and dynamical processes are well understood as two kinds of topological indices; skyrmion number N sk 
for the surface and the monopole charge Nmp for the bulk.

Results
To study the topological stability of (anti)skyrmion, (anti)monopole and skyrmion string, we start with a metasta-
ble skyrmion string in a three-dimensional chiral magnet with step edges (see Fig. 2). The Hamiltonian is given by
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Figure 2.   Skyrmion string in chiral magnets with step edges under an external magnetic field along z-direction. 
The case with step height 5 is shown. (a) The upper (lower) panel represents the spatial distribution of emergent 
b-field bnormal normal to the surface using color code (g) [magnetic texture using color code (f)] at t = 0 . 
The color code (f) indicates nx–ny component of the magnetic moments, e.g., blue is corresponding to the 
in-plane magnetic moment along x axis. The darkness of the color represents the nz component, i.e., black is 
corresponding to n = (0, 0,−1) . The broken lines in the upper panel are corresponding to the edges of the 
upper and lower terraces as indicated by the red dotted lines. In the same way, the snapshots at (b) t = 6000 , 
(c) t = 8040 , (d) t = 11060 and (e) t = 11500 are shown. In (b) and (d), the enlarged magnetic textures at the 
step edges are shown. (For (b), the arrangement of the magnetic texture is seen from the left side.) To make 
the visualization of string clear, the magnetic moments with nz > 0.5 are not shown for the panels of magnetic 
texture.
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with

where ρ = ±x̂,±ŷ,±ẑ with the unit vectors x̂ , ŷ and ẑ in x-, y- and z-axes, and � is the set for the cubic lattice 
sites of the system. In the lattice model, the topological stability is always related to the energy barrier and is a 
matter of quantitative problem. However, when the magnetic textures is spatially slowly varying, the distinction 
between the continuous magnetic configurations and singular ones is rather clear. The normalized magnetic 
moments at r ∈ � is denoted by nr = (nx,r , ny,r , nz,r) . The lattice constant is taken as the unit of length. As shown 
in Fig. 2, the step edges are introduced on the top surface of the magnet while the bottom surface is flat. The step 
edge is perpendicular to x-direction. In x- and y-directions, the periodic boundary condition is imposed. But, 
where the bottom surface and the top surface with step edges face to “vacuum”, the open boundary condition is 
employed. For simulations, we use the system size with 120× 120 for the bottom surface area and z = 1 ∼ 100 
at the higher terrace area. The higher terrace has a width 60. Figure 2 shows a case with a step height 5, i.e., the 
lower terrace is on the layer with z = 95.

Here, we use a parameter set {J = 1,D = 0.2, h = 0.06} (i.e., J is the unit of D and h) where the ferromagnetic 
state polarized in z direction is the ground state38,39. Figure 2a is the relaxed metastable state with a skyrmion 
string which is in the lower terrace area. The skyrmion string has a tensile strain due to the metastablity, i.e., 
the longer string costs more energy. Therefore, the relaxed string is straight along z direction. Consequently, 
the string in the higher terrace area has an energy cost compared to the string in the lower area. In other words, 
the height profile of this system roughly indicates the potential profile for the skyrmion string. (See also “Sup-
plementary Information”.)

We drive the skyrmion string by the spin–transfer–torque (STT) effect1:
The Landau–Lifshitz–Gilbert (LLG) equation is given by

where α is the Gilbert damping constant. The last two terms in Eq. (5) represent the STT effect due to the spin 
polarlized electric current density j with the coefficient of the non-adiabatic effect β . In the following, we examine 
the skyrmion dynamics for the current j = |j| = 0.006 parallel to x̂ under the condition α = β (= 0.01) to avoid 
its current driven Hall motion.

Skyrmion number for surface magnetic texture.  In this section, we first show the stability of the 
(anti)skyrmion at the surface, i.e., the surface (anti)skyrmion is not easy to annihilate even in the presence of 
the step edges of moderate height (the case summarized in Fig. 2). It is also shown by the conservation of the 
skyrmion number at the surface. Next, it is shown that the conservation of the skyrmion number at the surface 
applies for more complex dynamics where the skyrmion string is separated into pieces due to the large height of 
step edge (the case summarized in Fig. 3).

Figure 2 summarizes the current driven dynamics of the skyrmion string in the system with the step height 5. 
By the STT effect, the skyrmion string approaches to the left step edge (see Fig. 2a,b). However, the edge prevents 
the motion of the top endpoint of the string. Deep inside the magnet, the string moves by the STT effect, and 
gets bent and stretched as seen in Fig. 2b. After that, the top endpoint of the string, i.e., the top surface skyrmion 
overcomes the pinning due to the step edge and climbs up to the higher terrace as seen in Fig. 2a–c. After that, 
the skyrmion string shows a characteristic dynamics40 like ‘moving tornado’ reflecting the vorticity, Magnus effect 
and the tensile strain. (See also “Supplementary Information” and Movie S3.avi.) The current driven skyrmion 
string approaches to the right step edge and the top surface skyrmion at the higher terrace goes down to the 
lower terrace as seen in Fig. 2c–e. An interesting aspect of the dynamics is that the upper endpoint of the string 
always sticks to the surface even when the surface bents with 90◦ at the step edge. Figure 2b,d actually shows the 
behaviors of the top surface skyrmion. (See also “Supplementary Information”).

This is understood to be the topological stability of the skyrmion at the surface: a way to define the topologi-
cal nature of the string might be

with �z being the horizontal plane at height z and e = ẑ . In the present case, there exist two regions with different 
heights of the top surface due to the step edges. Accordingly, N sum changes along the dynamics, e.g., Fig. 2a–c 
and Fig. 2c–e. However, the change in magnetic texture along the dynamics shown in Fig. 2 occurs within a con-
tinuous deformation without topological singularity. Therefore, N sum cannot be appropriate for the topological 
index for the magnetic texture. On the other hand, when we define the skyrmion number

(3)H =
∑
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with �top being the developed top surface and e points outward the magnet, it is confirmed that N sk, top is con-
served during the dynamics summarized in Fig. 2. At the same time, it represents the topological protection of 
the magnetic texture at the top endpoint of the string. The topologically protected surface skyrmion dynamics is 
also well described by the time evolution of the spatial distribution of the emergent b-field bnormal normal to the 
surface �top which directly probes the deformation of the skyrmion (see the top panels of Fig. 2a–e). Although 
the skyrmion is strongly deformed due to the steep structure at step edges, the skyrmion keeps stick to the top 
surface during the dynamics. (See also “Supplementary Information”.)

We find that the surface topological index N sk, top is applicable for more complex phenomenon. Figure 3 
shows the skyrmion string dynamics in the system with the step edges of height 20 and the string starts in the 
higher terrace area. Other conditions are the same as those for the case Fig. 2. By the STT effect, the string 
approaches the right step edge. Because of the repulsive interaction between the right step edge and the string, the 
string shows a bending behavior and touches the lower step corner first whereas its upper endpoint is still away 
from the step edge (see Fig. 3b). At the same time, at around the touched point, the magnetic texture of the string 
shows a deformation and finally the string splits into two parts, as shown in Fig. 3b,c. Note that the endpoint 
at the right step edge of the shorter string has a positive contribution to the topological index N sk, top whereas 
the contribution by the endpoint at the higher terrace surface is negative (see the plot of bnormal in Fig. 3b–d). In 
other words, the emergent magnetic texture at the right step edge is the antiskyrmion. This causes a characteristic 
dynamics due to the topological nature41,42: after the skyrmion–antiskyrmion pair-creation shown as Fig. 3a–c, 
the skyrmion–antiskyrmion pair, i.e, the endpoints of the shorter string run together in +ŷ direction as seen 
in Fig. 3c,d. The (anti)skyrmion has a vorticity and its sign is consistent with the sign of the topological index. 
Because of the vorticity, a Magnus force appears perpendicular to the force acting on the (anti)skyrmion41,42. In 
the present case, due to the tensile strain on the shorter string, an attractive force is acting on the endpoints of 

(a) (b)

(f)

(d)(c)

(e)

Figure 3.   Pair creation and annihilation of the surface (anti)skyrmion(s). The height of the step edge is 20. (a) 
The upper (lower) panel represents the spatial distribution of emergent b-field bnormal normal to the surface 
using color code (e) (magnetic texture using color code (f)) at t = 0 . The broken lines in the upper panel are 
corresponding to the edges of the upper and lower terraces as indicated by the red dotted lines. In the same way, 
the snapshots at (b) t = 4000 , (c) t = 4800 , and (d) t = 5400 are shown. In (b–d), the enlarged images of the 
magnetic textures at around the right edge are also shown.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20303  | https://doi.org/10.1038/s41598-020-76469-5

www.nature.com/scientificreports/

the string, i.e., the skyrmion at the higher terrace and the antiskyrmion at the right step edge of the top surface. 
Since the vorticity of the skyrmion is opposite to that of the antiskyrmion, the attractive force drives the Mag-
nus force for the skyrmion and the antiskyrmion in the same direction. With this dynamics, finally, the shorter 
string disappears with the skyrmion–antiskyrmion pair annihilation at the top surface. Note that during the 
time evolution summarized in Fig. 3, N sk, top is conserved. This dynamics occurs without singularity of the 
magnetic configuration.

Creation and annihilation of monopole.  In the present system, we can also discuss the magnetic texture 
with singularity of the magnetic configuration. Figure 4 summarizes the skyrmion string dynamics after those 
shown in Fig. 3. The STT effect drives the string in x̂ direction. (Note that we impose the periodic boundary 
condition along x- and y-directions.) Similar to the dynamics in the initial stage shown in Fig. 2, the skyrmion 
at the upper endpoint of the string sticks to the top surface. (See Fig. 4a,b.) However, because the height of the 
step edge is high enough, the skyrmion string cannot overcome the barrier, and the skyrmion on the top surface 
is detached (Fig. 4c is the magnetic texture just after this ‘detach’ event.) After that, this upper endpoint of the 
string runs along the string and finally the string totally disappears. (See “Supplementary Information”.) After the 
upper endpoint of the string is detached, we find the topological discontinuity, i.e., the emergence of monopole: 
The monopole point rmp = (xmp, ymp, zmp) is an accumulation point where the magnetic moment is ill-defined. 
Therefore, it is not on the lattice site in � . Using Ntopol(�z) , the topological discontinuity by r mp is expressed to 
be, Ntopol(�z) = −1 for z < zmp and Ntopol(�z) = 0 for z > zmp and a relevant definition of (xmp, ymp) will be 
given by the minimum of nz with an interpolated function on the the horizontal plane at z = zmp.

Topological indices.  The monopole charge is defined by Nmp = Ntopol(�) with � enclosing r mp as dis-
cussed in the paragraph with Eq. (2). For the numerical results summarized in Figs. 2, 3 and 4, we find that the 
following relation always holds,

where N sk, bottom = Ntopol(�bottom) and �bottom is the bottom surface with e = −ẑ . (See also Eq. (7).) Note 
that N sk, bottom = −Ntopol(�z) with z = 1 (see Eq. (6), and here, z = 1 represents the bottom of the magnet). 
The domain of integral � enclosing r mp is topologically the same as �top +�bottom . During the process shown 
in Figs. 2 and 3, N sk, top and Nmp are always zero. At the detach process of the top surface endpoint of the skyr-
mion string described in Fig. 4, the simultaneous changes N sk, top = −1 → 0 and Nmp = 0 → +1 occur (and 
N sk, bottom = +1 is kept).

For the dynamics summarized in Fig. 4, let us discuss the relation between the topological characteristics 
discussed above and the metastabilities of the magnetic textures, in more detail. Figure 5a shows the time 
dependence of the total energy Etotal measured from that of the relaxed ferromagnetic state. (See “Supplementary 
Information”.) Along the dynamics Fig. 4a,b, the total energy Etotal increases. This is because the upper endpoint 

(8)Nmp = N sk, top + N sk, bottom ,

(a) (b)

(f)

(c) (e)(d)

x
y

z

x
yz

Figure 4.   Monopole dynamics. The height of the step edge is 20. Snapshots of the magnetic texture at (a) 
t = 14,000, (b) t = 16,290, (c) t = 16,300, (d) t = 16,400 and (e) t = 16,480 are shown. (See text.) In (b), the 
enlarged magnetic texture is seen from left. (f) The color code for the magnetic texture.
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is pinned by the left step edge and the string is bent and stretched by the STT effect. After that the total energy 
Etotal decreases rapidly with the detach of the top surface endpoint and successively occurring monopole dynam-
ics Fig. 4b–d. At the detach process, the total energy Etotal shows rather smooth time dependence. The ‘hidden’ 
singular behavior along the emergence of the monopole is observed in the time dependence of the local energy 
at the top surface: we define the local energy on � by

where Et(r) ( Ef (r) ) is given by Eq. (4) for the instantaneous magnetic texture at time t (for the relaxed ferro-
magnetic texture).

The plot Fig. 5b shows Etop = E(�top, t) as a function of time t. At around t ∼ 14,000, Etop hardly changes 
because the skyrmion at the top surface is apart from the step edge. With approaching the skyrmion to the (left) 
step edge by the STT effect, the skyrmion becomes unstable due to its deformation. This causes the increase of 
Etop and finally the sharp drop of Etop occurs at the time when the skyrmion is detached, i.e., the emergence of 
the monopole. The increase of Etop before the emergence of the monopole indicates the energy barrier dividing 
the skyrmionic state and ferromagnetic state at the top surface �top . The profile of the energy barrier seen in 
Fig. 5b is rather moderate compared to that in the discussion below because of the geometry with the step edge, 
i.e., the steep geometrical arrangements of the top surface reduce the metastability of the top surface skyrmion.

The singularity of the monopole is obvious in the local energy profile as shown in Fig. 5c. This plot shows 
the height z (= 1 ∼ 100) dependence of E(z) = E(�z , t = 16,400). We clearly see the sharp energy peak which 
divide the metastable skyrmionic state and the ferromagnetic state. The red arrow on the top horizontal axis 
indicates the position zmp , i.e., it divides the region of z by Ntopol(�z) = −1 or 0. (See also “Supplementary 
Information” and Movie S8.avi.).

(9)E(�, t) =
∑

r∈�
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Figure 5.   Monopole and singularity. (a) Time dependence of the total energy. The enlarged plot at around t ∼
16,300 is also presented. (b) Time dependence of the energy of the top surface. (c) The local energy at height z. 
The red arrow indicates zmp . The sharp decrease occurs at the time when the skyrmion is detached. (See text). 
(d) Time dependence of the energy of the bottom surface. The peak occurs at the time where the skyrmion on 
the bottom surface disappears.
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In Fig. 5a, after the monopole creation, the total energy Etotal decrease as a function of time t smoothly, i.e., no 
singular behavior is seen. This indicates a smooth motion of the monopole which makes the metastable skyrmion 
string shorter, although the monopole is a singular object as seen in Fig. 5c.

At the final stage, the collision of the monopole and the antiskyrmion occurs, and the monopole, the antiskyr-
mion on the bottom and the skyrmion string totally disappear with the simultaneous changes of N sk, bottom 
and Nmp from + 1 to 0. When we focus only on the bottom surface, we see the singularity with the energy cost: 
Fig. 5d shows the time dependence of the local energy at the bottom surface, Ebottom = E(�bottom, t) . The sharp 
peak structure occurs with the simultaneous changes of N sk, bottom and Nmp from + 1 to 0. However, in the total 
energy Etotal , this energy cost is compensated by the annihilation of the skyrmion string in total.

Discussion and summary
The Gauss’ law Eq. (2) applies for the processes discussed in the present paper: suppose � is the whole surface 
of the magnet and the magnet has no spatial defects such as voids. There are two cases, (A) div b = 0 in bulk 
and (B) div b  = 0 in bulk.

–	 In case (A), the system has no (anti)monopoles. As shown in Fig. 3, the skyrmion string is divided into two 
within the continuous deformation of the magnetic texture. As a result, using the surface � , any entangle-
ments of the skyrmion string even in the presence of the knots, are solved without topological transitions. 
Therefore, it is concluded that any skyrmionic states are homeomorphic to each other and also those are 
topologically the same as ferromagnetic states and helix states in bounded three-dimensional magnets.

–	 In case (B), the system has (anti)monopoles. The (anti)monopole is a topologically singular object and 
cannot be created/annihilated within the continuous deformation of the magnetic texture. For a monopole-
antimonopole pair, Nmp (r mp )+ Nmp (r amp ) = 0 and it does not contribute to Eq. (2). Therefore, Eq. (2) 
is not appropriate to describe the topological invariance for the magnetic texture on the whole system.

To discuss the stability of the magnetic textures, the “local” monopole charge is important. The (anti)mono-
pole always accompanies the high energy (being order of J) area concentrated at around r mp ( r amp ). Conse-
quently, for example, to break a skyrmion string into two at the point deep inside the magnet, for the monopole-
antimonopole pair creation in other words, a large energy to overcome the energy barrier being order of J is 
required40. In this case, the change in absolute value |Nmp (r mp )| + |Nmp (r amp )| is important rather than total 
monopole charge.

The energy cost at the (anti)monopole creation/annihilation is compensated by the shrinkage/defor-
mation of the skyrmion string connecting the (anti)monopole as seen in Figs. 4 and 5. At the detach pro-
cess of the skyrmion string from the top surface shown in Fig. 4b,c, we calculate the skyrmion number 
Nsk,next-to-top = N topo (�next-to-top) where �next-to-top is the top surface of �−�top ( � is the set of all sites r of 
the system defined below Eq. (4)). We find a time duration with Nsk,top = 0 and 

∣

∣Nsk,next-to-top

∣

∣ = 1 . This means 
that the monopole point rmp appears as an accumulation point between �top and �next-to-top . Therefore, the 
monopole point rmp emerges without change of the length of the skyrmion string essentially, so that the energy 
cost due to the energy barrier discussed above appears in the time dependence of the total energy as seen in 
Fig. 5a. Even so, the sharp singularity due to the emergence of the monopole point is smeared in the total energy 
in three dimension.

In the present paper, we have seen the importance of the topological indices Nsk and Nmp . These indices, 
specifically, are related by the Gauss’ law Eq. (2). In the previous studies23,40, it is discussed that the monopole 
dynamics running through the string causes the skyrmion string annihilation. The annihilation of a skyrmion 
string is seen in the final stage of the dynamics in Fig. 4, i.e., the collision of the monopole and the antiskyrmion 
at the bottom surface. On the dynamics, the skyrmion number at the bottom surface Nsk,bottom changes from 
+ 1 to 0. As seen in Fig. 5d, a steep enhancement of Ebottom occurs with the change of Nsk,bottom . However, this 
enhancement of Ebottom does not result in the protection of the bottom surface antiskyrmion. The energy cost by 
the local topological singularity seen in Fig. 5d is totally compensated by the energy gain due to the shrinking of 
the skyrmion string. Consequently, on the time window of this monopole-antiskyrmion collision dynamics, the 
total energy (see Fig. 5a) decreases smoothly and monotonously. Note that the changes of the topological indices 
Nsk and Nmp occur at the same time, and the Gauss’ law Eq. (2) always holds along the dynamics discussed here.

The skyrmion string annihilation instability is responsible for the (anti)monopole dynamics. For shorter 
skyrmion string, the probability of the emergence of the (anti)monopole(s) is reduced. This is why the skyrmion 
string is more stable in thinner magnets as has been observed experimentally10.

To summarize, we have discussed topological particles and strings on the magnets and their characteris-
tic dynamics, e.g., particle-antiparticle pair creation/annihilation, collisions of the particles and behind string 
dynamics. To describe the dynamical processes of skyrmion string, (ant)skyrmion and (anti)monopole, we have 
shown that two topological indices, i.e., N sk on the surface and Nmp in the bulk play the essential role.

Methods
The units of time t is 1/J. Typically J ∼ 10−3 eV and the unit 1/J becomes ∼ 0.7 ps. The unit of the electric cur-
rent density j = |j| is 2eJ/(pa2) and is typically ∼ 1.0× 1013 A/m2 for the polarization of magnet p = 0.2 and 
the lattice constant a = 5Å.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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