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Abstract
Background: Increasing evidence has indicated immune-related genes (IRGs) play a key role in the development of hepatocellular
carcinoma (HCC). Whereas, there have been no investigations proposing a reliable prognostic signature in terms of IRGs. This study
aimed to develop a robust signature based on IRGs in HCC. A total of 597 HCC patients from The Cancer Genome Atlas (TCGA) and
International Cancer Genome Consortium (ICGC) databases were enrolled in this study.

Methods: The TCGA cohort was utilized for discovery, and the ICGC cohort was utilized for validation. Multiple algorithms were
implemented to identify key prognostic IRGs and establish an immune-related risk signature. Bioinformatics analysis and R soft tools
were utilized to annotate underlying biological functions.

Results: A total of 1416 differentially expressed mRNAs (DEMs) were screened, of which 90 were differentially expressed IRGs
(DEIRGs). Using univariate Cox regression analysis, we identified 33 prognostically relevant DEIRGs. Using least absolute shrinkage
and selection operator (LASSO) regression and multivariate Cox regression analysis, we extracted 8 optimal DEIRGs to construct a
risk signature in the TCGA cohort, and the signature was verified in the ICGC cohort. We also built a nomogram to increase the
accuracy of predicting HCC prognosis. By investigating the relationship of the risk score and 8 risk genes from our signature with
clinical traits, we found that the aberrant expression of the immune-related risk genes is correlated with the development of HCC.
Moreover, the high-risk group was higher than the low-risk group in terms of tumor mutation burden (TMB), immune cell infiltration,
and the expression of immune checkpoints (programmed cell death protein 1 [PD-1], programmed cell death ligand 1 [PD-L1], and
cytotoxic T-lymphocyte-related protein 4 [CTLA-4]), and functional enrichment analysis indicated the signature enriched an intensive
immune phenotype.

Conclusion: This study developed a robust immune-related risk signature and built a predictive nomogram that reliably predict
overall survival in HCC, which may be helpful for clinical management and personalized immunotherapy decisions.

Abbreviations: DEMs = differentially expressed mRNAs, HCC = hepatocellular carcinoma, IRGs = immune-related genes, ROC
= receiver operating characteristic curve, TMB = tumor mutation burden, TME = tumor microenvironment.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of
primary liver cancer and mostly results from viral infection and
liver fibrosis.[1] It is the sixth leading cause of malignancy
worldwide and the third most common cause of cancer-related
death.[2] There are approximately 437,000 people in the world
who are diagnosed with HCC each year, of which approximately
50% of cases occur in China.[3] The main reason for the poor
prognosis of HCC is the lack of early and effective biomarkers
and therapeutic treatments. Thus, further exploring effective
biomarkers and understanding the potential molecular mecha-
nisms of tumorigenesis and progression in HCCmay improve the
overall survival and therapeutic effect of HCC patients.
It has been confirmed that the derangement of the immune

response in the tumor microenvironment (TME) actively
participates in tumor aggressiveness and progression. The
TME facilitates tumor cell survival, proliferation, and metastasis
and enhances the ability to evade host immune responses.[4]

Abundant efforts have been conducted to understand the
relationship between tumors and the immune response, and
tumor immunotherapy has achieved remarkable success in
advancing tumor treatment.[5] The development of immune
checkpoint inhibitors (including nivolumab and pembrolizumab)
has boosted their application in HCC, but they are only effective
in a subset of patients.[6,7] Hence, it is necessary to identify a
robust immune signature that predicts the sensitivity of patients
to immunotherapy to realize individualized treatment and that
may become a new target for immunotherapy in HCC.
Prior studies have shed light on immune-related genes (IRGs)

that not only play an important role in the process of
immunotherapy but are also associated with the prognosis of
patients with HCC. However, these studies focused on
investigating the relationships of a single IRG with the prognosis
of HCC. Few studies have explored the correlations between
multiple IRGs and the prognosis of HCC. A recent report
illustrated that multigene immune signatures might be a more
effective tool for selecting candidates for treatment.[8]

In the present study, we utilized IRG expression data based on
The Cancer Genome Atlas (TCGA) and Immunology Database
and Analysis Portal (ImmPort) to establish an immune-related
risk signature consisting of 8 IRGs forHCC and validated it in the
International Cancer Genome Consortium (ICGC) database. The
signature was combined with clinical factors to further develop a
predictive nomogram, enabling improved prognostic assessment
and clinical management of HCC patients. To investigate the
ability of our signature to predict the progression of HCC, we
analyzed the relationships between the risk factors from our
signature (the risk score and risk genes) and the clinical
parameters. Moreover, to further explore the underlying
immune-related molecular mechanisms and functions of the
genes in the signature, we performed research on tumor mutation
burden (TMB), immune cell infiltration, and functional enrich-
ment in the HCC.
2. Material and methods

2.1. Sample datasets and IRGs

The RNA-Seq gene expression data and corresponding clinical
data of HCC samples were collected from the TCGA database
(https://portal.gdc.cancer.gov/). Patients were excluded if they
lacked mRNA RNA sequencing data; did not have prognostic
2

information; were not primary HCC; were missing clinical data;
received neo-adjuvant therapy. The detail of baseline information
was shown in Supplemental Table 1 (see Table, Supplemental
Table 1, http://links.lww.com/MD/F653, which exhibits the
detail of baseline information in TCGA-LIHC and ICGC-LIHI-JP
cohorts). The transcriptome profiling of RNA expression was
measured in fragments per kilobase of exon model per million
mapped reads or FPKM values. Log2 transformation was
performed for the normalization of RNA expression profiles.
After eliminating genes with FPKM values equal to 0 in>50% of
the samples, 18947 protein-coding genes were used for further
analysis. A total of 1534 immune-related genes (IRGs) were
obtained from the ImmPort database (https://immport.niaid.nih.
gov/) (see Table, Supplemental Table 2, http://links.lww.com/
MD/F654, which exhibits the 1534 IRGs and their immune
category). These IRGs play multiple roles in immune pathways,
including antigen processing and presentation pathways, the B
cell receptor signaling pathway; cytokine, cytokine receptor,
interleukin, and NK cell cytotoxicity pathways; transforming
growth factor-b family member pathways; the T cell receptor
signaling pathway; and TNF family member receptor pathways.
The IRGs were prepared for the construction of an immune-
related risk signature.
2.2. Differential expression analysis (DEA)

Differentially expressed mRNAs (DEMs) were identified by the R
package “limma,” and P values were corrected using the
Benjamini and Hochberg false discovery rate (FDR) method.
The following cut-off thresholds were set to screen DEMs: jlog2
fold change (FC)j>1 and FDR<0.05. The intersection of these
DEMs and 1534 IRGs was used to obtain differentially expressed
immune-related genes (DEIRGs).
2.3. Construction of the immune-related risk signature

A total of 365 HCC patients with survival data in the TCGA
cohort were randomly divided into a training set (n=255; 70%)
and a testing set (n=110; 30%). First, univariate Cox regression
analysis of the DEIRGs was implemented to determine the
correlation between the survival of HCC patients and the
expression level of the DEIRGs in the training set. DEIRGs with
P< .05 were considered prognostic IRGs and extracted for least
absolute shrinkage and selection operator (LASSO) Cox
regression analysis to further select key prognostic IRGs for
overall survival in patients. The hazard ratio (HR) from the
univariate Cox regression analysis was used to identify the
protective (HR<1) and risk genes (HR>1). Next, multivariate
Cox regression analysis was performed on the DEIRGs obtained
from the LASSO Cox regression analysis. Then, an immune-
related risk signature was constructed based on a linear
combination of the expression value of the prognostic DEIRGs
weighted by the regression coefficient (b) derived from the
multivariate Cox regression analysis, as follows:

Risk score ¼
Xn

i¼1

ðexp1 � biÞ

where n is the number of key prognostic IRGs, expi is the
expression value of the key prognostic IRGs i, and bi is the
regression coefficient of IRGs i. Using the median risk score in the
training set as the cut-off value, HCC patients were classified into
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high- and low-risk groups in the training set, testing set, and
entire set. Subsequently, we analyzed the expression differences of
the key prognostic IRGs in the high- and low-risk groups in the
entire set. The area under the curve (AUC) of the time-dependent
receiver operating characteristic (ROC) curve was calculated to
evaluate the prognostic ability of the immune-related risk signature
for overall survival using the R package “timeROC.”TheKaplan–
Meier method was used to calculate survival curves, and the log-
rank test was performed to compare the survival differences in the
high- and low-risk groups using the R package “survival.” Then,
the prognostic ability of the immune-related risk signature was
further investigated in the testing set and entire set.

2.4. External validation of the immune-related risk
signature

To evaluate the predictive accuracy of the immune-related risk
signature from the TCGA cohort, a total of 232 HCC patients
with full clinical information from the LIHI-JP project of the
ICGC cohort (https://icgc.org/) were further analyzed for
validation. The criteria for patient screening were consistent
with TCGA, and the detail of baseline was displayed in
Supplemental Table 1 (see Table, Supplemental Table 1, http://
links.lww.com/MD/F653, which exhibits the detail of baseline
information in TCGA-LIHC and ICGC-LIHI-JP cohorts). We
processed the data from the ICGC cohort in the same way as the
TCGA cohort. For each included patient, the risk score was
calculated using the same formula. Subsequently, the ROC curve
and the Kaplan–Meier survival curve were constructed to test the
predictive value of the signature.
All data usedwere from the TCGA and ICGCdatabases, which

are both publicly available and open access, so additional
approval was not required from the ethics committee.

2.5. Independent prognostic role of the immune-related
risk signature

Next, we investigated whether the prognostic power of the
immune-related risk signature was influenced by other clinico-
pathological factors, including sex, age, body mass index (BMI),
alpha-fetoprotein (AFP), histological grade, BCLC (Barcelona
Clinic Liver Cancer) stage, and vascular invasion. Univariate and
multivariate Cox regression analyses were carried out to
determine independent factors of prognosis in the entire set.
P< .05 was considered statistically significant. Factors with
P< .05 based on univariate and multivariate analyses were
deemed independent prognostic factors.

2.6. Establishment of a new predictive nomogram

All independent prognostic factors were included to establish a
new predictive nomogram via a stepwise Cox regression model to
investigate the probability of the 1-, 2-, and 3-year overall
survival of HCC patients. Kaplan–Meier analysis, the AUC of the
time–ROC curve, Harrell concordance index (C-index), and a
calibration curve were used to assess the performance of the
nomogram. The C-index was calculated to evaluate the
discrimination of the nomogram by a bootstrap method with
1000 resamples. The nomogram calibration curve was plotted to
compare the predicted and observed overall survival. In addition,
the decision curve analysis (DCA) was conducted to estimate
clinical utility of the nomogram through quantifying net benefits
against a range of threshold probabilities.
3

2.7. Mutation and immune analysis of the signature

The mutation data available for HCC patients were obtained
from the TCGA database (https://portal.gdc.cancer.gov/). We
calculated the total number of mutations for each sample and
then compared the mutation burden of the high- and low-risk
groups in the entire set. In addition, to determine whether our
signature could influence the status of the tumor immune
microenvironment in HCC patients, the tumor immune estima-
tion resource (TIMER) algorithm (https://cistrome.shinyapps.io/
timer/) was used to estimate the abundances of B cells, CD4+ T
cells, CD8+ T cells, dendritic cells, neutrophils, and macrophages
in the data from the TCGA database, and then the relationships
between the risk score and immune cell infiltration in the entire
set were investigated.
2.8. Functional enrichment analysis

To explore the underlying biological processes and pathways of the
immune-related risk signature, we utilized the R package “cluster-
Profiler” to performGene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis. GO
biological processes and KEGG pathways having both P< .05 and
FDR<0.05 were considered to be significant.
3. Results

3.1. DEMs and DEIRGs in patients with HCC

Figure 1 displays the flow diagram of our study. The analysis of
mRNA expression profiles between HCC tissues and adjacent
normal liver tissues identified 1416DEMs (Fig. 2A and B). A total
of 1016 mRNAs were significantly upregulated and 400 mRNAs
were significantly downregulated in HCC tissues compared with
normal liver tissues. The IRGs among the 1416 DEMs were
identified, and a total of 90 DEIRGs, including 49 upregulated
mRNAs and 41 downregulated mRNAs, were filtered for further
analysis (Fig. 2C and D).

3.2. Construction of the immune-related risk signature

In the TCGA cohort, the training set was used to construct the
immune-related risk signature, the testing set and entire set were
used for validation. Using univariate Cox regression analysis, we
identified 33 IRGs with prognostic prediction capacity from a
total of 90 DEIRGs (see Figure, Supplemental Figure 1, http://
links.lww.com/MD/F648, which illustrates the 33 IRGs associ-
ated with overall survival). The 33 IRGs were enrolled in LASSO
Cox regression analysis. After 100 rounds of 10-fold cross-
validation, 8 optimal IRGs were identified when lambda took the
minimum value of 0.059, and the 8 IRGs were used to establish
an immune-related risk signature for HCC patients (Fig. 3A and
B). The results of the univariate and multivariate Cox regression
analyses of the 8 optimal IRGs are shown in Table 1. The formula
of the risk score is as follows:

Risk score ¼ ð0:164�APLNÞ þ ð0:254�CDK4Þ
þ ð�0:079�CXCL2Þ þ ð�0:236�ESR1Þ
þ ð�0:199�IL1RNÞ þ ð0:166�PSMD2Þ
þ ð0:246�SEMA3FÞ þ ð0:075�SPP1Þ

The risk scores for patients were calculated, and patients were
divided into high- and low-risk groups using the median risk
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Figure 1. The workflow of this study. DEA=differential expression analysis; DEIRGs=differentially expressed IRGs; DEMs=differentially expressed mRNAs;
IRGs= immune-associated genes.
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score of the training set as the cut-off threshold in each set. As
shown in Supplemental Figure 2 (see Figure, Supplemental
Figure 2, http://links.lww.com/MD/F649, which illustrates the
expression levels of the key prognostic IRGs in the high- and low-
risk groups), among the 8 genes of the immune-related risk
signature, significantly elevated APLN, CDK4, PSMD2,
SEMA3F, and SPP1 expression was found in high-risk group
compared with low-risk group, while CXCL2, ESR1, and IL1RN
expression was significantly decreased in high-risk group
compared with low-risk group (Wilcoxon rank-sum test;
4

P< .001). The ROC curves displayed that the AUCs of the
immune-related risk signature at 1, 2, and 3years were 0.813,
0.717, and 0.732 for the training set; 0.631, 0.690, and 0.755 for
the testing set; and 0.764, 0.710, and 0.728 for the entire set,
respectively (Fig. 4A–C left panel). The distribution of the risk
scores, the survival status of the patients ranked according to the
risk scores, and the expression values of the 8 genes are shown in
Fig. 4A–C middle panel. The Kaplan–Meier survival curve
combined with the log-rank test showed that patients in the high-
risk group had a significantly shorter survival time compared

http://links.lww.com/MD/F649


Figure 2. Volcano plot and hierarchical clustering analysis of DEMs and DEIRGs in the TCGA dataset. (A) Volcano plot of DEMs. (B) Cluster heat map of the top 50
DEMs. (C) Volcano plot of DEIRGs. (D) Cluster heat map of the top 50 DEIRGs. DEIRGs=differentially expressed IRGs; DEMs=differentially expressed mRNAs;
TCGA= The Cancer Genome Atlas.
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with patients in the low-risk group (Fig. 4A–C right panel, KM
Log-Rank P=3.47e�5, .014, and 3.12e�6, respectively). Our
results indicated a good performance of the immune-related risk
signature for the survival prediction of HCC patients.

3.3. External validation of the immune-related risk
signature

Toavoid bias arising fromonly investigating the TCGAcohort,we
enrolled a total of 232 HCC samples in the ICGC database to
validate the predictive value of the signature. We utilized the same
formula to calculate the risk score for each patient and then
classified the patients intohigh- and low-risk groups using the same
cut-off threshold. As shown in Fig. 4D, the AUCs for 1, 2, and 3
years were 0.704, 0.758, and 0.787, respectively. Consistent with
5

the results in the TCGA cohort, patients in the high-risk group had
significantly poorer overall survival than those in the low-risk
group (KM Log-Rank P=1.22e�4). Overall, our signature was
able to accurately predict the overall survival of HCC patients.
3.4. Independent prognostic role of the immune-related
risk signature

A total of 238 HCC patients in the TCGA cohort with complete
clinical information (including sex, age, BMI, AFP, histological
grade, BCLC stage, and vascular invasion), were included for
further analysis. Univariate and multivariate Cox regression
analyses indicated that BCLC stage (HR=2.135, P= .004),
vascular invasion (HR=2.142, P= .003), and risk score (HR=
1.612, P=2.36e�7) calculated from the immune-related risk

http://www.md-journal.com


Figure 3. Identification of key prognostic IRGs and the expression levels of the key prognostic IRGs genes in the risk group. (A, B) Identification of key prognostic
IRGs by LASSO regression analysis. IRGs= immune-associated genes; LASSO= least absolute shrinkage and selection operator.
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signature were independent prognostic factors for the overall
survival of HCC patients (Fig. 5A and B). In addition, the
prediction accuracy of the signature was compared with all
clinical factors. As shown in Fig. 5C–E, the signature had the
largest AUC at 1, 2, and 3year, this suggested the predictive
performance of the signature was superior to any other clinical
factors. Subsequently, all patients were stratified into subgroups
based on their clinicopathological factors, such as sex (female/
male), age (<60/≥60), BMI (<25/≥25), AFP (<400/≥400),
tumor grade (G1+2/G3+4), BCLC stage (I+II/III+IV), and
vascular invasion (no/yes), and each subgroup was further
divided into the low- and high-risk groups using the immune-
related risk signature (Table 2). The results of stratification
analysis showed that the high-risk patients in each stratum of all
clinicopathological factors had significantly shorter survival
times than the low-risk patients (KM Log-Rank P< .05) (see
Figure, Supplemental Figure 3, http://links.lww.com/MD/F650,
which illustrates the Kaplan–Meier analysis of overall survival
for patients in the 14 subgroups). Our findings suggest that the
immune-related risk signature is a promising independent risk
factor for the prognosis assessment of HCC.
Table 1

Univariate and multivariate analysis of the 8 optimal IRGs.

Univariate analysis

Gene ID HR (95% CI) P-val

APLN 1.298 (1.066, 1.582) .01
CDK4 1.721 (1.360, 2.176) 5.92E–
CXCL2 0.826 (0.724, 0.943) .005
ESR1 0.514 (0.321, 0.821) .005
IL1RN 0.739 (0.624, 0.875) 4.37E–
PSMD2 2.334 (1.610, 3.383) 7.60E–
SEMA3F 1.591 (1.101, 2.299) .013
SPP1 1.131 (1.060, 1.208) 2.13E–

CI= confidence interval; HR=hazard ratio.
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3.5. Establishment of a new predictive nomogram

We then established a new nomogram to predict 1-, 2-, and 3-
year overall survival in 238 HCC patients from the TCGA cohort
using 3 independent prognostic factors, including BCLC stage,
vascular invasion, and risk score (Fig. 6A). According to the total
points of the nomogram, the patients were divided into high- and
low-point groups using the median point value as the cut-off
threshold. Survival curves for the high- and low-point groups
were plotted by Kaplan–Meier analysis, and the results showed
that those with higher points had significantly poorer overall
survival (Fig. 6B, KMLog-Rank P= .001). The AUCs of the 1-, 2-
, and 3-year overall survival predictions for the nomogram were
0.750, 0.693, and 0.733, respectively (Fig. 6C). The C-index for
the nomogram was 0.689 (95% confidence interval: 0.629–
0.749). The calibration curve showed that the nomogram
performed well at predicting overall survival in HCC patients,
but the nomogram might underestimate or overestimate
mortality (Fig. 6D–F). Notably, decision curve analysis (DCA)
demonstrated that the nomogram showed the best net benefit for
1 to 3year OS (see Figure, Supplemental Figure 4, http://links.
lww.com/MD/F651, which illustrates The DCA curves of the
Multivariate analysis

ue HR (95% CI) P-value

1.178 (0.941, 1.476) .154
06 1.289 (0.967, 1.717) .083

0.924 (0.790, 1.079) .318
0.790 (0.479, 1.302) .355

04 0.819 (0.680, 0.987) .036
06 1.180 (0.739, 1.886) .488

1.279 (0.877, 1.865) .201
04 1.078 (0.993, 1.170) .073
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Figure 4. Time-dependent ROC analysis, risk score analysis, and Kaplan–Meier analysis for the immune-associated signature in HCC. (A) Time-dependent ROC
analysis, risk score, heatmap of mRNA expression, and Kaplan–Meier curve of the signature in the training set of TCGA cohort. (B) Time-dependent ROC analysis,
risk score, heatmap of mRNA expression, and Kaplan–Meier curve of the signature in the testing set of TCGA cohort. (C) Time-dependent ROC analysis, risk score,
heatmap of mRNA expression, and Kaplan–Meier curve of the signature in the entire included set of TCGA cohort. (D) Time-dependent ROC analysis, risk score,
heatmap of mRNA expression, and Kaplan–Meier curve of the signature in ICGC cohort. HCC=hepatocellular carcinoma; ICGC= International Cancer Genome
Consortium; ROC= receiver operating characteristic curve; TCGA=The Cancer Genome Atlas.
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nomogram for 1-, 2-, and 3-year overall survival in HCC,
respectively). Relative to traditional TNM stage and the immune-
related signature, the nomogram greatly improves the clinical net
benefit of HCC patients. In addition, the costs of misdiagnosis
using the nomogram was much lower than traditional TNM
stage and the signature. Therefore, DCA confirmed more benefit
was added to survival prediction with our nomogram, which
might enhance clinical management for HCC patients.

3.6. Clinical correlation of the immune-related risk signature

To investigate the ability of our signature to predict the
progression of HCC, we analyzed the relationships between
7

the risk factors from our signature (the risk score and 8 risk genes)
and clinical parameters (sex, age, BMI, AFP, histological grade,
BCLC stage, and vascular invasion) in the entire set. The results
indicated that the expression of CDK4 and SEMA3F was higher
in female patients, and the expression of ESR1 was higher in male
patients (Fig. 7A–C, Wilcoxon rank-sum test; P= .002, .013, and
.047, respectively). In patients older than 60years, the expression
of CXCL2 and ESR1 was higher than in those younger than 60
years (Fig. 7D and E, P= .001 and .012, respectively). The
expression of CXCL2 was higher in patients with BMI≥25 than
in those with BMI<25 (Fig. 7F, Wilcoxon rank-sum test; P=
8.99e–4). Patients with AFP≥400 had a higher expression of

http://www.md-journal.com


Figure 5. Univariate and multivariate Cox regression analysis, the time-dependent ROC contrastive analysis between the signature and all clinical factors, and
stratification analysis in the TCGA cohort. (A, B) Forrest plot of the univariate and multivariate Cox regression analysis in HCC. (C–E) The time-dependent ROC
contrastive analysis between the signature and all clinical factors at 1, 2, and 3year. HCC=hepatocellular carcinoma; ROC= receiver operating characteristic curve;
TCGA=The Cancer Genome Atlas.
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CDK4 and SEMA3F but a lower expression of CXCL2 and ESR1
than patients with AFP<400 (Fig. 7G–J, Wilcoxon rank-sum
test; P=2.86e–4, 0.038, 1.16e–7, and 9.59e–18, respectively). As
Table 2

Clinicopathological factors of HCC patients from TCGA cohort in
the low- and high-risk groups.

Risk score

Factor Low High P value

Sex
Male 81 (72.3%) 80 (63.5%) .189
Female 31 (27.7%) 46 (36.5%)

Age
<60 54 (48.2%) 61 (48.4%) 1.000
≥60 58 (51.8%) 65 (51.6%)

BMI
<25 64 (57.1%) 60 (47.6%) .181
≥25 48 (42.9%) 66 (52.4%)

AFP
<400 95 (84.8%) 87 (69.0%) .007
≥400 17 (15.2%) 39 (31.0%)

Grade
G1+2 76 (67.9%) 57 (45.2%) .001
G3+4 36 (32.1%) 69 (54.8%)

BCLC stage
I+II 96 (85.7%) 99 (78.6%) .207
III+IV 16 (14.3%) 27 (21.4%)

Vascular invasion
Yes 80 (71.4%) 72 (57.1%) .031
No 32 (28.6%) 54 (42.9%)

AFP=alpha-fetoprotein; BCLC=Barcelona Clinic Liver Cancer; BMI=body mass index; HCC=
hepatocellular carcinoma; TCGA=The Cancer Genome Atlas.
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the values of certain factors increased (CDK4, PSMD2, and SPD1
levels and the risk score), the histological grade of HCC patients
increased, and histological grade decreased in patients with
increased CXCL2 and ESR1 expression (Fig. 7K–P, Wilcoxon
rank-sum test; P= .002, .005, .033, 1.35e–4, .002, and 7.71e–9,
respectively). And the higher the expression of SEMA3F, the
higher the patient’s BCLC stage (Fig. 7Q, Wilcoxon rank-sum
test; P= .001). Patients with vascular invasion had higher SPP1
levels and risk scores and lower ESR1 expression than patients
without vascular invasion (Fig. 7R–T, Wilcoxon rank-sum test;
P=7.24e–4, .012, and .006, respectively). These results indicated
that the dysregulation of immune-related risk gene expression is
correlated with the development of HCC.

3.7. Mutation and immune analysis of the signature

As shown in Fig. 8A, the TMB was greater in the high-risk group
than in the low-risk group (Wilcoxon rank-sum test; P= .042).
Previous studies have suggested that the TMB is significantly
related to the clinical effectiveness of immunotherapy.[9] The
results demonstrated that our signature may stratify patients with
different sensitivities to immunotherapy. To further identify more
immune-related mechanisms of the signature, we analyzed the
correlation between the risk score and immune checkpoints,
including programmed cell death protein 1 (PD-1), programmed
cell death ligand 1 (PD-L1), and cytotoxic T-lymphocyte-related
protein 4 (CTLA-4). The Wilcoxon rank-sum test indicated that
HCC patients in the high-risk group tended to have higher
expression levels of PD-1 (P= .024), PD-L1 (P= .026), and
CTLA-4 (P=5.04e–4) (Fig. 8B–D). This finding suggests that
high-risk HCC patients might better respond to immune



Figure 6. Nomogram predicting overall survival for HCC patients. (A) A prognostic nomogram predicting 1-, 2-, and 3-year overall survival of HCC patients. (B)
Shows the Kaplan–Meier survival curves of the nomogram. (C) Shows the time-dependent ROC for 1-, 2-, and 3-year overall survival predictions for the nomogram.
(D–F) The calibration plot for internal validation of the nomogram at 1, 2, and 3year. The y-axis represents actual survival, and the x-axis represents nomogram-
predicted survival. HCC=hepatocellular carcinoma; ROC= receiver operating characteristic curve.
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checkpoint blockade (ICB) immunotherapy targeting PD-1 and
CTLA-4. As shown in Supplemental Figure 5A (see Figure,
Supplemental Figure 5A, http://links.lww.com/MD/F652, which
illustrates correlation between immune cells of all subtypes), we
found that most of the immune cells were strongly correlated,
especially B cells, CD8+ T cells, and dendritic cells, which
intensively suggested that immune cells play an important role in
the TME of HCC. The infiltration abundances of immune cells (B
cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and
dendritic cells) and the distribution of risk score for each patient
were also explored. The abundances of immune cells in HCC
tissues were significantly correlated with the risk score (Fig. 8E–
J), and these immune cells were significantly highly infiltrated in
the high-risk group in the TCGA LIHC cohorts (see Figure,
Supplemental Figure 5B, http://links.lww.com/MD/F652, which
illustrates infiltration abundance of immune cells in the high- and
low-risk groups), which indicated that our signature performed
well in predicting the immune status of HCC.

3.8. Functional enrichment analysis

To investigate the mechanisms underlying the immune-related
risk signature, we examined the expression correlation between
the risk genes from the signature and all IRGs using 2-sided
Pearson correlation coefficients in the entire set. As shown in
Supplemental Table 3 (see Table, Supplemental Table 3, http://
links.lww.com/MD/F655, which exhibits the 37 IRGs signifi-
cantly coexpressed with the risk genes in the signature), a total of
37 IRGs were expressed as significantly correlated with at least
one of the risk genes (jPearson correlation coefficientj>0.5 and
P< .01). Then, we performed functional enrichment analysis
with the clusterProfiler package to explore the underlying
biological processes and pathways of the 37 IRGs, revealing
9

444 enriched biological processes (see Table, Supplemental
Table 4, http://links.lww.com/MD/F656, which exhibits the 444
enriched biological processes) and 116 enriched KEGG pathways
(see Table, Supplemental Table 5, http://links.lww.com/MD/
F657, which exhibits the 116 enriched KEGG pathways). The
GO results of the top 10 immune-related biological processes are
shown in Fig. 9A, including Fc receptor signaling pathway, the
immune response-regulating cell surface receptor signaling
pathway, antigen receptor-mediated signaling pathway, regula-
tion of innate immune response, response to tumor necrosis
factor, cellular response to interleukin-1, neutrophil mediated
immunity, regulation of leukocyte cell–cell adhesion, regulation
of T cell activation, and regulation of leukocyte activation. The
top 10 immune-related KEGG pathways are shown in Fig. 9B,
including the T cell receptor signaling pathway, B cell receptor
signaling pathway, viral carcinogenesis, chemokine signaling
pathway, natural killer cell-mediated cytotoxicity, PD-L1
expression and PD-1 checkpoint pathway in cancer, IL-17
signaling pathway, NF-kappa B signaling pathway, Th17 cell
differentiation, and Th1 and Th2 cell differentiation. Therefore,
our results indicated that the immune-related risk signature
displays an intensive immune phenotype.

4. Discussion

The immune response in the tumor microenvironment (TME)
plays a critical role in tumor initiation and progression.[10,11] The
immune system can kill cancer cells and suppress cancer growth
by upregulating or downregulating IRGs at certain immune
checkpoints.[12,13] However, because tumors have the character-
istics of immune evasion, certain tumor cells can imitate the IRG
expression patterns of normal cells to elude the attack from the
immune system.[14,15] Therefore, the expression of IRGsmay be a
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Figure 7. Relationships of the risk factors in the signature with the clinical parameters of patients in the TCGA cohort. (A) CDK4 expression and sex. (B) SEMA3F
expression and sex. (C) ESR1 expression and sex. (D) CXCL2 expression and age. (E) ESR1 expression and age. (F) CXCL2 expression and BMI. (G) CDK4
expression and AFP. (H) SEMA3F expression and AFP. (I) CXCL2 expression and AFP. (J) ESR1 expression and AFP. (K) CDK4 expression and histological grade.
(L) PSMD2 expression and histological grade. (M) SPP1 expression and histological grade. (N) Risk score and histological grade. (O) CXCL2 expression and
histological grade. (P) ESR1 expression and histological grade. (Q) SEMA3F expression and BCLC stage. (R) SPP1 expression and vascular invasion. (S) Risk score
and vascular invasion. (T) ESR1 expression and vascular invasion. AFP=alpha-fetoprotein; BCLCBarcelona Clinic Liver Cancer; BMI=body mass index; TCGA=
The Cancer Genome Atlas.
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vital predictor of HCC progression and prognosis. In the present
study, we utilized the TCGA and ICGC cohorts to establish and
validate a robust immune-related risk signature consisting of 8
IRGs for HCC that can predict patients’ overall survival and was
significantly related to clinicopathological factors. We also built a
nomogram by combining the signature with clinicopathological
factors to increase the accuracy in predicting HCC prognosis. By
investigating the relationship of the risk score and 8 risk genes
from our signature with clinical traits, we found that the aberrant
expression of the immune-related risk genes was correlated with
the development of HCC. More importantly, we found that the
10
mutation status and the immune status were associated with this
signature, and the signature enriched an intensive immune
phenotype. These discoveries shed light on the value of our
signature for HCC patient prognosis and on possible new
immune targets for immunotherapy.
First, we screened 1416 DEMs, among which we found 90

DEIRGs, including 49 upregulated IRGs and 41 downregulated
IRGs. We then sequentially performed univariate, LASSO, and
multivariate Cox regression analyses to construct an immune-
related risk signature. The signature consisted of 8 IRGs
significantly related to HCC patient overall survival (including



Figure 8. Mutation and immune analysis of the signature in the TCGA cohort. (A) Comparison of mutation burden between the high- and low-risk groups. (B–D)
Comparison of PD-1, PD-L1, and CTLA-4 expression between the high- and low-risk groups. (E–G) Analysis of the correlation between the risk score and immune
cell infiltration. CTLA-4=cytotoxic T-lymphocyte-related protein 4; PD-1=programmed cell death protein 1; PD-L1=programmed cell death ligand 1; TCGA=The
Cancer Genome Atlas.
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APLN, CDK4, CXCL2, ESR1, IL1RN, PSMD2, SEMA3F, and
SPP1). For the genes in our signature, 6 of themwere chemokines,
cytokines, or cytokine receptors that actively participate in the
inflammatory process of tumor growth, progression, and
metastasis. Chemokines and cytokines produced by tumor cells
and other cellular components of the TME are able to facilitate
the occurrence of tumor-associated or tumor-elicited inflamma-
tion, and this type of inflammation is a key driver of tumor
progression and an essential component of the TME.[16,17]

Chemokines and cytokines act in autocrine and paracrine
manners through receptors on tumor cells to activate STAT3,
AP1, and NFkB families of potential oncogenic transcription
11
factors. They are also involved in the progression of tumor
growth through the induction of survival factors and prolifera-
tion.[18] Thus, according to our signature, high-riskHCC patients
may have increased inflammation in the tumor microenviron-
ment, which promotes the progression of HCC and leads to the
poor overall survival of patients. In addition, of the 8 IRGs that
compose the signature, CDK4was themost significant gene in the
univariate Cox regression analysis. CDK4 is one of the core
proteins of the cell cycle regulatory network, and changes in its
expression activity directly affect cell cycle progression; more-
over, its overexpression is closely related to tumor initiation,
progression, and metastasis.[19] A recent study indicated that the

http://www.md-journal.com


Figure 9. Functional enrichment analysis of the 37 IRGs that significantly coexpressedwith the risk genes in the signature. (A) Top 10 immune-associated biological
processes. (B) Top 10 immune-associated KEGG pathways. IRGs= immune-associated genes; KEGG=Kyoto Encyclopedia of Genes and Genomes.
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expression of CDK4 can affect the prognosis of HCC patients,
and the higher its expression level is, the worse the prognosis.[20]

CDK4 and CDK6 inhibitors have been considered the most
promising cell cycle therapeutics, and intense efforts are now
being conducted to expand the field of this paradigm.[21] PSMD2
is another gene in the signature that attracts our attention. The
PSMD2 protein is a subunit of the 19S regulatory complex of the
26S proteasome and belongs to the ubiquitin–proteasome system
(UPS).[22] Prior studies demonstrated that knocking down
PSMD2 can suppress tumor cell proliferation, and PSMD2
may serve as a potential therapeutic target for tumors.[23,24]

PSMD2 is able to modulate HCC cell proliferation by regulating
cellular lipid metabolism. The knockdown of PSMD2 reduces the
formation of cellular lipid droplets, and PSMD2 also regulates
the expression level of genes involved in lipid synthesis through
the p38-JNK and AKT signaling pathways.[25] These results
further suggest the importance of our signature in the HCC
microenvironment.
Next, we combined the signature with conventional clinical

factors, including BCLC stage and vascular invasion, to develop a
nomogram with good performance. This nomogram could be a
valuable dIRGnostic and prognostic management tool for HCC.
To explore the clinical utility of the signature, we evaluated the
correlations of the risk factors in our signature with clinical
factors. The risk score and 8 risk genes were significantly related
to the progression of HCC. Our research identified the immune-
related differences between different clinical subsets in HCC. Our
findings also reflect that the expression differences of IRGs may
lead to different states of the TME, which further affects the
prognosis of different clinical subsets. A recent report suggested
that the expression profile of IRGs in the TME of HCC can
predict tumor progression and patient overall survival,[26] which
was consistent with our research. Thus, our signature displayed
decent clinical applicability in predicting the development of
HCC.
We also examined whether our signature is related to TMB. A

previous study showed that tumors with high TMB have the
potential to produce more neoantigens, which in turn activate the
immune system to recognize and clear tumor cells, suggesting that
high TMB can enhance tumor sensitivity to ICB therapy.[27] In
our signature, the TMB was higher in the high-risk group than in
the low-risk group, which not only indicated that our signature
has good predictive power but can also stratify patients with
different susceptibilities to immunotherapy. In addition, we
found that as the risk score increased, the infiltration abundances
of immune cells (B cells, CD4+ T cells, CD8+ T cells dendritic
12
cells, neutrophils, and macrophages) in HCC tissues also
increased. Macrophages were the most statistically significant
and most positively correlated with the risk score. A prior report
demonstrated that tumor-associated macrophages (TAMs) serve
as the main immune cells in the TME, and they could improve the
cell proliferation, invasion, and metastatic ability of HCC by
secreting multiple cytokines and inducing the occurrence of
epithelial–mesenchymal transition (EMT).[28] Culturing TAMs
together with HCC cells can significantly enhance the stem cell
properties of HCC as well as EMT progression, which promotes
the progression of HCC.[29] We also found that patients in the
high-risk group had more CD4+ and CD8+ T-cell infiltration
than those in the low-risk group. Further research indicated that
high-risk group patients tended to have higher expression levels
of PD1, PD-L1, and CTLA-4. This finding suggests that despite
the high infiltration abundance of T cells in the HCC
microenvironment, they are unable to function normally due
to inhibition by the PD-1- or CTLA-4-mediated suppression
pathways, which leads to immune evasion of the tumor. It was
also reported that tumors with pre-existing intratumor T cells
inhibited by the PD-1/PD-L1 signaling pathway are most likely to
benefit from ICB.[30] Hence, our results revealed that the high-
risk group of patients may be associated with a better response to
ICB targeting PD-1 and CTLA-4, which enables the personalized
treatment of HCC patients. Finally, we conducted functional
enrichment analysis on the 37 IRGs that significantly coexpressed
with the risk genes in the signature and obtained intensive
immune-related phenotypes. This further proved that our
signature was closely linked to the immune system.
Our study was the first to systematically establish and validate

a multigene immune-related risk signature with independent
prognostic power for HCC patients. We utilized multiple
algorithms (including univariate Cox, LASSO, and multivariate
Cox regression) to identify key prognostic IRGs and construct
signatures based on large cohorts from the TCGA and ICGC
databases. More importantly, we analyzed TMB, immune cell
infiltration, immune checkpoints, and immune-related functions,
which reflected the immune response intensity in the HCC
microenvironment. Our signature may be helpful for clinical
management and personalized immunotherapy decisions. Nev-
ertheless, our study had several limitations. First, we did not
perform a prospective clinical trial to validate the signature.
Moreover, further investigation with in vivo and in vitro
experiments should be conducted to explore the molecular
mechanisms of the 8 IRGs in our signature during the progression
of HCC.
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In conclusion, our study developed a robust immune-related
risk signature and built a predictive nomogram incorporating the
signature and clinical factors to predict overall survival of HCC.
The signature was not only closely related to the invasion,
progression, and prognosis of HCC, but also has a strong
correlation with the local immune status. The nomogram reliably
predicted overall survival of HCC, which may facilitate clinical
management and making of medical decisions.
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