



## Stereotactic Body Radiotherapy vs. Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis

Yang-Xun Pan<sup>1,2,3</sup>, Yi-Zhen Fu<sup>1,2</sup>, Dan-Dan Hu<sup>1,2</sup>, Qian Long<sup>1,4</sup>, Jun-Cheng Wang<sup>1,2</sup>, Mian Xi<sup>1,5</sup>, Shi-Liang Liu<sup>1,4</sup>, Li Xu<sup>1,2</sup>, Meng-Zhong Liu<sup>1,4</sup>, Min-Shan Chen<sup>1,2</sup> and Yao-Jun Zhang<sup>1,2\*</sup>

#### **OPEN ACCESS**

#### Edited by:

Aali Jan Sheen, Manchester Royal Infirmary, United Kingdom

#### Reviewed by:

Alex Nicolas Gordon-Weeks, University of Oxford, United Kingdom Martin Prince, Manchester University NHS Foundation Trust (MFT), United Kingdom Magdy Samy Attia, Leeds Teaching Hospitals NHS Trust, United Kingdom

> \***Correspondence:** Yao-Jun Zhang zhangyuj@sysucc.org.cn

#### Specialty section:

This article was submitted to Surgical Oncology, a section of the journal Frontiers in Oncology

Received: 27 December 2019 Accepted: 27 July 2020 Published: 29 October 2020

#### Citation:

Pan Y-X, Fu Y-Z, Hu D-D, Long Q, Wang J-C, Xi M, Liu S-L, Xu L, Liu M-Z, Chen M-S and Zhang Y-J (2020) Stereotactic Body Radiotherapy vs. Radiofrequency Ablation in the Treatment of Hepatocellular Carcinoma: A Meta-Analysis. Front. Oncol. 10:1639. doi: 10.3389/fonc.2020.01639 <sup>1</sup> Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China, <sup>2</sup> Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China, <sup>3</sup> Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden, <sup>4</sup> Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, China, <sup>5</sup> Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China

**Background:** Both stereotactic body radiotherapy (SBRT) and radiofrequency ablation (RFA) are effective local treatments for hepatocellular carcinoma (HCC), but whether RFA is superior to SBRT is still controversial. Therefore, we performed a meta-analysis to compare the treatment outcomes of SBRT with RFA as curable or bridge intention.

**Methods:** We searched online databases for studies that compared treatment outcomes for SBRT and RFA. Eligibility criteria included evaluation of local control, overall survival (OS), transplant rate, and post-transplant pathological necrosis.

**Results:** As no randomized clinical trials met the criteria, 10 retrospective studies with a total of 2,732 patients were included. Two studies were in favor of SBRT in local control, two studies preferred RFA in OS, and others reported comparable outcomes for both. SBRT demonstrated significantly higher 1- and 3-year local control than RFA [odds ratio (OR) 0.42, 95% CI 0.24–0.74, P = 0.003; and OR 0.54, 95% CI 0.37–0.80, P = 0.002, respectively]. However, SBRT reported significantly shorter 1- and 2-year OS (OR 1.52, 95% CI 1.21–1.90, P = 0.0003; and OR 1.66, 95% CI 1.38–2.01, P < 0.00001, respectively). As bridge treatment, no significant difference was shown in transplant rate and post-transplant pathological necrosis rate (OR 0.57, 95% CI 0.32–1.03, P = 0.060; and OR 0.49, 95% CI 0.13–1.82, P = 0.290, respectively).

**Conclusions:** This study demonstrates SBRT is able to complete a better local control for HCC than RFA, though the OS is inferior to RFA because of tumor burden or liver profiles of the enrolled studies. Well-designed, randomized, multicenter trials will be required to further investigate the conclusion.

Keywords: minimally invasive treatment, meta-analysis, hepatocellular carcinoma, stereotactic body radiotherapy, radiofrequency ablation

1

## INTRODUCTION

Liver transplantation is the most beneficial therapy for early hepatocellular carcinoma (HCC) patients, as it removes both the tumor and the cirrhotic liver (1). However, given organ availability limitation, a number of patients who may benefit from this treatment have to stay on the waiting list for a long time. Therefore, stereotactic body radiotherapy (SBRT) and radiofrequency ablation (RFA) are offered as potential alternative local control modalities for patients in the waiting list (2, 3).

RFA induces coagulative necrosis of tumor through thermal effect and is the first-line treatment for small HCC ( $\leq$ 3 cm), providing comparable long-term outcome with resection (4). However, RFA has several contraindications, including large tumor size and lesions adjacent to major vessels or close to the liver hilum. The above circumstances may result in incomplete ablation, which potentially leads to worse prognosis (5–9).

SBRT is an advanced technology that delivers ablative radiation doses to tumors in a few fractions while minimizing the dose to normal liver tissue. Early results with SBRT have shown considerable local control even for large tumors or HCC ineligible for surgery (10). Moreover, SBRT has been frequently used as an alternative to RFA for small HCC patients with tumors near critical anatomical structures or major vessels due to the heat sink effect that can occur with RFA (11).

Recent publications have reported either comparable outcomes between the two treatment modalities or favorable outcomes for one to the other (3, 10, 12–19). Most of the published studies retrospectively reviewed clinical data in one single center; the results of these observational studies could have been strongly affected by several biases, and hence, the efficacy of these two treatments regarding disease control, long-term survival, and treatment related complications is ununified. With the absence of randomized data, meta-analysis might be able to draw a relative objective and reliable conclusion by integrating data from different clinical centers. The aim of this meta-analysis is mainly to compare the benefits of SBRT and RFA in the local progression (LP) control and overall survival (OS) in the treatment for HCC and to further help in clinical decision making.

## MATERIALS AND METHODS

## **Study Selection**

The inclusion criteria of this meta-analysis were as follows: (1) diagnosed primary liver cancer definitively and patients diagnosed with HCC based on pathological evidence from fineneedle aspiration (FNA) or in the absence of biopsy evidence, based on imaging techniques including contrast-enhanced ultrasonography (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI) companied with alphafetoprotein elevation; (2) no evidence of invasion into the major portal/hepatic vein branches or extrahepatic metastasis based on radiologic imaging; (3) patients without previous treatment of transcatheter arterial chemoembolization (TACE), surgery, chemotherapy, or other antitumor treatment; (4) documented indications for SBRT and RFA clearly; (5) either randomized controlled trials (RCTs) or retrospective studies were candidates; (6) patients of two groups with comparable basic clinical characters; and (7) studies with outcome information regarding LP rates, OS rates, and/or transplant rates.

Studies with following characteristics were excluded: (1) studies that did not report original data, including abstracts, case reports, expert opinions, editorials, reviews, or letters; (2) either group in the studies or combined other therapies; and (3) studies based on the same cohort.

## Search Strategy

A systematic online databases search of PubMed Central, Embase, Cochrane Library, and Google Scholar was separately conducted by two reviewers to identify all relevant availability of studies until August 26, 2019.

This meta-analysis was performed consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement checklist. The subject headings (MeSH) search included "radiofrequency ablation," "stereotactic radiation therapy," and "hepatocellular carcinoma"; and keywords search was used, including "radiofrequency ablation," "stereotactic body radiation therapy," and "hepatocellular carcinoma." These terms were used in different combinations. Only studies on humans and English-language studies were included. A manual research was performed by browsing all references of all identified studies. This progressed research was repeated to ensure to include the whole relevant studies. The research was completed by two reviewers before the data analysis independently (Y-XP and MX). If a study was controversial, the corresponding author was asked to judge (Y-JZ).

## **Data Collection**

Data were extracted from the included studies, including number of patients in the SBRT and RFA groups; age; gender; primary tumor size; number of tumors; median dose of SBRT; Child– Pugh class; median follow-up time; 1-, 2-, and 3-year LP rates; 1-, 2-, 3-, and 5-year OS rates; post-transplant necrosis rates; and time to liver transplant.

## Definitions

LP was defined as the recurrence of lesion in the treatment area by imaging studies. And LP time was the period from the initial treatment to the discovery of LP or last follow-up. The OS was defined the period from the date of initial treatment of the HCC to the date of death related to any cause or last follow-up. Transplant rate was the proportion of patients who received liver transplantation after SBRT or RFA therapies. Post-transplant pathological necrosis was evaluated by post-transplant pathology.

## **Statistical Analysis and Synthesis**

All analyses were performed with the help of statistical software, named Review Manager, version 5.3 (Nordic Cochrane Center; Oxford, England). For data evaluation, patients were assigned into two groups: the SBRT-treated group and the RFA-treated group. The odds ratio (OR) and/or hazard ratios (HRs) accompanying 95% confidence interval (95% CI) were calculated for dichotomous and univariable analysis outcomes in terms

#### TABLE 1 | Characteristics of include studies.

| References            | Design  | Group | Number<br>of<br>patients | Number<br>of tumor<br>(1/≥2) | Age (years)      | Sex<br>(M/F) | Tumor size<br>(cm) | Median<br>dose (Gy) | Child-Pugh<br>class<br>(A/B/C) | Median follow<br>up (months) |
|-----------------------|---------|-------|--------------------------|------------------------------|------------------|--------------|--------------------|---------------------|--------------------------------|------------------------------|
| Mohamed et al. (16)   | Non-RCT | SBRT  | 23                       | 14/9                         | 57.5 (44–70.2)   | 20/3         | NR                 | 50 (45–60)          | 17/0/5                         | 41 (7.3–77.9)                |
| (American)            |         | RFA   | 9                        | 8/1                          | 57.5 (44–70.2)   | 8/1          | NR                 |                     | 9/0/0                          | 41 (7.3–77.9)                |
| Wahl et al. (10)      | Non-RCT | SBRT  | 63                       | 49/14*                       | 62 (35–85)       | 54/9*        | 2.2 (0–10)         | 50 (27–60)          | 43/18/2*                       | 27 (0.5–86.5)*               |
| (American)            |         | RFA   | 161                      | 109/52*                      | 60 (31–81)       | 117/44*      | 1.8 (0.6–7.0)      |                     | 80/68/13*                      | 50.9 (3.5–112.8)*            |
| Sapisochin et al. (3) | Non-RCT | SBRT  | 36                       | 17/19*                       | 60.4 (56.4–64.8) | 30/5         | 4.5 (2.9–5.8)*     | 36 (30–40)          | 22/14/0*                       | 28.1 (14.9–64.7)*            |
| (Canada)              |         | RFA   | 244                      | 156/88*                      | 57.8 (53.5–62)   | 208/36       | 2.5 (1.9–3)*       |                     | 158/68/8*                      | 52.2 (21–90.7)*              |
| Hara et al. (21)      | Non-RCT | SBRT  | 106                      | 94/12                        | 74 (48–93)       | 71/35        | 1.8 (1.0–3.0)      | 37.5 (35–40)        | 104/2/0                        | 33.7 (0.5–75.0)              |
| (Japan)               |         | RFA   | 106                      | 93/13                        | 75 (47–88)       | 76/30        | 1.7 (0.7–2.8)      |                     | 105/1/0                        | 29.9 (6.0–72.8)              |
| Berger et al. (19)    | Non-RCT | SBRT  | 157                      | NR                           | 68.61 (11.74)    | 113/44       | 4.8 (4.8)          | NR                  | NR                             | NR                           |
| (American)            |         | RFA   | 627                      | NR                           | 68.21 (10.00)    | 454/173      | 4.2 (4.6)          |                     | NR                             | NR                           |
| Duan et al. (22)      | Non-RCT | SBRT  | 37                       | NR                           | NR               | NR           | 1–5                | NR                  | NR                             | NR                           |
| (China)               |         | RFA   | 40                       | NR                           | NR               | NR           | 1–5                |                     | NR                             | NR                           |
| Kim et al. (17)       | Non-RCT | SBRT  | 95                       | 95/0                         | 63.0 (35.0–85.0) | 80/15        | 2.4 (0.7–5.5)      | 60 (52–60)          | 90/5/0                         | 21.9 (11.8–31.2)             |
| (Korea)               |         | RFA   | 95                       | 95/0                         | 67.0 (40.0–86.0) | 83/12        | 2.1 (0.8–4.6)      |                     | 90/5/0                         | 21.6 (11.1–37.3)             |
| Rajyaguru et al. (15) | Non-RCT | SBRT  | 275                      | 190/85                       | 65 (55–75)       | 194/81       | 2.5 (2.5–3.5)      | 45 (45–55)          | NR                             | 25.3 (14.1–41.0)             |
| (American)            |         | RFA   | 521                      | 349/172                      | 65 (55–75)       | 381/140      | 2.5 (2.5–3.5)      |                     | NR                             | 25.3 (14.1–41.0)             |
| Shiozawa et al. (16)  | Non-RCT | SBRT  | 35                       | 35/0                         | 75.1 (67–83)*    | 24/11        | 2.86 (1.2–5)*      | 50.6 (7.8)          | 28/7/0                         | 12.6 (6.8–35.5)*             |
| (Japan)               |         | RFA   | 38                       | 38/0                         | 68.7 (42–86)*    | 27/11        | 1.75 (0.7–2.9)*    |                     | 31/7/0                         | 18.7 (7.4–40.8)*             |
| Parikh et al. (13)    | Non-RCT | SBRT  | 32                       | NR                           | 77 (72–81.25)    | 20/12        | NR                 | NR                  | NR                             | NR                           |
| (American)            |         | RFA   | 32                       | NR                           | 79 (76–82)       | 22/10        | NR                 |                     | NR                             | NR                           |
| Total                 |         | SBRT  | 859                      |                              |                  |              |                    |                     |                                |                              |
|                       |         | RFA   | 1,873                    |                              |                  |              |                    |                     |                                |                              |

SBRT, stereotactic body radiotherapy; RFA, radiofrequency ablation; NR, not reported; RCT, randomized controlled trial. \*Statistically significant (P < 0.05).

of LP, OS, and prognostic factor on treatment allocation. Meanwhile, we assessed the heterogeneity among trials according to the chi-squared ( $\chi^2$ ) test including the inconsistency factor ( $I^2$ ). The heterogeneity was defined as a P < 0.05 or an  $I^2 > 40\%$  (20). Given the small number of included studies, though the heterogeneity was not high, the random effects model was applied throughout to enhance the reliability of results. A potential publication bias was assessed by visually inspecting the Begg funnel plots in which the standard error (SE) of log OR or log HR was plotted against the OR or HR, respectively.

## RESULTS

#### Search Results and Quality Assessment

A total of 440 studies were identified for the first time from PubMed by the search strategy previously established, and 269 studies were identified *via* other sources or review. Subsequently, 11 studies were deleted for duplication with the help of Mendeley (Elsevier Inc., Atlanta, GA, USA). The titles and abstracts of 270 studies were then screened for inclusion. The full texts of 36 studies were read; and, finally, we included 10 non-RCT studies that met the present meta-analysis criteria (3, 10, 13–16, 18, 19, 21, 22). The details of the PRISMA flow diagram of the literature for meta-analysis is shown in **Supplementary Figure 1** (23).

In the present analysis, three studies were based on already existing database (13, 15, 19), and the remaining seven studies were based on retrospective studies (3, 10, 16–18, 21, 22). Two

studies conducted SBRT or RFA for transplant intent. Five studies were performed in the USA (10, 13, 15, 18, 19), two in Japan (12, 16), one in Canada (3), one in South Korea (17), and one in China (22). Out of 2,732 patients from the 10 included studies, 859 patients were classified into the SBRT group, and the rest of the 1,873 patients were classified into the RFA group. The Newcastle Ottawa Scale (NOS) (24) were used to assess the quality of non-randomized studies. Although the qualities of selections and outcomes were relatively appropriate in terms of each study, over 50% of included studies were medium-score studies because of inconsistent comparability. Therefore, we believed that the present meta-analysis possesses a medium class of quality (**Supplementary Table 1**).

Among included studies, two studies were in favor of SBRT on local control (10, 21), two studies preferred RFA on OS (15, 19), and others reported comparable outcomes between groups (3, 13, 16–18, 22). Notably, according to baseline characteristics, several studies enrolled patients in SBRT group were prone to suffer from larger tumor diameter (3, 10, 16, 19) and higher proportion of Child–Pugh C patients [(18); **Table 1**]. These groups were evaluated for therapeutic efficacy in treating HCC patients. The details of the studies included in the present meta-analysis are listed in **Table 1**.

### Local Progression Rates

Six out of the 10 studies illustrated 1-, 2-, and 3-year LP rates (10, 16–18, 21, 22). Our pooled results showed that the SBRT

|                                   | SBR         | Г              | RFA       |          |                        | Odds Ratio          | Odds Ratio                   |
|-----------------------------------|-------------|----------------|-----------|----------|------------------------|---------------------|------------------------------|
| Study or Subgroup                 | Events      | Total          | Events    | Total    | Weight                 | M-H, Random, 95% Cl | M-H, Random, 95% Cl          |
| Duan 2016                         | 2           | 37             | 4         | 40       | 10.6%                  | 0.51 [0.09, 2.99]   |                              |
| Kim 2019                          | 15          | 95             | 23        | 95       | 62.7%                  | 0.59 [0.28, 1.21]   |                              |
| Mohamed 2016                      | 2           | 23             | 2         | 9        | 7.2%                   | 0.33 [0.04, 2.83]   |                              |
| Shiozawa 2015                     | 1           | 35             | 1         | 38       | 4.2%                   | 1.09 [0.07, 18.09]  |                              |
| Wahl 2016                         | 2           | 63             | 27        | 161      | 15.3%                  | 0.16 [0.04, 0.71]   |                              |
| Total (95% CI)                    |             | 253            |           | 343      | 100.0%                 | 0.47 [0.26, 0.83]   | •                            |
| Total events                      | 22          |                | 57        |          |                        |                     |                              |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi²  | = 2.93         | df = 4 (P | 9 = 0.57 | '); l² = 0%            |                     | 0.05 0.2 1 5 20              |
| Test for overall effect: 2        | Z = 2.59 (F | $P = 0.0^{-1}$ | 10)       |          |                        |                     | Favours [SBRT] Favours [RFA] |
|                                   |             |                |           |          |                        |                     |                              |
|                                   | SBR         | Г              | RFA       |          |                        | Odds Ratio          | Odds Ratio                   |
| Study or Subgroup                 | Events      | Total          | Events    | Total    | Weight                 | M-H, Random, 95% Cl | M-H, Random, 95% Cl          |
| Duan 2016                         | 3           | 37             | 6         | 40       | 9.2%                   | 0.50 [0.12, 2.16]   | • •                          |
| Kim 2019                          | 24          | 95             | 33        | 95       | 50.3%                  | 0.64 [0.34, 1.19]   |                              |
| Shiozawa 2015                     | 3           | 35             | 4         | 38       | 8.0%                   | 0.80 [0.17, 3.84]   | • •                          |
| Wahl 2016                         | 10          | 63             | 32        | 161      | 32.5%                  | 0.76 [0.35, 1.66]   |                              |
| Total (95% Cl)                    |             | 230            |           | 334      | 100.0%                 | 0.67 [0.43, 1.05]   |                              |
| Total events                      | 40          |                | 75        |          |                        |                     |                              |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi²  | = 0.33         | df = 3 (P | 9 = 0.95 | 5); l² = 0%            |                     |                              |
| Test for overall effect: 2        | Z = 1.76 (F | > = 0.08       | 8)        |          |                        |                     | Favours [SBRT] Favours [RFA] |
|                                   | SBR         | Ŧ              | RFA       |          |                        | Odds Ratio          | Odds Ratio                   |
| Study or Subgroup                 |             | -              |           |          | Weight                 | M-H, Random, 95% Cl | M-H, Random, 95% CI          |
| Duan 2016                         | 4           | 37             | 7         | 40       | 9.0%                   | 0.57 [0.15, 2.14]   |                              |
| Hara 2019                         | 7           | 106            | ,<br>21   | 106      | 19.2%                  | 0.29 [0.12, 0.71]   |                              |
| Kim 2019                          | 32          | 95             | 40        | 95       | 45.1%                  | 0.70 [0.39, 1.26]   | <b>_</b> _                   |
| Wahl 2016                         | 10          | 63             | 40        | 161      | 40.1 <i>%</i><br>26.8% | 0.57 [0.27, 1.23]   | <b>_</b>                     |
|                                   | 10          | 00             | 40        | 101      | 20.070                 | 0.07 [0.27, 1.20]   |                              |
|                                   |             | 301            |           | 402      | 100.0%                 | 0.55 [0.37, 0.81]   | ◆                            |
| Total (95% CI)                    |             |                |           |          |                        |                     |                              |
| Total (95% CI)<br>Total events    | 53          |                | 108       |          |                        |                     |                              |

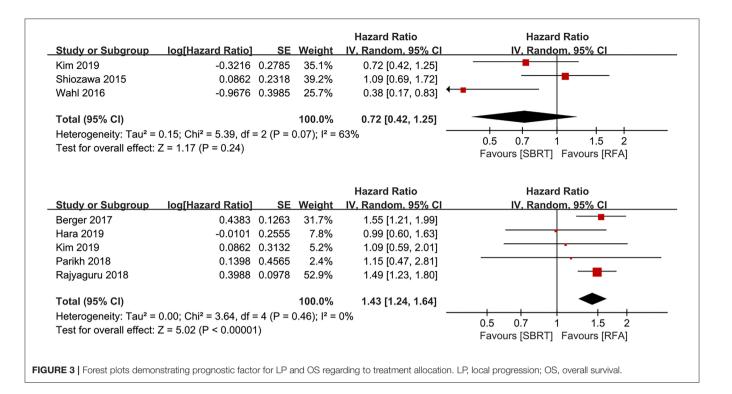
FIGURE 1 | Forest plots demonstrating 1-, 2-, and 3-year LP in SBRT and RFA for HCC. LP, local progression; SBRT, stereotactic body radiotherapy; RFA, radiofrequency ablation; HCC, hepatocellular carcinoma.

group had significantly better 1- and 3-year local control rates than the RFA group (OR 0.47, 95% CI 0.26–0.83, P = 0.010; and OR 0.55, 95% CI 0.37–0.81, P = 0.003, respectively). However, the 2-year LP rate showed marginal benefit of SBRT group than the RFA group (OR 0.67, 95% CI 0.43–1.05, P = 0.080). No heterogeneity was shown among the studies of 1-, 2-, and 3-year LP rates ( $\chi^2 = 2.93$ ,  $I^2 = 0\%$ ;  $\chi^2 = 0.33$ ,  $I^2 = 0\%$ ; and  $\chi^2 = 2.66$ ,  $I^2 = 0\%$ , respectively) (**Figure 1**).

## **Overall Survival**

Nine studies with 2,700 patients compared OS rates of SBRT group with RFA group (3, 10, 13, 15–17, 19, 21, 22), one study with 280 patients were excluded as both SBRT and RFA were applied as bridge therapies before transplantation, and the actual OS rates of SBRT or RFA might be affected by subsequent transplantation (3). The pool results showed that 2-year OS rates of RFA group were better than those of the SBRT group (OR 1.57,

95% CI 1.23–2.00, P < 0.0003), whereas there were no differences for 1-, 3-, and 5-year OS rates in both groups (OR 1.38, 95% CI 1.00–1.93, P = 0.050; OR 1.44, 95% CI 0.90–2.33, P = 0.130; and OR 1.35, 95% CI 0.81–2.26, P = 0.250, respectively; **Figure 2**).


Additionally, a secondary analysis was performed to control the potential report bias, and we enrolled the studies that reported outcomes of both LP and OS. As a result, the 1-, 2-, 3-, and 5-year OS rates indicated no significant difference between both groups (OR 0.96, 95% CI 0.59–1.57, P = 0.870; OR 1.35, 95% CI 0.89–2.03, P = 0.160; OR 0.97, 95% CI 0.28–3.36, P = 0.960; and OR 0.65, 95% CI 0.37–1.16, P = 0.150, respectively; **Supplementary Figure 2**).

## **Prognosis for Treatment Allocation**

Three and five studies evaluated the results of treatment allocation as a prognostic factor for LP (10, 16, 17) and OS (13, 15, 17, 19, 21), respectively. The treatment allocation was

|                                                                                                                                                                                                                                                                                                                                                                         | SBR                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RFA                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                   | Odds Ratio                                                                                                                                                                                                                                                                                                                                               | Odds Ratio                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Events                                                                                                                                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                   | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                      | M-H, Random, 95% Cl                                               |
| Berger 2017                                                                                                                                                                                                                                                                                                                                                             | 52                                                                                                                                                                                                                                            | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 126                                                                                                                                                                                                | 627                                                                                                                                          | 27.5%                                                                                                                                                                                                                                                                             | 1.97 [1.34, 2.90]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Duan 2016                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                  | 40                                                                                                                                           | 1.8%                                                                                                                                                                                                                                                                              | 2.23 [0.19, 25.66]                                                                                                                                                                                                                                                                                                                                       |                                                                   |
| lara 2019                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                             | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                  | 106                                                                                                                                          | 7.5%                                                                                                                                                                                                                                                                              | 0.73 [0.25, 2.20]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Kim 2019                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                            | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                 | 95                                                                                                                                           | 11.1%                                                                                                                                                                                                                                                                             | 1.00 [0.42, 2.35]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Parikh 2018                                                                                                                                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                  | 32                                                                                                                                           | 6.6%                                                                                                                                                                                                                                                                              | 1.00 [0.31, 3.27]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Rajyaguru 2018                                                                                                                                                                                                                                                                                                                                                          | 65                                                                                                                                                                                                                                            | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76                                                                                                                                                                                                 | 521                                                                                                                                          | 28.4%                                                                                                                                                                                                                                                                             | 1.81 [1.25, 2.62]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Shiozawa 2015                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                             | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                  | 38                                                                                                                                           | 1.1%                                                                                                                                                                                                                                                                              | 5.75 [0.27, 123.97]                                                                                                                                                                                                                                                                                                                                      |                                                                   |
| Wahl 2016                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49                                                                                                                                                                                                 | 161                                                                                                                                          | 16.0%                                                                                                                                                                                                                                                                             | 0.78 [0.40, 1.50]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                               | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | 1620                                                                                                                                         | 100.0%                                                                                                                                                                                                                                                                            | 1.38 [1.00, 1.93]                                                                                                                                                                                                                                                                                                                                        | <b>•</b>                                                          |
| Total events                                                                                                                                                                                                                                                                                                                                                            | 162                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 279                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                   | . / .                                                                                                                                                                                                                                                                                                                                                    |                                                                   |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                               | = 10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                    | P = 0.1                                                                                                                                      | I 6)∙ I² = 33                                                                                                                                                                                                                                                                     | 0/_                                                                                                                                                                                                                                                                                                                                                      |                                                                   |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    | 1 = 0.1                                                                                                                                      | 10), 1 = 00                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                          | 0.2 0.5 1 2 5                                                     |
| rest for overall effect.                                                                                                                                                                                                                                                                                                                                                | 2 - 1.93 (1                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5)                                                                                                                                                                                                 |                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          | Favours [SBRT] Favours [RFA]                                      |
|                                                                                                                                                                                                                                                                                                                                                                         | SBR                                                                                                                                                                                                                                           | г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RFA                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                   | Odds Ratio                                                                                                                                                                                                                                                                                                                                               | Odds Ratio                                                        |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                       | <b>Events</b>                                                                                                                                                                                                                                 | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Events</b>                                                                                                                                                                                      | Total                                                                                                                                        | <u>Weight</u>                                                                                                                                                                                                                                                                     | M-H, Random, 95% Cl                                                                                                                                                                                                                                                                                                                                      | M-H, Random, 95% CI                                               |
| Berger 2017                                                                                                                                                                                                                                                                                                                                                             | 83                                                                                                                                                                                                                                            | 157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 243                                                                                                                                                                                                | 627                                                                                                                                          | 26.6%                                                                                                                                                                                                                                                                             | 1.77 [1.25, 2.52]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Duan 2016                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                             | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 245                                                                                                                                                                                                | 40                                                                                                                                           | 3.5%                                                                                                                                                                                                                                                                              | 1.63 [0.47, 5.68]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Hara 2019                                                                                                                                                                                                                                                                                                                                                               | ,<br>14                                                                                                                                                                                                                                       | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                 | 106                                                                                                                                          | 3.3 <i>%</i><br>8.4%                                                                                                                                                                                                                                                              | 0.86 [0.39, 1.86]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Hara 2019<br>Kim 2019                                                                                                                                                                                                                                                                                                                                                   | 27                                                                                                                                                                                                                                            | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                                                                                                                                                                 | 95                                                                                                                                           | 0.4 <i>%</i><br>11.2%                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          |                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                   | 1.32 [0.69, 2.53]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Parikh 2018                                                                                                                                                                                                                                                                                                                                                             | 18                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19                                                                                                                                                                                                 | 32                                                                                                                                           | 5.4%                                                                                                                                                                                                                                                                              | 0.88 [0.33, 2.37]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Rajyaguru 2018                                                                                                                                                                                                                                                                                                                                                          | 146                                                                                                                                                                                                                                           | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 183                                                                                                                                                                                                | 521                                                                                                                                          | 31.7%                                                                                                                                                                                                                                                                             | 2.09 [1.55, 2.81]                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| Wahl 2016                                                                                                                                                                                                                                                                                                                                                               | 34                                                                                                                                                                                                                                            | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76                                                                                                                                                                                                 | 161                                                                                                                                          | 13.3%                                                                                                                                                                                                                                                                             | 1.31 [0.73, 2.35]                                                                                                                                                                                                                                                                                                                                        | -                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          |                                                                   |
| , ,                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                               | 765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                    | 1582                                                                                                                                         | 100.0%                                                                                                                                                                                                                                                                            | 1.57 [1.23, 2.00]                                                                                                                                                                                                                                                                                                                                        | ◆                                                                 |
| Total events                                                                                                                                                                                                                                                                                                                                                            | 329                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 564                                                                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                             |
| Total events                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          |                                                                   |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                       | 0.02; Chi <sup>2</sup>                                                                                                                                                                                                                        | = 7.93,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , df = 6 (F                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          | 0.2 0.5 1 2 5<br>Favours [SBRT] Favours [RFA]                     |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                       | 0.02; Chi <sup>2</sup>                                                                                                                                                                                                                        | = 7.93,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , df = 6 (F                                                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                          | 0.2 0.5 1 2 5<br>Favours [SBRT] Favours [RFA]                     |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                           | 0.02; Chi²<br>Z = 3.66 (I<br>SBR                                                                                                                                                                                                              | = 7.93,<br>> = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , df = 6 (F<br>003)<br>RFA                                                                                                                                                                         | ? = 0.24                                                                                                                                     | 4); I² = 249                                                                                                                                                                                                                                                                      | 6<br>Odds Ratio                                                                                                                                                                                                                                                                                                                                          | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                                           | 0.02; Chi²<br>Z = 3.66 (I<br>SBR                                                                                                                                                                                                              | = 7.93,<br>> = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , df = 6 (F<br>003)<br>RFA                                                                                                                                                                         | ? = 0.24                                                                                                                                     | 4); I² = 249                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                                                                        | Favours [SBRT] Favours [RFA]                                      |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup                                                                                                                                                                                                                                                                      | 0.02; Chi²<br>Z = 3.66 (I<br>SBR                                                                                                                                                                                                              | = 7.93,<br>> = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , df = 6 (F<br>003)<br>RFA                                                                                                                                                                         | ? = 0.24                                                                                                                                     | 4); I² = 249                                                                                                                                                                                                                                                                      | 6<br>Odds Ratio                                                                                                                                                                                                                                                                                                                                          | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017                                                                                                                                                                                                                                                       | 0.02; Chi²<br>Z = 3.66 (I<br>SBR <sup>-</sup><br>Events                                                                                                                                                                                       | = 7.93,<br>> = 0.00<br>T<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , df = 6 (F<br>003)<br>RFA<br>Events                                                                                                                                                               | ? = 0.24                                                                                                                                     | 4); I² = 24%<br>Weight                                                                                                                                                                                                                                                            | 6<br>Odds Ratio<br><u>M-H. Random. 95% CI</u>                                                                                                                                                                                                                                                                                                            | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Duan 2016                                                                                                                                                                                                                                          | 0.02; Chi <sup>2</sup><br>Z = 3.66 (I<br>SBR<br><u>Events</u><br>115                                                                                                                                                                          | = 7.93,<br>P = 0.00<br>T<br><u>Total</u><br>157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347                                                                                                                                          | e = 0.24<br><u>Total</u><br>627                                                                                                              | l); l² = 249<br><u>Weight</u><br>21.7%                                                                                                                                                                                                                                            | 6<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]                                                                                                                                                                                                                                                                                       | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Duan 2016<br>Hara 2019                                                                                                                                                                                                                             | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>SBR<br><u>Events</u><br>115<br>11                                                                                                                                                                    | = 7.93,<br>= 0.00<br>T<br><u>Total</u><br>157<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7                                                                                                                                     | P = 0.24<br>Total<br>627<br>40                                                                                                               | l); l <sup>2</sup> = 249<br><u>Weight</u><br>21.7%<br>11.0%                                                                                                                                                                                                                       | 6<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]                                                                                                                                                                                                                                                                  | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Kim 2019                                                                                                                                                                                                                 | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>SBR'<br><u>Events</u><br>115<br>11<br>30                                                                                                                                                             | = 7.93,<br>P = 0.00<br>T<br><u>Total</u><br>157<br>37<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32                                                                                                                               | e = 0.24<br>Total<br>627<br>40<br>106                                                                                                        | <ul> <li>i); l<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>18.2%</li> </ul>                                                                                                                                                           | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]                                                                                                                                                                                                                             | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Kim 2019<br>Parikh 2018                                                                                                                                                                                                  | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>SBR<br><u>Events</u><br>115<br>11<br>30<br>29                                                                                                                                                        | = 7.93,<br>= 0.00<br>T<br><u>Total</u><br>157<br>37<br>106<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42                                                                                                                         | e = 0.24<br>Total<br>627<br>40<br>106<br>95                                                                                                  | <ul> <li>↓); l<sup>2</sup> = 24%</li> <li><u>Weight</u></li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> </ul>                                                                                                                                                                   | 6<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]                                                                                                                                                                                                                                             | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Kim 2019<br>Parikh 2018<br>Rajyaguru 2018                                                                                                                                                                                | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29                                                                                                                                                                | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22                                                                                                                   | P = 0.24<br>Total<br>627<br>40<br>106<br>95<br>32                                                                                            | <ul> <li>I); I<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>18.2%</li> <li>7.9%</li> </ul>                                                                                                                                             | Odds Ratio           M-H. Random. 95% CI           2.21 [1.50, 3.25]           1.99 [0.68, 5.86]           0.91 [0.50, 1.65]           0.55 [0.31, 1.01]           4.39 [1.08, 17.89]                                                                                                                                                                    | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Kim 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)                                                                                                                                                                                   | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182                                                                                                                                                         | = 7.93,<br>P = 0.00<br><b>T</b><br><b>Total</b><br>157<br>37<br>106<br>95<br>32<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , df = 6 (F<br>003)<br><b>RF</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277                                                                                                             | <b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521                                                                                          | <ul> <li>I); I<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>18.2%</li> <li>7.9%</li> <li>23.0%</li> </ul>                                                                                                                              | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]                                                                                                                                                                                  | Favours [SBRT] Favours [RFA]<br>Odds Ratio                        |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Kim 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events                                                                                                                                                                   | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br><u>SBR</u><br><u>Events</u><br>115<br>11<br>30<br>29<br>29<br>182<br>396                                                                                                                             | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32<br>275<br>702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , df = 6 (F<br>003)<br><b>RF</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727                                                                                                      | P = 0.24<br>Total<br>627<br>40<br>106<br>95<br>32<br>521<br>1421                                                                             | <ul> <li>i); l<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>18.2%</li> <li>7.9%</li> <li>23.0%</li> <li>100.0%</li> </ul>                                                                                                              | Odds Ratio<br>M-H, Random, 95% CI<br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]                                                                                                                                                                    | Favours [SBRT] Favours [RFA]                                      |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Kim 2019<br>Parikh 2018<br>Rajyaguru 2018<br><b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                       | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup>                                                                                                                        | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32<br>275<br>702<br>= 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , df = 6 (F<br>003)<br><b>RF</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (                                                                                       | P = 0.24<br>Total<br>627<br>40<br>106<br>95<br>32<br>521<br>1421                                                                             | <ul> <li>i); l<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>18.2%</li> <li>7.9%</li> <li>23.0%</li> <li>100.0%</li> </ul>                                                                                                              | Odds Ratio<br>M-H, Random, 95% CI<br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]                                                                                                                                                                    | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H, Random, 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Kim 2019<br>Parikh 2018<br>Rajyaguru 2018<br><b>Total (95% CI)</b><br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                       | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup>                                                                                                                        | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32<br>275<br>702<br>= 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , df = 6 (F<br>003)<br><b>RF</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (                                                                                       | P = 0.24<br>Total<br>627<br>40<br>106<br>95<br>32<br>521<br>1421                                                                             | <ul> <li>i); l<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>18.2%</li> <li>7.9%</li> <li>23.0%</li> <li>100.0%</li> </ul>                                                                                                              | Odds Ratio<br>M-H, Random, 95% CI<br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]                                                                                                                                                                    | Favours [SBRT] Favours [RFA]                                      |
| Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                       | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup>                                                                                                                        | = 7.93,<br>= 0.00<br><b>T</b><br><b>Total</b><br>157<br>37<br>106<br>95<br>32<br>275<br><b>702</b><br>= 20.5.5<br>= 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , df = 6 (F<br>003)<br><b>RF</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (                                                                                       | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0                                                    | <ul> <li>i); l<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>18.2%</li> <li>7.9%</li> <li>23.0%</li> <li>100.0%</li> </ul>                                                                                                              | Odds Ratio<br>M-H, Random, 95% CI<br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]                                                                                                                                                                    | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H, Random, 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                              | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = 1.51 (f<br>SBR                                                                                                  | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32<br>275<br>702<br>= 20.54<br>= 20.54<br>= 0.13<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)                                                                                | P = 0.24<br>Total<br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0                                                           | Weight<br>21.7%<br>11.0%<br>18.2%<br>18.2%<br>7.9%<br>23.0%<br>100.0%                                                                                                                                                                                                             | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%                                                                                                                                                      | Favours [SBRT] Favours [RFA]                                      |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup                                                                                         | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = 1.51 (f<br>SBR<br>Events                                                                                        | = 7.93,<br>= 0.00<br>T<br><u>Total</u><br>157<br>37<br>106<br>95<br>32<br>275<br>702<br>= 20.5.5<br>= 20.5.5<br>= 20.5.5<br>T<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RFA</b><br><u>Events</u>                                                 | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0                                                    | Weight<br>21.7%<br>11.0%<br>18.2%<br>18.2%<br>7.9%<br>23.0%<br>100.0%                                                                                                                                                                                                             | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u>                                                                                                          | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017                                                                          | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = 1.51 (f<br>SBR<br>Events<br>141                                                                                 | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32<br>275<br>702<br>= 20.5<br>702<br>= 20.5<br>T<br>Total<br>157<br>157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RFA</b><br><u>Events</u><br>492                                          | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0<br><b>Total</b><br>627                             | Weight<br>21.7%<br>11.0%<br>18.2%<br>18.2%<br>7.9%<br>23.0%<br>100.0%<br>0010); l <sup>2</sup> =<br>Weight<br>23.9%                                                                                                                                                               | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.42 [1.39, 4.20]                                                                                     | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Hara 2019                                                             | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = 1.51 (f<br>SBR<br>Events<br>141<br>52                                                                           | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32<br>275<br>702<br>= 20.5<br>702<br>= 20.5<br>T<br>Total<br>157<br>106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RFA</b><br><u>Events</u><br>492<br>49                                    | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0<br><b>Total</b><br>627<br>106                      | Weight<br>21.7%<br>11.0%<br>18.2%<br>18.2%<br>7.9%<br>23.0%<br>100.0%<br>0010); l <sup>2</sup> =<br>Weight<br>23.9%<br>24.2%                                                                                                                                                      | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.42 [1.39, 4.20]<br>1.12 [0.65, 1.92]                                                                | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Hara 2019<br>Kim 2019                                                 | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = 1.51 (f<br>SBR<br>Events<br>141                                                                                 | = 7.93,<br>= 0.00<br>T<br>Total<br>157<br>37<br>106<br>95<br>32<br>275<br>702<br>= 20.5<br>702<br>= 20.5<br>T<br>Total<br>157<br>157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RFA</b><br><u>Events</u><br>492                                          | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0<br><b>Total</b><br>627                             | Weight<br>21.7%<br>11.0%<br>18.2%<br>18.2%<br>7.9%<br>23.0%<br>100.0%<br>0010); l <sup>2</sup> =<br>Weight<br>23.9%                                                                                                                                                               | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.42 [1.39, 4.20]                                                                                     | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Hara 2019<br>Kim 2019<br>Rajyaguru 2018                               | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br><b>SBR</b> <sup>*</sup><br><b>Events</b><br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = 1.51 (f<br><b>SBR</b> <sup>*</sup><br><b>Events</b><br>141<br>52<br>40        | = 7.93,<br>= 0.00<br><b>T</b><br><b>Total</b><br>157<br>37<br>106<br>95<br>32<br>275<br><b>702</b><br>= 20.54<br><b>=</b> 20.54<br><b>=</b> 20.54<br><b>=</b> 0.11<br><b>Total</b><br>157<br>106<br>95<br>275<br><b>702</b><br><b>=</b> 0.01<br><b>157</b><br><b>702</b><br><b>157</b><br><b>702</b><br><b>702</b><br><b>702</b><br><b>703</b><br><b>705</b><br><b>705</b><br><b>706</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>70</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b><br><b>707</b> | , df = 6 (F<br>003)<br><b>RF</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RF</b><br><u>Events</u><br>492<br>49<br>50                                | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0<br><b>Total</b><br>627<br>106<br>95<br>521         | Weight<br>21.7%<br>11.0%<br>18.2%<br>18.2%<br>7.9%<br>23.0%<br>100.0%<br>0010); l <sup>2</sup> =<br>Weight<br>23.9%<br>24.2%<br>23.4%<br>28.5%                                                                                                                                    | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.42 [1.39, 4.20]<br>1.12 [0.65, 1.92]<br>0.65 [0.37, 1.16]<br>1.77 [1.25, 2.53]                      | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Wim 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Hara 2019<br>Kim 2019<br>Rajyaguru 2018<br>Total (95% CI) | 0.02; Chi <sup>2</sup><br>Z = 3.66 (f<br><b>SBR</b> <sup>*</sup><br><b>Events</b><br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = 1.51 (f<br><b>SBR</b> <sup>*</sup><br><b>Events</b><br>141<br>52<br>40<br>222 | = 7.93,<br>= 0.00<br><b>T</b><br>157<br>37<br>106<br>95<br>32<br>275<br><b>702</b><br>= 20.55<br><b>702</b><br>= 20.55<br><b>702</b><br>= 0.11<br><b>T</b><br><b>Total</b><br>157<br>106<br>95<br>32<br>275<br><b>702</b><br>= 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RFA</b><br><u>Events</u><br>492<br>49<br>50<br>366                       | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0<br><b>Total</b><br>627<br>106<br>95<br>521         | Weight<br>21.7%<br>11.0%<br>18.2%<br>18.2%<br>7.9%<br>23.0%<br>100.0%<br>0010); l <sup>2</sup> =<br>Weight<br>23.9%<br>24.2%<br>23.4%                                                                                                                                             | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.42 [1.39, 4.20]<br>1.12 [0.65, 1.92]<br>0.65 [0.37, 1.16]                                           | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Carikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Hara 2019<br>Cariyaguru 2018<br>Total (95% CI)<br>Total events                             | 0.02; Chi <sup>2</sup><br>Z = $3.66$ (f<br>Events<br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi <sup>2</sup><br>Z = $1.51$ (f<br>Events<br>141<br>52<br>40<br>222<br>455                                                          | = 7.93,<br>= 0.00<br><b>F</b><br><b>Total</b><br>157<br>37<br>106<br>95<br>32<br>275<br><b>702</b><br>= 20.54<br>= 20.54<br>= 0.13<br><b>F</b><br><b>Total</b><br>157<br>106<br>95<br>275<br><b>633</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , df = 6 (F<br>003)<br><b>RFA</b><br>2347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RFA</b><br>Events<br>492<br>49<br>50<br>366                                              | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0<br><b>Total</b><br>627<br>106<br>95<br>521<br>1349 | <ul> <li>i); l<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>7.9%</li> <li>23.0%</li> <li>100.0%</li> <li>0010); l<sup>2</sup> =</li> <li>Weight</li> <li>23.9%</li> <li>24.2%</li> <li>23.4%</li> <li>28.5%</li> <li>100.0%</li> </ul> | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.42 [1.39, 4.20]<br>1.12 [0.65, 1.92]<br>0.65 [0.37, 1.16]<br>1.77 [1.25, 2.53]<br>1.35 [0.81, 2.26] | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |
| Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Berger 2017<br>Duan 2016<br>Hara 2019<br>Parikh 2018<br>Rajyaguru 2018<br>Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>Study or Subgroup<br>Berger 2017<br>Hara 2019<br>Kim 2019<br>Rajyaguru 2018                               | $0.02; Chi^2$<br>Z = 3.66 (f<br><b>SBR</b><br><b>Events</b><br>115<br>11<br>30<br>29<br>29<br>182<br>396<br>0.23; Chi^2<br>Z = 1.51 (f<br><b>SBR</b><br><b>Events</b><br>141<br>52<br>40<br>222<br>455<br>0.21; Chi <sup>2</sup>              | = 7.93,<br>= 0.00<br><b>F</b><br><b>Total</b><br>157<br>37<br>106<br>95<br>32<br>275<br><b>702</b><br>= 20.54<br>= 20.54<br>= 0.13<br><b>F</b><br><b>Total</b><br>157<br>106<br>95<br>275<br><b>633</b><br>= 12.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , df = 6 (F<br>003)<br><b>RFA</b><br><u>Events</u><br>347<br>7<br>32<br>42<br>22<br>277<br>727<br>4, df = 5 (<br>3)<br><b>RFA</b><br><u>Events</u><br>492<br>49<br>50<br>366<br>957<br>8, df = 3 ( | P = 0.24<br><b>Total</b><br>627<br>40<br>106<br>95<br>32<br>521<br><b>1421</b><br>P = 0.0<br><b>Total</b><br>627<br>106<br>95<br>521<br>1349 | <ul> <li>i); l<sup>2</sup> = 249</li> <li>Weight</li> <li>21.7%</li> <li>11.0%</li> <li>18.2%</li> <li>7.9%</li> <li>23.0%</li> <li>100.0%</li> <li>0010); l<sup>2</sup> =</li> <li>Weight</li> <li>23.9%</li> <li>24.2%</li> <li>23.4%</li> <li>28.5%</li> <li>100.0%</li> </ul> | Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.21 [1.50, 3.25]<br>1.99 [0.68, 5.86]<br>0.91 [0.50, 1.65]<br>0.55 [0.31, 1.01]<br>4.39 [1.08, 17.89]<br>1.72 [1.27, 2.33]<br>1.44 [0.90, 2.33]<br>76%<br>Odds Ratio<br><u>M-H. Random. 95% CI</u><br>2.42 [1.39, 4.20]<br>1.12 [0.65, 1.92]<br>0.65 [0.37, 1.16]<br>1.77 [1.25, 2.53]<br>1.35 [0.81, 2.26] | Favours [SBRT] Favours [RFA]<br>Odds Ratio<br>M-H. Random. 95% Cl |

FIGURE 2 | Forest plots demonstrating 1-, 2-, 3-, and 5-year LP in SBRT and RFA for HCC. LP, local progression; SBRT, stereotactic body radiotherapy; RFA, radiofrequency ablation; HCC, hepatocellular carcinoma.



not a prognostic factor for LP (HR 0.72, 95% IC 0.42–1.25, P = 0.240). However, RFA group was more favorable than SBRT group for OS benefits (HR 1.43, 95% IC 1.24–1.64, P < 0.00001; **Figure 3**).

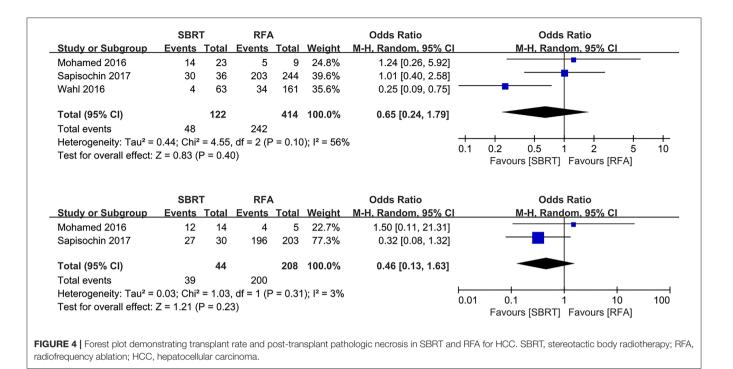
# Transplant and Post-transplant Pathological Necrosis Rate

Three and two studies reported the transplant rate and posttransplant pathological necrosis rate, respectively (3, 10, 18). There were no significant differences in transplant rate and posttransplant pathological necrosis rate for both SBRT and RFA (OR 0.65, 95% CI 0.24–1.79, P = 0.040; and OR 0.46, 95% CI 0.13–1.63, P = 0.230, respectively; **Figure 4**).

## **Publication Bias**

The Begg funnel plot was used to evaluate the reliability of publication bias in our meta-analysis (25). The shape of 11 funnel plots was basically inverted and bilateral symmetry. Therefore, these results indicated that there was little publication bias among all comparisons in this meta-analysis (**Supplementary Figure 3**).

## DISCUSSION


The main finding of this meta-analysis is that SBRT showed a better local control than RFA for patients with HCC, though the 2-year OS rates of SBRT were inferior because of the tumor burden and liver profiles. Recently, RFA, as a traditional curable treatment, was challenged by SBRT (15, 21, 22). With the development of imaging technique, such as four-dimensional CT (4DCT), SBRT is able to provide a more precise picture of HCC for treatment design (26). This improvement of SBRT effectively

fixed the deficiencies of the high incomplete ablation rate of RFA under several specific conditions (7).

In 2006, Romero et al. (27) firstly applied the radiational technique of SBRT as a salvage treatment to control the primary and metastatic liver tumors. Although only 25 patients with 45 lesions that were unfit for other local control treatment were included in this study, the results preliminarily indicated that SBRT was feasible with acceptable toxicity and local control efficacy. They additionally pointed out that patients with Child B level were accompanied by high toxicity risks, and the optimal dose-fractionation schemes had to be found. Inspired by Romero et al., other investigators mainly focused on the application of SBRT on unresectable HCC and its effect in combination with other therapies (28–30). All these studies proved that SBRT was safe and provided satisfying local control for HCC, and this encouraged the temptation of expanding the indications of SBRT from a salvage or bridge treatment to curable intention.

RFA has long been applied as the first-line treatment for small HCC according to several clinical practice guidelines, including the European Society for Medical Oncology (ESMO) and American Association for the Study of Liver Disease (AASLD) (31, 32). However, RFA still suffers from high incidence of local incomplete ablation because of technical limitations [varies from 2 to 60% (5–9)], and it required additional or combinational therapies (33). As an advanced technique that shows reliable local control and safety on HCC, SBRT has been considered as a potential alternative therapy to RFA.

Many observational or retrospective studies in recent years have indicated that SBRT showed a non-inferior local control rate as compared with RFA (10, 16–18, 22). Shiozawa et al. (16) first compared the clinical outcomes between SBRT and



RFA for HCC patients in a pilot study in 2015 and reported that SBRT was likely to become an important option for local treatment of early HCC. The subsequent studies indicated that SBRT appeared to be a reasonable alternative treatment of inoperable HCC in 2016 (10, 22). Subsequently, several large-volume validation studies based on online database had also proved comparable outcomes between SBRT and RFA regarding local control (13, 19). Moreover, in 2019, Kim et al. (17) retrospectively reviewed the institutional database for RFA and SBRT with curative intent, and they revealed that SBRT appears to be an effective alternative treatment for HCC when RFA is not feasible due to tumor location or size. However, another database validation from the American National Cancer Database revealed better OS of RFA than SBRT (15). A meta-analysis is needed to attain definitive proof to solve these debates. Thus, we performed this meta-analysis to help identify the advantages and disadvantages of SBRT and RFA in HCC.

In the present meta-analysis, with respect to local control, SBRT showed significantly lower 1- and 3-year LP rates, which indicated that SBRT achieved superior local control to RFA in treating HCC. In detail, there were five and four studies that enrolled the 1- and 3-year LP rate analyses, respectively. Among these studies, studies from Wahl et al. (10) and Duan et al. (22) were based on patients with inoperable HCC, studies of Shiozawa et al. (16) and Hara et al. (21) were based on patients with early-stage HCC, and studies from Kim et al. (17) and Mohamed et al. (18) did not specify patients characteristics. Most of the enrolled studies tended to draw the conclusions with respect to local control that supported SBRT. Moreover, Wahl et al. (10) and Hara et al. (21) reached significantly favorable results for SBRT in treating inoperable and earlystage HCC, respectively. However, only Kim et al. (17) clarified the information of HCC location; others did not refer to this critical factor, which might influence the local control of RFA in our previous study (34). Additionally, treatment allocation was not a significance prognostic factor on the basis of prognostic analysis. Therefore, further studies are needed to guarantee the appropriate individual treatment allocation.

Although SBRT enjoyed higher local control rates than RFA in the present study, the 2-year OS rates of SBRT were significantly lower than RFA. Notably, Berger et al. (19) and Rajyaguru et al. (15), who reported favorable OS rates of RFA with large sample volume, did not illustrate the LP rates correspondingly. There were two main reasons to the contradictory results between OS rates and LP rates. Firstly, there might be report bias when analyzing LP rates for both groups, which might result in inconsistent outcomes between LP rates and OS rates because of unreported LP. Therefore, we conducted the secondary analysis on OS rates that included the studies that reported both LP rates and OS rates, and we found that the 1-, 2-, 3-, and 5-year OS rates were comparable between SBRT and RFA (Supplementary Figure 2). Secondly, as the first-line treatment, RFA is more likely to be assigned to patients with better conditions. Patients who underwent SBRT were prone to suffer from larger tumor size and worse liver function, which indicated worse prognosis and decreased OS. Interestingly, the 3- and 5-year OS rates showed no significance in both groups, indicating that patients who did not die of tumor burden or liver functions in a short time might finally benefit from both treatments similarly. Meanwhile, RFA showed significant survival benefit for prognostic analysis on treatment allocation, which also could be explained by the reasons above. Therefore, we believed that the real effects of SBRT and RFA on longterm survival need to be further validated by high-level evidence, including RCTs.

As for bridge therapies to transplant, both SBRT and RFA provided a similar effect on patients waiting for transplantation. And the post-transplant pathological necrosis rate was comparable between both groups. These outcomes indicated that SBRT can be safely utilized as a bridge treatment to patients in the waiting list for transplantation with HCC, as an alternative to conventional bridging therapies. However, only three studies and 536 patients in total compared these parameters, and more solid studies were needed to be enrolled in the future.

This meta-analysis suffered from several limitations. First of all, only retrospective studies were available, resulting in relatively low quality of the evidence for the whole pooled results. Secondly, the results from this study should be interpreted carefully, because the sample sizes of four studies were relatively small, which is supposed to affect the reliability. And a further sensitivity analysis on the factors affecting outcomes could not be applied. Additionally, some studies were shorter followup in the SBRT group, which could result in obscuring late effects. Therefore, some well-designed, large, prospective, and multicenter studies are desperately needed to obtain more solid evidence.

## CONCLUSIONS

In sum, our meta-analysis shows that SBRT provided better local control than RFA, and it could be used as a potential alternative local control treatment for HCC.

## REFERENCES

- Sapisochin G, Bruix J. Liver transplantation for hepatocellular carcinoma: outcomes and novel surgical approaches. *Nat Rev Gastroenterol Hepatol.* (2017) 14:203–17. doi: 10.1038/nrgastro.2016.193
- Panel NHC. Hepatobiliary cancers, V.1.2010. Nccn Guidelines. (2019) 1:1–142. doi: 10.6004/jnccn.2019.0019
- Sapisochin G, Barry A, Doherty M, Fischer S, Goldaracena N, Rosales R, et al. Stereotactic body radiotherapy vs. TACE or RFA as a bridge to transplant in patients with hepatocellular carcinoma. An intention-to-treat analysis. J Hepatol. (2017) 67:92–99. doi: 10.1016/j.jhep.2017.02.022
- Chen M-S, Li J-Q, Zheng Y, Guo R-P, Liang H-H, Zhang Y-Q, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. *Ann Surg.* (2006) 243:321–8. doi: 10.1097/01.sla.0000201480.65519.b8
- N'Kontchou G, Mahamoudi A, Aout M, Ganne-Carrie N, Grando V, Coderc E, et al. Radiofrequency ablation of hepatocellular carcinoma: long-term results and prognostic factors in 235 Western patients with cirrhosis. *Hepatology*. (2009) 50:1475–83. doi: 10.1002/hep.23181
- Tateishi R, Shiina S, Teratani T, Obi S, Sato S, Koike Y, et al. Percutaneous radiofrequency ablation for hepatocellular carcinoma. An analysis of 1000 cases. *Cancer*. (2005) 103:1201–9. doi: 10.1002/cncr.20892
- Waki K, Aikata H, Katamura Y, Kawaoka T, Takaki S, Hiramatsu A, et al. Percutaneous radiofrequency ablation as first-line treatment for small hepatocellular carcinoma: results and prognostic factors on long-term follow up. J Gastroenterol Hepatol. (2010) 25:597–604. doi: 10.1111/j.1440-1746.2009.06125.x
- Granata V, Petrillo M, Fusco R, Setola SV, de Lutio di Castelguidone E, Catalano O, et al. Surveillance of HCC patients after liver RFA: role of MRI with hepatospecific contrast versus three-phase CT scan-experience of high volume oncologic institute. *Gastroenterol Res Pract.* (2013) 2013:469097. doi: 10.1155/2013/469097

## **AUTHOR CONTRIBUTIONS**

Y-XP and D-DH designed the experiments and drafted the manuscript. Y-ZF, QL, J-CW, and MX were responsible for data collection and statistical analysis. S-LL, LX, and M-ZL helped revise the manuscript. M-SC and Y-JZ approved the final version. All authors contributed to the article and approved the submitted version.

## FUNDING

This work was supported by the National Science and Technology Major Project of China (2018ZX10723204 and 2018ZX10302205).

## ACKNOWLEDGMENTS

The authors acknowledge and express their deepest gratitude to the participants of this study. This manuscript has been revised by a native English speaker for effective communication to a professional medical audience.

## SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc. 2020.01639/full#supplementary-material

- Doyle A, Gorgen A, Muaddi H, Aravinthan AD, Issachar A, Mironov O, et al. Outcomes of radiofrequency ablation as first-line therapy for hepatocellular carcinoma less than 3 cm in potentially transplantable patients. *J Hepatol.* (2019) 70:866–73. doi: 10.1016/j.jhep.2018.12.027
- Wahl DR, Stenmark MH, Tao Y, Pollom EL, Caoili EM, Lawrence TS, et al. Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin Oncol. (2016) 34:452–9. doi: 10.1200/JCO.2015.61.4925
- Feng M, Suresh K, Schipper MJ, Bazzi L, Ben-Josef E, Matuszak MM, et al. Individualized adaptive stereotactic body radiotherapy for liver tumors in patients at high risk for liver damage: a phase 2 clinical trial. *JAMA Oncol.* (2018) 4:40–47. doi: 10.1001/jamaoncol.2017.2303
- Hara K, Takeda A, Tsurugai Y, Sanuki N, Saigusa Y, Maeda S, et al. Clinical outcomes after treatment for hepatocellular carcinoma, stereotactic body radiotherapy vs radiofrequency ablation: a propensity score-matched analysis. *Hepatology.* (2018) 68:848A. doi: 10.1002/hep.30257
- Parikh ND, Marshall VD, Green M, Lawrence TS, Razumilava N, Owen D, et al. Effectiveness and cost of radiofrequency ablation and stereotactic body radiotherapy for treatment of early-stage hepatocellular carcinoma: an analysis of SEER-medicare. *J Med Imaging Radiat Oncol.* (2018) 62:673–81. doi: 10.1111/1754-9485.12754
- Wahl D, Stenmark M, Pollom E, Tao Y, Lee O, Schipper M, et al. SBRT provides equivalent local control compared to RFA for the treatment of hepatocellular carcinoma with minimal toxicity. *Int J Radiat Oncol Biol Phys.* (2014) 90:S378–9. doi: 10.1016/j.ijrobp.2014.05.1218
- Rajyaguru DJ, Borgert AJ, Smith AL, Thomes RM, Conway PD, Halfdanarson TR, et al. Radiofrequency ablation versus stereotactic body radiotherapy for localized hepatocellular carcinoma in nonsurgically managed patients: analysis of the national cancer database. J Clin Oncol. (2018) 36:600–8. doi: 10.1200/JCO.2017.75.3228
- 16. Shiozawa K, Watanabe M, Ikehara T, Matsukiyo Y, Kogame M, Kishimoto Y, et al. Comparison of percutaneous radiofrequency ablation and CyberKnife®

for initial solitary hepatocellular carcinoma: a pilot study. World J Gastroenterol. (2015) 21:13490–9. doi: 10.3748/wjg.v21.i48.13490

- Kim N, Kim HJ, Won JY, Kim DY, Han K-H, Jung I, et al. Retrospective analysis of stereotactic body radiation therapy efficacy over radiofrequency ablation for hepatocellular carcinoma. *Radiother Oncol.* (2019) 131:81–87. doi: 10.1016/j.radonc.2018.12.013
- Mohamed M, Katz AW, Tejani MA, Sharma AK, Kashyap R, Noel MS, et al. Comparison of outcomes between SBRT, yttrium-90 radioembolization, transarterial chemoembolization, and radiofrequency ablation as bridge to transplant for hepatocellular carcinoma. *Adv Radiat Oncol.* (2016) 1:35–42. doi: 10.1016/j.adro.2015.12.003
- Berger NG, Tanious MN, Hammad AY, Miura JT, Mogal H, Clarke CN, et al. External radiation or ablation for solitary hepatocellular carcinoma: a survival analysis of the SEER database. J Surg Oncol. (2017) 116:307–12. doi: 10.1002/jso.24661
- Melsen WG, Bootsma MCJ, Rovers MM, Bonten MJM. The effects of clinical and statistical heterogeneity on the predictive values of results from metaanalyses. *Clin Microbiol Infect.* (2014) 20:123–9. doi: 10.1111/1469-0691.12494
- Hara K, Takeda A, Tsurugai Y, Saigusa Y, Sanuki N, Eriguchi T, et al. Radiotherapy for hepatocellular carcinoma results in comparable survival to radiofrequency ablation: a propensity score analysis. *Hepatology.* (2019) 69:2533–45. doi: 10.1002/hep.30591
- Duon X, Zhang T, Xie H, Sun J, He W, Xu H. Stereotactic body radiotherapy vs. radiofrequency ablation in the Treatment of small hepatocellular Carcinoma. *Hepatology*. (2016) 64:653–4A. doi: 10.1002/hep.28799
- Tian J, Zhang J, Ge L, Yang K, Song F. The methodological and reporting quality of systematic reviews from China and the USA are similar. *J Clin Epidemiol.* (2017) 85:50–58. doi: 10.1016/j.jclinepi.2016.12.004
- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol.* (2010) 25:603–5. doi: 10.1007/s10654-010-9491-z
- Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The cochrane collaboration's tool for assessing risk of bias in randomised trials. *BMJ*. (2011) 343:d5928. doi: 10.1136/bmj.d5928
- Couri T, Pillai A. Goals and targets for personalized therapy for HCC. *Hepatol* Int. (2019) 13:125–37. doi: 10.1007/s12072-018-9919-1
- Romero AM, Wunderink W, Hussain SM, De Pooter JA, Heijmen BJ, Nowak PC, et al. Stereotactic body radiation therapy for primary and metastatic liver tumors: a single institution phase i-ii study. *Acta Oncol.* (2006) 45:831–7. doi: 10.1080/02841860600897934

- Goyal K, Einstein D, Yao M, Kunos C, Barton F, Singh D, et al. Cyberknife stereotactic body radiation therapy for nonresectable tumors of the liver: preliminary results. *HPB Surgery*. (2010) 2010:309780. doi: 10.1155/2010/309780
- Bae SH, Kwon JH, Jang JW, Song MJ, Choi JY, Yoon SK. Stereotactic body radiation therapy using Cyberknife for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. *Hepatology*. (2009) 50:1100A. doi: 10.1002/hep.23307
- Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH, et al. Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: Preliminary analysis. *BMC Cancer.* (2008) 8:351. doi: 10.1186/1471-2407-8-351
- Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. *Hepatology*. (2018) 67:358–80. doi: 10.1002/hep.29086
- Vogel A, Cervantes A, Chau I, Daniele B, Llovet J, Meyer T, et al. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up<sup>†</sup>. Ann Oncol. (2018) 29:iv238–55. doi: 10.1093/annonc/mdy308
- 33. Peng Z-W, Zhang Y-J, Chen M-S, Xu L, Liang H-H, Lin X-J, et al. Radiofrequency ablation with or without transcatheter arterial chemoembolization in the treatment of hepatocellular carcinoma: a prospective randomized trial. *J Clin Oncol.* (2013) 31:426–32. doi: 10.1200/JCO.2012.42.9936
- 34. Chen J, Peng K, Hu D, Shen J, Zhou Z, Xu L, et al. Tumor location influences oncologic outcomes of hepatocellular carcinoma patients undergoing radiofrequency ablation. *Cancers.* (2018) 10:1–14. doi: 10.3390/cancers10100378

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Pan, Fu, Hu, Long, Wang, Xi, Liu, Xu, Liu, Chen and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.