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Most adults are overweight or obese inmany western countries. Several population-level interventions on the physical, economical,
political, or sociocultural environment have thus attempted to achieve a healthier weight. These interventions have involved
different weight-related behaviours, such as food behaviours. Agent-based models (ABMs) have the potential to help policymakers
evaluate food behaviour interventions from a systems perspective. However, fully realizing this potential involves a complex
procedure starting with obtaining and analyzing data to populate themodel and eventually identifyingmore efficient cross-sectoral
policies. Current procedures for ABMs of food behaviours are mostly rooted in one technique, often ignore the food environment
beyond home and work, and underutilize rich datasets. In this paper, we address some of these limitations to better support
policymakers through two contributions. First, via a scoping review, we highlight readily available datasets and techniques to deal
with these limitations independently. Second, we propose a three steps’ process to tackle all limitations together and discuss its use
to develop futuremodels for food behaviours.We acknowledge that this integrated process is a leap forward inABMs.However, this
long-term objective is well-worth addressing as it can generate robust findings to effectively inform the design of food behaviour
interventions.

1. Introduction

Many countries are faced with a very high prevalence of over-
weight and obesity. In theUnited States, 75%of adultmen and
67% of adult women are overweight or obese [1]. Similarly,
most adults are overweight in Canada [2] and the United
Kingdom [3]. In addition, current models developed for
Canada, Australia, or the United States predict continued
increase in the rates of obesity [2, 4, 5]. Hence, overweight
and obesity is a key area for public health. In particular,
new policy documents have emphasized the role of eating
patterns in achieving healthy weight. For example, the UK
Department ofHealth stated that “increasing physical activity
is important but, formost of uswho are overweight andobese,
eating and drinking less is key to weight loss” [3]. In line with
this emphasis, our paper is focused on food behaviours, that
is, the food-related decisions that individuals make under the
influence of the physical, economical, political, or sociocul-
tural environment.

Intervening on food behaviours through these different
sources of influence requires complex intervention. Several
organizations, such as the UK Medical Research Council,
have emphasized that modelling could be a valuable tool
when developing and evaluating such complex interventions
[6]. Indeed, modelling has been used to test policy scenar-
ios (also known as “what-if” questions) or understand the
interconnectedness of factors driving food behaviours. Mod-
elling approaches can be broadly divided into three cate-
gories [7]: qualitative aggregate models, quantitative aggre-
gate models (also called macrosimulation), and quantitative
individual models (also called microsimulation). In this
review, we are interested in the last category and specifically
agent-based models (ABM). (While this review focuses on
ABM, other quantitative individual modelling techniques are
sometimes used interchangeably with ABM and may thus
benefit from the resources articulated here. In particular,
“network models” as they are used in obesity research can
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sometimes be simplified ABMs, where researchers detailed
peer interactions but simplified (existing) sources of envi-
ronmental influences.)This modelling technique can capture
the decision-making processes of individuals and how they
interact both with others and with their environment. ABMs
have demonstrated that they could be useful when it comes to
studying food behaviours. For example, they have improved
our understanding of the role that social influences play in
weight dynamics [8–11]. However, current procedures to
develop and use these models suffer from three limitations.

First, ABMs have been lacking in details regarding the
role that both peers and the food environment play [12],
despite the fact that “the relationships of single categories of
potential determinants [of food behaviours] can only be valu-
able if they are studied in their interplay” [13].The assumption
was often made that only the food environment around the
home or work environment would impact diet [14–16]; that
is, models tend to represent only what surrounds the home
or work location (e.g., using a buffer area). We will refer to
this assumption as the “proximity hypothesis.” While this
hypothesis has been prevalent in studies on individual food
exposure [17], it has led to inconsistent findings [18] suggest-
ing that people are not primarily using what is geographi-
cally proximate [19]. This is because individuals navigate a
multiplicity of environments [20] (e.g., purchase food while
commuting) andmay even shop far away from home/work in
the case of low-income groups, which are disproportionally
facing obesity [14, 21].

A second and related limitation is the fact that developing
detailed ABMs of food behaviours requires the ability to fully
utilize large amounts of data on how individuals navigate
the food environment. Indeed, using such rich datasets allow
us to develop, calibrate, and validate models that go beyond
the proximity hypothesis. However, the acquisition, cleaning,
and analysis of detailed spatial datasets of food behaviours
have typically been done in a separate strand of literature
(primarily geography [22]) from the ones on developing
ABMs of food behaviours (typically public health nutrition
and obesity research [23]). Finally, policies can tackle several
determinants of food behaviours at the same time, in ways
that depend on a local constituency’s characteristics and
agenda. Current practices are to test one policy at a time using
an ABM, thus missing possible synergies between interven-
tions. In other words, ABMs can be used to take a systems
approach and realize that the sum of interventions is greater
than the individual components, but such use of ABMs is not
yet the norm.

While several reviews have been dedicated to modelling
in obesity (including ABMs for food behaviours) [24–26],
they generally focus on howmodels have been used and what
initial steps could be taken by public health researchers to use
modelling. In contrast, this paper seeks to support the future
development of models addressing the limitations identified
above. It does so by (i) reviewing how existing methods
and datasets can be used to address each limitation, and
(ii) proposing a way to combine these resources. The direc-
tions and recommendations in this paper can be used to
develop the next generation of models, going beyond the
proximity hypothesis and integrating the interrelated sources

of influence at work in food behaviours. Using such an
integrated (or systems science) perspective, we will be able to
developmore policy-relevant models that allow searching for
synergistic combinations of interventions while paying close
attention to possibly detrimental side-effects.

As we seek to support a systems science approach to
ABMs for food behaviours, our review integrates resources
across disciplines. Thus, rather than a systematic review on
one aspect, our scoping review organizes selected resources
along the natural progression of model building. Our meth-
ods section starts by explaining how to link food exposure
and utilization: we review how this is done in current models
and we detail how performing data mining on datasets
generated by the Global Positioning System (“GPS” datasets)
can improve on this current situation. Then, having assumed
that we can partly understand the complex interrelationships
between food exposure and utilization, we review how
virtual platforms can be developed to estimate how our
current utilization of the food environment would change
in reaction to new policies. Our methods conclude by
examining how such virtual platforms can contribute to
identifying synergistic combinations of interventions target-
ing the political, sociocultural, economic, and physical food
environments to promote healthier eating practices across
different socioeconomic groups. Then, the implications of
such an integrated procedure are discussed, with particular
emphasis on expected benefits and challenges given current
practices.

2. Methods

2.1. Linking Food Exposure and Utilization of
the Food Environment

2.1.1. Overview. The few ABMs developed with a focus on
the food environment followed the proximity hypothesis [14–
16]. The ability of an ABM to be highly detailed points out
that the reliance on the proximity hypothesis was not dictated
by methodological constraints. The lack of familiarity of
public health researchers with ABM may historically have
contributed to models being designed by primarily technical
teams without being aware of other hypotheses. However,
ABM has been widely communicated together with other
modelling techniques to public health researchers in the
recent years, through initiatives including thematic issues of
prominent journals in the field [32, 33]. Even recent models
developed by interdisciplinary teams rely on the proxim-
ity hypothesis, suggesting that the limitations are neither
methodological nor a lack of awareness of food behaviours.
Rather, there have been two key limitations: a lack of data
that precisely captures how individuals navigate the food
environment and the ability to derive an insight from this
data. In the next two sections, we address how we can go
beyond the proximity hypothesis using existing techniques
and datasets.

2.1.2. Identifying and Processing the Right Datasets. A review
found that the lack of data on individual mobility patterns
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Table 1: Published studies having GPS data for over 100 participants.

Study Number of participants Age range Country Days Measures BMI Dietary measures

[27] 101 18–65 US 3 Yes Survey on diet (FFQ) and food purchase
(frequency)

[28] 119 18+ US 3 Yes Survey on food shopping behaviours and
dietary outcomes

[29] 175 13-14 UK 7 No N/A

[30] 380 12–16 Canada 7 No
Dietary intake of healthy and unhealthy
foods (FFQ): Harvard Youth/Adolescent

Questionnaire (YAQ)
[31] 120 25+ US 7 No Food-Frequency Questionnaire (FFQ)

and the limited attention that it received in the literature
were key knowledge gaps in the development of ABMs [34].
This problem has been partly addressed in recent models
of physical activity but remains salient in modelling food
behaviours. For example, highly individual-centric ABMs
have recently been developed for physical activity [35] and
were used to assess inequalities [36] through detailed survey
data, but food decisions and routines were modelled as being
random (e.g., places were selected uniformly at random).
Going further requires highly detailed data tracking human
mobility patterns, preferentially using the Global Positioning
System (GPS).

There exists a plethora of GPS datasets. However, these
datasets need to have a sufficient large time window in order
to be representative of the individuals’ behaviour. A dataset
collected over a single day, such as in [37], may be insufficient
to infer behavioural patterns. In addition, in order to calibrate
and validate a system with reasonable confidence margins,
there is a need to have “enough” participants. While this is
highly dependent on what aspects of food decision-making a
model seeks to capture, datasets having only 37 participants
[38] are not sufficient for modelling purposes. Several studies
have been completed in the last years on the food environ-
ment using GPS, and they have both a sufficient time window
and over a hundred individuals. A sample of such studies is
provided in Table 1, and a dedicated 2016 review details the
use of GPS dataset for the food environment [22].

In addition, new datasets have been collected that contain
an even larger number of individuals, with a mean wear time
for the GPS of 1 week: the University of Cambridge’s Fenland
Study (http://www.mrc-epid.cam.ac.uk/research/studies/fen-
land) (𝑛 = 805) and the University of Washington’s Seattle
Obesity Study 2 (http://depts.washington.edu/uwcphn/work/
cor/diet_disparities_SOSII.shtml) (SOS2; 𝑛 = 493). Some of
these datasets also provide travel diaries. For example, in
SOS2, participants completed a diary entry for each trip.
This asked about where/when the trip started/ended and
what activity occurred (snack/meal/beverage/food shop-
ping). Such diaries provide a “ground truth” for how indi-
viduals interact with their food environment, which can
otherwise only be inferred from the GPS wearing. For
example, signal can be temporarily lost when individuals go
inside a food venue (e.g., restaurant in a mall, canteen in
an office building), and we could only hypothesize which
venue(s) may have been visited. In the absence of “ground

truth” such inference may still be valuable, although that
would depend on the design of the built environment: one
could confidently categorize a signal disappearing in front of
a restaurant and reappearing one hour later as “eating at this
location,” but if signal disappears in a shopping mall then
the error margin about supposed activities is much larger.
Other datasetsmay provide dietarymeasures (Table 1), which
summarize a participant’s diet and/or shopping patterns.
Dietary measures are particularly useful as they can be used
to double check what can be inferred from the GPS.Through
these datasets and their metadata, we are thus now in the
position where we have high quality data to model food
behaviours, and a data science pipeline needs to be put in
place accordingly.

The raw signals (known as “GPS traces”) from selected
datasets need to be transformed into “GPS trips” via a clean-
ing process before the data can be analyzed or used within an
ABM. Research in transportation has been particularly active
in developing cleaning methods for GPS [39]. Even if their
purpose was eventually to analyze travel behaviour rather
than food behaviour, these cleaning methods apply in our
case. The GPS trace first has to undergo noise filtering,
which is necessary in order to address jumps between
points (e.g., when signal was temporarily lost because of
either indoor activities or real GPS device problems). While
somemethods remove zero-speed points generated when the
user does not move in order to generate trips, they can be
useful depending on the context [40]. To develop ABMs
of food behaviour, we would keep these points as they can
be used to identify that a user stopped at a food venue.
As part of the cleaning process, incorrect positions should
be removed and map-matching algorithms should be used
to assign positions to the underlying street network [41,
42]. This step is also context-dependent and it is moti-
vated by the fact that we want to study how individuals
interact with their built food environment, rather than
how much they exercise in open spaces such as parks. In
other words, when studying eating behaviours, we are
more interested in “where” they are instead of “how active”
they are.

Following the transformation intoGPS trips, one needs to
derive food outlet utilization and exposure. Exposure can be
computed by listing all food venues that one has been exposed
to, possibly with a weighing as a function of time spent.
Utilization consists only of the set of food venues that one has

http://www.mrc-epid.cam.ac.uk/research/studies/fenland
http://www.mrc-epid.cam.ac.uk/research/studies/fenland
http://depts.washington.edu/uwcphn/work/cor/diet_disparities_SOSII.shtml
http://depts.washington.edu/uwcphn/work/cor/diet_disparities_SOSII.shtml
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interactedwith, and oneway to infer them is to use thresholds
based on time [43]. It should be noted that computing both
exposure and utilization requires knowing where the food
locations are. Previous studies on the food environment
conducted using GPS have either mapped all food locations
and overlaid this map with GPS tracks or defined based on
time spent at a location in the GPS track whether they ate
at the food outlet [44, 45]. For either approach, it is necessary
to include amap holding information (i.e., a GIS component)
about the built environment; further technical background in
combining GIS and GPS for health research can be found in
[46–48] while a recent overview of gaps and solutions in
obesity research is provided by [49]. In some countries, it is
possible to request access to the location and the type of food
outlets. For example, in England, type and location can be
obtained via the Points of Interest data [50], which aggregates
over 150 databases in the “eating and drinking” category and
has an accuracy ranging from 81% to 100%.

2.1.3. Investigating the Relationships between Food Exposure
and Utilization Using Data Mining. Obtaining high quality
datasets and performing the procedure outlined in the pre-
vious subsection will generate clean and usable data for an
ABM. This data could be directly used to operationalize the
agents. For example, each of the agents in the virtual world
depicted by the ABM could be assigned a routine based
on traces from the corresponding participant in the dataset.
This is sufficient if one is interested in policies for the
specific place where the dataset originates, but it cannot
apply to the circumstance where one wishes to generalize the
agents’ navigation patterns. In this case, the agents’ navigation
cannot be simply assigned based on existing data: rather, the
decision-making rules need to be extracted from the data. In
other words, if one wishes to have agents that decide where to
go instead of repeatedly following a preprogrammed path,
then the data has to be mined.

The computational technique of data mining can be used
to investigate the complex ways in which utilization of the
food environment relates to exposure, while accounting for
key sociodemographic factors (e.g., age, gender, and family
structure). Data mining differs from statistical approaches
such as regressions, which are traditionally used to investigate
a variety of health behaviours [51, 52]. In data mining, the
computer learns the relationships by being provided many
cases. In our case, the goal is to understand food behaviour
at the intersection of individual and environmental factors.
Suggestions on what to collect in this context are provided
by the dual-process view on the environment-behaviour rela-
tionship [53], stating that the environment has both a direct
and indirect influence on behaviour. The indirect influence
reflects the mediating role of behaviour-specific cognitions
in the influence of the environment on behaviour. The direct
influence reflects the automatic, unconscious influence of the
environment on behaviour. Hence, one would seek to assem-
ble data about the environment, sociodemographics, and
cognitions. For example, the computer could be given what
each individual was exposed to (via GPS traces) (there are
issues of selective daily mobility bias. For example, one may

go to a food store for various reason, and the GPS track will
lead to that food store. We may erroneously infer that the
person was “exposed” to the food store and finally chose
to use it while it was the intention all along. Consequently,
we do not recommend the sole use of GPS traces. Rather,
they should be supplemented by travel diaries (which would
clarify whether this food store was the initial goal) and
surveys on food shopping behaviours. This may reduce but
not eliminate issues of causalities arising in data mining.
This is partly remedied at the ABM stage, where modellers
complement the rules derived from the data with rules
informed by the theory and apply calibration to identify
appropriate rules), what they ended up using (e.g., via travel
diaries), and what their beliefs and attitudes were (e.g., via
surveys on food shopping behaviours), completed by the
individual’s age, gender, and family structure (note that we are
primarily concerned about supervised data mining: we know
the exposure and the outcome, and we provide these to the
computer so that it can learn the relationships. It differs from
unsupervised datamining in which wemay not know the out-
come and where the primary task is rather to identify similar
individuals (e.g., clustering)). The computer then learns how
exposure relates to utilization, without having to assume that
this relationship takes a specific mathematical shape (e.g., a
linear function). This advantage was highlighted by Dierker
and colleagues, who noted that such data science techniques
“allow for a data driven exploration of nonlinear relationships
[. . .] and have the potential to fit numerous interactions
that cannot be handled as efficiently with either tradi-
tional regression techniques or other pattern centered meth-
ods” [54]. Being able to capture nonlinear relationships is
particularly important for behaviours [55]: for example,
“there may be common patterns of behaviour change within
and across individuals that follow certain complex, nonlinear
patterns” [56].

Several tools exist within data mining, depending on the
task. Classifiers have previously been used in public health
nutrition [57] and can be used to connect food exposure and
utilization. Intuitively, a classifier is a function that assigns
a label to a case (e.g., what type of food outlet was used by
individuals) based on certain features (e.g., individuals’ expo-
sure and individual sociodemographic).There aremanyways
to build classifiers. For example, the same problem (e.g.,
identifying drinking behaviours) can be addressed using a
variety of classifiers such as support vector machines [58],
decision trees [59], or random forests [60].While a discussion
on which type of classifier is more appropriate to examine
food exposure and utilization in one’s dataset is beyond the
scope of this review, it should be noted that the resources (i.e.,
computer space and time) required by a classifier can be a
key criterion as one embarks into doing data science on large
datasets. Indeed, the need for resources can grow faster than
the increase in the size of the data [61]. Furthermore, GPS
datasets consist of identifiable data, and ethics agreements
may have been designed to limit where this data is stored.
While researchers may work with ethics committees to allow
encrypted data to be sent to a computing cluster, others may
prefer to do all processing “in house” (which may be a
condition of the ethics agreement).
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GPS datasets can contain identifiable records: we can
infer where individuals live and work. Data collection agree-
ments often prohibit sharing identifiable records, even if
sharing study data has been encouraged [62]. Consequently,
sharing the data may either be a challenge or require a
mix of agreements and anonymization procedures (e.g.,
segmenting the signals), which altogether limit the possibility
of combining several studies to obtain a bigger picture of
how food exposure relates to utilization. This can actually
be mitigated by the use of classifiers, for three reasons.
First, unlike the data used to build them, classifiers can be
shared just in the same way as regression analyses. In other
words, patterns (e.g., classifiers, regressions) are routinely
communicated (e.g., through publications)while the rawdata
on which they were built may be kept private. Second, a
classifier built for a dataset essentially provides a set of rules
specifying how food exposure relates to utilization.Third, and
most importantly, classifiers can be aggregated by “merging”
their rules derived from local datasets in order to obtain a
set of rules for the bigger picture [63]. This can intuitively
be thought as doing ameta-analysis, where generalizability of
the findings is improved by combining individual studies. It
opens up the possibility, for example, to analyze GPS datasets
in small geographical boundaries (e.g., city level or county
level) and to pull together the analyses in order to understand
the phenomenon at a bigger scale, while preserving the
confidentiality of individual records. Mechanisms to merge
classifiers can also account for the fact that classifiers derived
from older datasets are less representative of current trends.
This allows us to make use of the growing collection of GPS
datasets while ensuring that the final product remains most
representative of current trends.

It should be noted that, for a single dataset, one can derive
a variety of classifiers either by selecting different methods
to build classifiers, or by tuning the parameters of a given
method [51]. In other words, for a single dataset, one can
produce a variety of competing hypotheses to explain how
food exposure relates to utilization. Selecting a hypothesis
should take into account logical reasoning (when imaging
how it translates to a public policy) and how well it fits the
data. The fit can be computed using traditional measures in
data mining (e.g., accuracy, sensitivity, and specificity) but
also by running the different hypothesis in the ABM and
observing the resulting behaviour of the agents.

2.2. Developing ABMs to Test Food Policies

2.2.1. Creating the Rules of the Agents. Designing an ABM
involves determining the decision-making rules of virtual
people, or “agents.” Data mining can inform these rules by
empirical research in two ways [51, 64]. First, it can show
what factors should be involved in the rules (e.g., if it shows
that repeated long exposure matters or that age matters more
than they should be captured in the ABM). Second, it will
also be essential for the calibration phase by giving the extent
to which the ABM should be able to replicate observations
from the GPS at baseline. For example, if data mining can
explain 70% of the observations then it creates a benchmark

against which to compare the ABM. (Note that the goal of
an ABM is not necessarily to exceed this benchmark. For
example, we previously developed an ABM which had the
same accuracy as was obtained fromdatamining [51, 64].The
advantage of the ABMwas that it had explicit hypotheses that
could be communicated to policy makers, and modified if
needed, in contrast with classifiers which may be difficult to
comprehend (e.g., support vector machines creating vectors
in a high dimensional space) and are not designed to be
modified.)

The rules of the agents are often informed by both the data
and field expertise. For example, the participants generating
the GPS traces may not have disclosed their food preferences
and health beliefs, but we know that these play a role in food
choices and they are thus used in ABMs [14]. When having
to supplement rules derived from the data with rules based
on expertise, the rules should be grounded in a theoretical
model of health behaviour. Numerous such models exist,
including the multilevel theory of population health which
emphasizes the role of habits [65], social ecological behaviour
models that look at the importance of the food environment
both physically and socially [66], and a variety of social-
cognitive models that can include behavioural, normative,
and control beliefs [67]. The existence of multiple models
makes it difficult to formulate hypotheses (e.g., where to start,
given possible differences between models). However, the
flexibility of ABM to incorporate hypotheses is beneficial as
it allows testing the potential impact of hypotheses derived
from different models. This not only is relevant for public
policy, but also fosters theory development in the area of
food choices specifically and more broadly with regard to
behavioural models in general.

2.2.2. Parameters and Outputs. “What-if” scenarios, such as
interventions that alter social and/or environmental sources
of influence, can be tested using an ABM and produce esti-
mates (e.g., impacts on diet and obesity). Supporting “what-
if” scenarios is one of the main applications of modelling and
simulation [68] and the design of such platforms has been
well illustrated [9, 14, 69, 70] including in its application to
policy portfolios for healthy food choices [14, 71]. Figure 1
provides as example a virtual platform simulating how
individuals’ behaviour depends on social and environmental
influences, which could be changed to see the resulting
impact in behaviours. A similar example can be found in [72]
where a virtual platform simulates how individuals’ physical
activity behaviour could be changed.

In 2007, Ligmann-Zielinska and Jankowski wrote that
“there exist only a handful of operational agent-basedmodels.
Most models are either highly abstract, missing the policy-
driven context, and hence represent intellectually intriguing
but practically insufficient tools, or are in an early stage of
their operational development” [73]. While the number of
ABMs has grown steadily since 2007, few can still be deemed
operational. Thus, it is essential that future ABMs support a
wide portfolio of policy interventions that at least includes
what policymakers are interested in. This means including
interventions ranging from urban planning to supporting
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Figure 1: Simulation of human travel patterns in Mastermind [76]
using the road network of downtown Vancouver, BC.

individuals in making healthy choices [74, 75]. To support
such wide range of interventions, an ABM should include
parameters that would automatically adjust the built envi-
ronment (e.g., maximum density of takeaways, minimum
distance of takeaways from schools) as well as parameters that
would directly affect the agents (e.g., preference for healthy
foods).

In addition to ensuring that the ABM has a relevant
range of tuneable policies through its input, close attention
should be paid to the outputs of the model. Indeed, the ABM
must provide a series of indicators to evaluate the impact
of interventions. These indicators must be relevant to diet
and adiposity, and they should also be supported by data.
Indicators of adiposity include the Body Mass Index, or the
waist-to-hip ratio, which captures the specific health risks
of abdominal fat by taking into account the distribution of
body fat. Indicators for diet can at least include utilization
per type of food outlet, as this can be derived from the GPS
dataset (cf. previous subsection) that informed the ABM.
Indicators of diet quality would be an asset, although they
are available in few GPS datasets. For example, the Fenland
study includes plasma vitamin C level, which is considered a
good biomarker of fruit and vegetable intake [77, 78] and thus
provides information about overall diet quality.

When data on socioeconomic status is available, it can
be used to explore the effects of different policies across
socioeconomic strata [79]. ABMhas been used only sparingly
to assess food policies for low-income populations [15] while
there is ample evidence that socioeconomic inequalities in
diet contribute to inequalities in obesity and chronic disease
risk. For example, a review of cross-sectional studies showed
that higher-quality diets (e.g., nutrient-dense, with high
variety and quantity of fruits and vegetables) are generally
consumed by individuals with high socioeconomic status
while lower-quality diets (e.g., energy dense) are consumed
by individuals with lower socioeconomic status [80].

2.3. Using ABMs to Find Synergistic Combinations of
Interventions That Promote Healthy Eating

2.3.1. Going beyond a Single Policy: Systems Thinking with
Agent-Based Modelling. Food behaviours have been targeted
by a variety of environmental-level and individual-level
interventions. Recent illustrations can be found in cities
such as Carlisle and Preston which have moved toward
zoning restrictions for fast food outlets [74], while the
UK Department of Health emphasized the potential of
changing norms to promote behaviour change [75] (for a
more complete overview of behaviour change methods we
refer to [81]). As exemplified by these different approaches,
there is a multiplicity of environments that influence food
behaviours [82]: the physical environment (e.g., variety of
food outlets), economic environment (e.g., cost of foods),
political environment (e.g., food regulations), and sociocul-
tural environment (e.g., beliefs and attitudes related to food).
Developing interventions on food behaviours is thus complex
as it addresses multiple sources of influence [83]. As ABMs
can be used to inform the design and evaluation of complex
interventions, it is particularly important that they reflect this
multiplicity [6, 84].

When an ABM is built as explained in the previous
subsection, its input parameters can be tuned so that a
wide range of policies can be tested. An (overly simplistic)
approach is to test policies one at a time, for example, by
using one combination of parameter values to represent plan-
ning policies creating healthy buffers around schools, while
another combination represents a communication campaign
on attitudes toward healthy foods. There are two issues with
such use of an ABM.

First, an intervention designed to change one element
may have rippling consequences. For example, a high density
of takeaways might lead to increased market competition
through lowering prices and increasing portion sizes. Inter-
ventions limiting the density would decrease market com-
petition, thus having potentially added benefits in lowering
the prevalence of cheap unhealthy calories. At the same time,
there may be initiatives to work with local businesses to
promote healthier cooking practices. One such example was
provided in a recent toolkit for London [85, p. 18]:

The East Midland’s Eat Out Eat In Well scheme
encouraged the Indian takeaways it was working
with to use water rather than oil to keep food
moist, and developed a new stock-point recipe
using a dried spice mix rather than readymade
mixes which were more expensive and had high
oil content.

Both interventions could reduce the prevalence of cheap
unhealthy calories, but through very different pathways. If
“prevalence of cheap unhealthy calories” is one parameter in
the ABM, then onemay not be aware that it would be affected
by both interventions or may not be able to adequately
capture this interaction.

Second, and most importantly, research on cross-sectoral
policy coherence has demonstrated that policies supporting
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healthy diets require coordination and capacity to work prag-
matically across organizational, sectoral, and jurisdictional
boundaries [86]. The various actors may have a range of
capacity and work on different time scales, for example,
because of their specific political cycles. Consequently, inter-
ventions that ultimately impact the same ABM parameter
may not do so within the same time scale.

To adequately represent several interventions in the
ABM, one would thus need to account for the rippling
consequences and different time scales of the interventions.
In other words, rather than imputing policies one at a time,
there is a need for a systems thinking approach that accounts
for multiple policies with interacting effects and delays. The
advantages are clear: one may find combinations that benefit
healthy eating much more than the sum of each separate
intervention. However, this can be a technical challenge
because the policies may need to be modelled in their own
rights, thus adding an intermediate layer to interacting with
the ABM.

2.3.2. Adding an Intermediate Layer to Capture Policies in
an ABM. Agent-based modelling is a quantitative individual
technique that excels at representing how individuals interact
with their environments and each other. Policies are going
to affect this environment and/or individual interactions.
At an abstract level, policies are composed of moving parts
with interactions and delays. For example, the resource
devoted to a program can interact with its implementation
which, in turn, affects health outcomes (Figure 2). These
two interactions can have different delays (e.g., insufficient
resources can quickly jeopardize a program while health
outcomes of obesity policies may take longer to manifest),
and their relationship may be linear (e.g., the program may
approximately scale with resources) or not (e.g., changes in
weight have plateaus). ABM being a very flexible framework,
these complex interactions can be represented within the
model. However, significant efforts have been dedicated in
the modelling community to develop System Dynamics (SD)
models when the focus is on policies. SD is a quantitative
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aggregate technique (Figure 2), with an established track-
record to “enhance our ability to understand the combination
of strategies with potential for greatest impact” in the context
of overweight and obesity [87]. Modellers are thus faced with
a choice: they can develop the policy component of themodel
within the ABM, which would involve additional calibration
and validation when done from scratch; alternatively, they
can connect their ABM with validated SD models (there are
many examples for the use of SD in obesity research, although
more commonly to study changes in body weight over time
at the individual [88–90] or population level [91, 92] than
to examine potential impact of interventions [93–95]), thus
creating a hybrid model.

Being able to integrate and reuse SD models would be
particularly beneficial given that the modelling community
devotes significant efforts to developing and validating such
models (thus creating high quality “building blocks”). In
addition, workshops have started training policymakers in
using SD. For example, the Georgia Health Policy Center
introducing SD to policymakers working on childhood obe-
sity and, several months later, the General Assembly passed
legislation on childhood obesity. As reported by the authors,
“several attendees of our program commented that the level
of conversationwas different because of their experience with
the model and impacted the passage of the legislation.” [94,
p. 121] Such outcomes contribute to the reputation of SD with
policymakers in the field of obesity, while training events
may help them in expressing their mental models using the
SD paradigm rather than the ABM paradigm. Consequently,
considering the policy component as an additional SD layer
in the model can contribute to a smoother development
process with policymakers and ultimately in their interest to
use the model.

While a broader discussion on hybrid models is beyond
the scope of this paper which is primarily devoted to
ABMs, we note that developing such models can be a
nontrivial modelling endeavour. There are several reasons
why modellers may choose to remain entirely within the
ABMparadigm, other than the paradigm’s ability to represent
policies. Creating a hybrid adds complexities because the SD
model needs to be connected to the ABM part: this requires
identifying which factors act as outputs of the SD and input
to the ABM and specifying exactly how they connect (which
can be challenging). It may also require teams in which there
are modellers familiar with ABM and with SD, thus adding
logistical constraints.

3. Results and Discussion

This review is the first to articulate how techniques found
in separate strands of literature can be brought together
to develop the next generation of agent-based models for
public policies about food behaviours. Our review was
organized in three steps, following the process of model
building. We first summarized how to acquire and analyze
detailed datasets about individual mobility patterns, which
results in better understanding of the complex relationships
between food exposure and utilization. Then, building on

that understanding and still using the data, we reviewed the
key methodological elements in creating ABMs. Finally, we
proposed to take a systems thinking perspective that views
interventions as complex systems in their own rights such
that their interactions and delays can be captured, and we
synthesized how existing techniques can help achieve that
goal.

While our three steps’ approach can provide modellers
with a practical plan for the development of future models
for policy purposes, we did not aim at providing a complete
overview of all steps involved in modelling and simulation.
For example, we did not mention visualizations. This can
be an important step, particularly when the model has to
be usable and trusted by policymakers. As we previously
discussed, interactive visualizations can be used at different
stages in the development of models in chronic health [96].
The choice of a visualization will also involve the type of
data expected at that stage and the nature of the interactions
(i.e., who is the user group and what needs to be more
salient for them in visual form). For example, policymakers
may want to see how the space and/or the behaviours of
people residing in it changes over time, under the effect of
selected interventions. While one may replay the simulation
as a movie, this may not allow policymakers and other
observers to see temporal patterns or minute differences
from one part of the simulation to another. Consequently,
different visualizations have been proposed to deal with
issues of change blindness in navigating simulation output
over discrete spaces [97] (as produced by ABM). A review
would be needed to examine the different ways in which
visualizations can support the design, validation, and use of
ABMs in policy research.

Validation will also require great attention from mod-
ellers, particularly as the validity of ABMs needs to be
assessed before using them tomake policy recommendations.
Ideas and practical guidelines for the validation of ABMs
were formulated by Bruch and Atwell. The models produced
by our process would typically fall under the category of
“Highly Realistic Models” and can be validated using the five
steps’ approach summarized by Bruch and Atwell. Some key
considerations included in these steps are the specification
and analysis of model uncertainty and the identification of
measures of fit at multiple levels of granularity [98].

While visualization can play a role in all simulations, and
validation is a requirement, an optional and specific aspect
of policy-relevant ABMs is the possibility of improving the
model using natural experiments. That is, once interventions
suggested by the model start being implemented and their
actual results are collected, they can be fed back into the
ABM. Specifically, this would be an ongoing calibration
process whereby the rules of the ABM are fine-tuned as
the results of the interventions become available. Many
natural experiments have been conducted when it comes
to food behaviours, such as introducing food retailing in
deprived communities [99] or varying the physical environ-
ment characteristics of dormitories and measuring changes
in the students’ weight and behaviours [100]. While we know
how to manage and collect data regarding experiments, a



Computational and Mathematical Methods in Medicine 9

standardization of their use to calibration policy-relevant
ABMs remains to be explored in future work.

Articulating separate strands of the literature to develop
the next generation of policy-relevant ABMs for food
behaviours is an ambitious goal, particularly in light of the
ABMsdeveloped so far.This is an interdisciplinary endeavour
and it may require sizeable teams composed, for example,
of policymakers, health geographers, systemmodellers, com-
puter scientists, and health psychologists. Navigating bound-
aries and managing disparate teams are common challenges
with projects that are both technologically innovative and
very applied; analyses of factors contributing to failure and
successes of such projects can be found in [101]. Addressing
these challenges is nonetheless essential to the creation of
evidence-based policies.

Articulating together these three separate strands is
applicable not only to the study of food behaviours, as
explained here, but also for other behaviours such as active
travel. Indeed, each strand has been applied independently
for active travel: numerous GPS datasets have been analyzed
to understand the relationship between the environment and
active travel [48], while agent-based models have been devel-
oped that can assess responses to a change in environment
[102]. There are thus opportunities to link these different
pieces through a methodologically coherent framework that
is presented in this review and ultimately supports decision-
making.

We are aware that putting this process to practice requires
a leap forward, but we believe that it is a long-term objective
well-worth addressing to develop interventions that can
effectively support healthy eating practices in the population.
It could also lead to a paradigm shift. Instead of intervention
developers trying to convince policy makers about their
approach, this enables policy makers to guide intervention
developers to come up with interventions with a potentially
larger public health impact. This top-down approach might
be common practice in some communities or even countries
already, but giving policy makers tools to do this in an
evidence-based is likely to be beneficial in comparison with
current public health practice.This does notmean that policy
makers will tell intervention developers how to develop inter-
ventions (after all, that is their expertise), but only what the
focus of interventions might be or what type of interventions
would be most beneficial to public health. Needless to say,
these tools can also be used in a bottom-up approach allowing
intervention developers to determine beforehand what focus
or type of interventions has the highest potential.

4. Conclusions

Obesity being a complex condition, it is necessary to develop
models that are mindful of this complexity. While current
ABMs for food behaviours have numerous limitations and
often ignore important components of the food environment,
we reviewed and articulated how existing techniques can bet-
ter capture how individuals navigate the food environment
and develop public food policies.
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