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Abstract

Proteins are the building blocks for almost all the functions in cells. Understanding the molecular evolution of proteins
and the forces that shape protein evolution is essential in understanding the basis of function and evolution. Previous
studies have shown that adaptation frequently occurs at the protein surface, such as in genes involved in host–pathogen
interactions. However, it remains unclear whether adaptive sites are distributed randomly or at regions associated with
particular structural or functional characteristics across the genome, since many proteins lack structural or functional
annotations. Here, we seek to tackle this question by combining large-scale bioinformatic prediction, structural analysis,
phylogenetic inference, and population genomic analysis of Drosophila protein-coding genes. We found that protein
sequence adaptation is more relevant to function-related rather than structure-related properties. Interestingly, inter-
molecular interactions contribute significantly to protein adaptation. We further showed that intermolecular interac-
tions, such as physical interactions, may play a role in the coadaptation of fast-adaptive proteins. We found that strongly
differentiated amino acids across geographic regions in protein-coding genes are mostly adaptive, which may contribute
to the long-term adaptive evolution. This strongly indicates that a number of adaptive sites tend to be repeatedly
mutated and selected throughout evolution in the past, present, and maybe future. Our results highlight the important
roles of intermolecular interactions and coadaptation in the adaptive evolution of proteins both at the species and
population levels.

Key words: intermolecular interaction, coadaptation, Drosophila, population, physical interaction, adaptive and
nonadaptive changes.

Introduction
Natural selection plays an important role in the molecular
evolution of protein sequences. Recent advances in genome
sequencing and reliable inference methods at both phyloge-
netic and population levels have enabled fast and robust es-
timation of evolutionary rates and adaptation driven by
natural selection. In addition, the increased availabilities of
structural and functional data of proteins have made it pos-
sible to study how structural and functional constraints affect
protein sequence evolution and adaptation. Different pro-
teins and different sites within a protein have varying rates
of evolution and adaptation due to both structural and func-
tional constraints (Kosiol et al. 2008; Lindblad-Toh et al. 2011;
Zhang and Yang 2015; Echave et al. 2016). For example, genes
that are highly expressed or perform essential functions are
often under strong purifying selection and tend to evolve
slowly (P�al et al. 2001; Drummond et al. 2005; Zhang and
He 2005; Zhang and Yang 2015; Moutinho et al. 2019); genes
involved in host–pathogen interactions, for example, im-
mune responses and antivirus responses, show exceptionally
high rates of adaptive changes (Nielsen et al. 2005; Sackton
et al. 2007; Obbard et al. 2009; Sironi et al. 2015; Enard et al.
2016; Palmer et al. 2018; Uricchio et al. 2019); and residues

that are intrinsically disordered or at the protein surface are
fast evolving and proved to be hotspots of adaptive evolution
(Goldman et al. 1998; Lin et al. 2007; Ramsey et al., 2011;
Afanasyeva et al. 2018; Moutinho et al. 2019). More recently,
Slodkowicz and Goldman (2020) employed genomic-scale
integrated structural and evolutionary phylogenetic analysis
in mammals and showed that positively selected residues are
clustered near ligand binding sites, especially in proteins that
are associated with immune responses and xenobiotic me-
tabolism. However, it remains unclear how adaptive sites are
distributed in the genome and how adaptation is related to
functions and structures. Moreover, most of the existing lit-
erature is focused on protein differences between species, and
it remains unclear how much within-species selective pro-
cesses like spatially varying selection may contribute to
long-term evolution.

Although evidence has shown that adaptation is more
likely to occur at intrinsically disordered regions (IDRs;
Afanasyeva et al. 2018) and clustered at the surface of
proteins (Dasmeh et al. 2013; Moutinho et al. 2019;
Slodkowicz and Goldman 2020), it remains unclear how
functional and structural properties of proteins shape adap-
tation at the species and population scale. Moreover, due to
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the lack of structural and functional information of many
proteins in the genome, the underlying evolutionary mech-
anism derived from current studies might be incomplete.
Here, we systematically investigated the evolution and ad-
aptation of protein-coding genes in Drosophila melanogaster
by comparing it to its closely related species and their own
populations, to distinguish the main factors that impact
evolution and adaptation at the protein-coding level. We
applied large-scale bioinformatic and structural analysis to
obtain the structural and functional properties of proteins.
We then classified residues into different structural and
functional sites. By comparing rates of sequence evolution
and adaptation between different proteins and sites, we
were able to locate hotspots of adaptation at the genome
scale. We found that functional properties are better pre-
dictors of protein adaptation rates than structural proper-
ties. Interestingly, we found that adaptation rates of a
protein positively correlate with the fraction of residues
that are involved in intermolecular interactions inside the
protein. In agreement with this finding, we found that pu-
tative binding regions including allosteric sites at protein
surface show higher rates of adaptive evolution than other
sites. For proteins under fast-adaptive evolution, defined as
proteins with high rates of adaptive evolution, we showed
that they tend to interact with each other more frequently
than random expectations, suggesting fast-adaptive genes
might undergo coadaptive evolution. We further discovered
that coadaptation might be universal for many interacting
proteins in D. melanogaster.

Our results suggest that intermolecular interactions in
D. melanogaster are an important driver of protein adaptive
evolution. We further hypothesized and provided evidence
that intermolecular interactions, such as physical interactions,
might be an important mechanism that contributes to the
coadaptive evolution of interacting proteins in
D. melanogaster genome. One intriguing question is that
how the adaptive signals between-populations (short term)
and between-species (long term) are correlated. We then
asked if those patterns hold for the selective processes occur-
ring within-species. Despite the abundance of literature
studying geographic variation in Drosophila species
(Kolaczkowski et al. 2011; Fabian et al. 2012; Langley et al.
2012; Pitchers et al. 2013; Bergland et al. 2014; Reinhardt et al.
2014; Lack et al. 2015; Svetec et al. 2016), very little is known
for a systematic evaluation of the protein properties affected
by spatially varying selection. We thus investigated protein
adaptation signals of strongly differentiated amino acids
across geographic regions, which were often associated with
within-species local adaptations (Matthey-Doret and
Whitlock 2019). We showed that most of the patterns found
between-species in fact hold at the within-species levels. This
may partly be because most sites contributing to within-
species local adaptation tend to also contribute to long-
term adaptive evolution in D. melanogaster, suggesting that
a subset of protein-coding loci are constantly or repeatedly
utilized for the adaptive purposes.

Results

Putative Molecular Interaction Sites Are Hotspots for
Protein Adaptive Evolution
To uncover the main factors that impact the evolutionary rates
of genes, we analyzed 13,528 protein-coding genes in
D. melanogaster using genomic data from melanogaster sub-
group species and D. melanogaster population genomics data
from 205 inbred lines from Drosophila Genetic Reference Panel,
Freeze 2.0 (DGRP2; Huang et al. 2014). We applied a maximum
likelihood method (Yang 2007) to compute the dN/dS ratio
(x) using the protein-coding sequences of five closely related
melanogaster subgroup species (D. melanogaster, D. simulans,
D. sechellia, D. yakuba, and D. erecta). We estimated the pro-
portions of adaptive changes (a) in each gene by applying an
extension of McDonald–Kreitman (MK) test named asymp-
totic MK (Messer and Petrov 2013; Uricchio et al. 2019) using
D. yakuba as outgroup. We then calculated the rate of adaptive
changes (xa) of each gene by multiplying x to a (xa ¼ ax)
(Moutinho et al. 2019; see Material and Methods). The rate of
nonadaptive changes can be further calculated by xna¼ x �
xa. Finally, we successfully assigned x to 12,118 protein-coding
genes and xa and xna to 7,192 genes. For each of
D. melanogaster genes subjecting the same analysis pipeline,
we further obtained 17 different structural or functional prop-
erties (see Material and Methods, supplementary file S1 and
tables S1 and S2, Supplementary Material online). We calcu-
lated Pearson’s correlations of x, xa, and xna with all these
properties (supplementary table S1, Supplementary Material
online). Many of these genome-wide correlations were
expected (for details, see supplementary tables S1, S2, and
figs. S1–S5, Supplementary Material online). Interestingly, we
found that some previously unexplored properties, fractions of
molecular-interaction sites (including protein–protein interac-
tion (PPI)-site ratio, ratio of residues involved in PPIs, and DNA-
site ratio, ratio of residues involved in protein–DNA interac-
tions) were strongly positively correlated with x, xa, and xna

(supplementary section Molecular interactions contribute to the
variations of protein sequence evolution and adaptation, table
S1, figs. S1 and S2, Supplementary Material online). The results
indicate that molecular interactions might act as an important
factor that drives protein adaptive evolution in the Drosophila
genome.

We then investigated whether residues involved in molec-
ular interactions are targets for adaptive evolution. To tackle
this question, we predicted PPI-sites and DNA binding sites
(DNA-sites) for each of D. melanogaster protein sequences
(see Materials and Methods). In addition, we characterized
allosteric residues as surface and interior critical residues with
STRESS model (Clarke et al. 2016) for all the structural models.
We also extracted putative binding sites from STRESS Monte
Carlo simulations. We calculated x, xa, and xna for residues
in each of the putative molecular interaction categories.
Strikingly, we observed that residues involved in PPIs, DNA
binding, and ligand binding exhibited higher rates of adaptive
evolution compared with their corresponding null sites (t-
test, P¼ 7e-10, 0.18, and 7e-15, respectively; fig. 1A–C). In
addition, allosteric residues at protein surface showed higher
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adaptation rates than allosteric residues at protein interior (t-
test, P¼ 3e-10) or residues that are not involved in ligand
binding (t-test, P¼ 0.003; fig. 1C and supplementary fig. S6,
Supplementary Material online).

To gain a better understanding of adaptation in molecular
interaction sites, we further visualized positive selections that
are associated with molecular interactions. We first investi-
gated whether adaptive evolution is associated with particu-
lar protein structures or protein families. To do this, we
looked into fast-adaptive proteins with the largest �15%
rates of adaptation (xa > 0.15) that are linked to high-
quality structural models. Interestingly, among these proteins,
we found 45 enriched as trypsin-like cysteine/serine peptidase
domain and 17 7TM chemoreceptors, suggesting widespread
adaptive evolution acting on these protein families or protein
domains in D. melanogaster (supplementary table S3,
Supplementary Material online). Many of the 7TM

chemoreceptors are olfactory and gustatory genes and
show adaptive evolution in various species such as
Drosophila and mosquito (Hill et al. 2002; Lawniczak and
Begun 2007; McBride 2007; Wu et al. 2009). In addition to
these two protein families, previous studies identified recur-
rent positive selections acting on some other fast-adaptive
proteins in Drosophila and mammals, and the possible adap-
tive evolution mechanisms have been linked to exogenous
ligand binding, for example, serine protease inhibitors (ser-
pin), Toll-like receptor 4 (TLR-4), and cytochrome P450
(Jiggins and Kim 2007; Slodkowicz and Goldman 2020).

We used the two representative cases of fast-adaptive pro-
tein evolution of CG10232 and Or67a—a trypsin-like cyste-
ine/serine peptidase domain and a 7TM chemoreceptor,
respectively—to illustrate the link between adaptive evolu-
tion and molecular interactions in the two protein families
with frequent adaptive evolution. We observed that in both

FIG. 1. Adaptive evolution in molecular interaction sites. PPI sites (A), DNA binding sites (B), and putative ligand binding sites (C) show higher
adaptation rates than none binding sites. The t-test P-values between the adaptation rates of binding sites and nonbinding sites were highlighted in
(A–C). t-test P-values between other evolutionary rates of binding sites and nonbinding sites were shown in supplementary figure S2,
Supplementary Material online. Examples of positive selection around molecular interaction sites in high-quality structural models of
CG10232 (D), Or67a (E), spz (F), and Cul6 (G). Except for spz (PDB code 3e07), the other proteins are obtained from SWISS model repository.
Putative ligand binding pockets of CG10232 (D) and Or67a (E) are shown in blue spheres. Ligands including interacting proteins are shown in cyan
or green: NAG of CG10232 in cyan (D), Toll receptor of spz in cyan (F), Rbx protein in cyan and F-box protein in green for Cul6 (G). The putative
odorant binding channel of Or67a is highlighted in cyan circle (E). The ligand poses in (D, F, and G) are obtained by superimposition from structures
2XXL, 4BV4, and 1LDK, respectively.
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cases, positively selected sites were significantly closer to pre-
dicted or inferred binding sites in the protein 3D structure (t-
test, P¼ 8e-133 for CG10232 and 3e-169 for Or67a, fig. 1D
and E) and were overlapped with predicted or inferred bind-
ing pockets for CG10232 (Fisher’s exact test, P-values 0.02,
fig. 1D). There might be an overlap with predicted or inferred
binding pockets for Or67a, but it is not statistically significant
(Fisher’s exact test, P¼ 0.19, fig. 1E). Specifically, in CG10232,
we found clusters of positively selected sites around NAG
binding sites that are inferred from a crystal structure of serine
protease (PDB code: 2XXL; fig. 1D), whereas in Or67a, posi-
tively selected sites expand around the putative odorant-
binding channel formed by helices S1–S6 in extracellular
regions (Butterwick et al. 2018; fig. 1E).

Besides the examples that are associated with exogenous
ligand or exogenous peptide binding, we also identified two
previously undescribed examples where adaptive evolution
might be linked to endogenous protein binding: Spaztle (spz,
fig. 1F) and Cul6 (fig. 1G). Spaztle can bind to TLRs and trigger
a humoral innate immune response. We built the missing
loop in Spaztle in the crystal structure of Toll/Spaztle complex
(PDB code 4BV4) according to the dimeric crystal structure of
Spaztle (PDB code 3E07). In this complex structural model, we
observed several positively selected sites in Toll-4/Spaztle
interfaces (fig. 1F). Cul6, another example, is a protein in
the cullins family in D. melanogaster. The cullins protein fam-
ily is known as scaffold proteins that assemble multisubunit
Cullin-RING E3 ubiquitin ligase by forming SCF complex with
F box and RING-box (Rbx) proteins (Zheng et al. 2002). We
constructed the putative Cul6 contained SCF complex by
superimposition to the crystal structure of the Cul1-Rbx1-
Skp1-F boxSkp2 SCF ubiquitin ligase complex (Zheng et al.
2002). In the structural model, we observed positively selected
sites in Cul6 clustered around the binding sites of Rbx protein,
Rbx1, and F-box protein, Skp1 (fig. 1G). The examples above
suggest that intermolecular interactions, including both ex-
ogenous and endogenous binding, could contribute to pro-
tein adaptive evolution.

Frequent Adaptive Evolution and Coadaptative
Evolution in Genes Involved in Reproduction,
Immune System, and Environmental Information
Processing
To find out whether specific biological functions were asso-
ciated with fast-adaptive genes, we applied Gene Ontology
(GO) analysis using DAVID tool to the genes with the largest
rates of adaptation (xa > 0.15, top �15%). The significant
GO terms are frequently linked to serine-type endopeptidase
activity, reproduction, protein lysis, chemosensory, and other
related biological functions (supplementary table S4,
Supplementary Material online). As these fast-adaptive genes
tend to be enriched in similar biological functions, we asked
whether these genes evolved coadaptively that is, whether
these proteins are interacting with each other frequently. To
test this possibility, we obtained PPI of D. melanogaster from
STRING database (Szklarczyk et al. 2019) and analyzed PPIs
among fast-adaptive proteins. We found that fast-adaptive

proteins tend to interact with each other more frequently
than expected (PPI enrichment P-value< 1.0e-16). In the PPI
network of fast-adaptive proteins, we observed seven strongly
connected subclusters with at least five members (fig. 2A and
supplementary table S5, Supplementary Material online, e.g.,
fig. 2B and C). Proteins in these subclusters are enriched in
biological processes such as reproduction, immune response,
defense response to bacterium and virus, RNA interference,
chitin metabolic, etc. (supplementary tables S5–S11,
Supplementary Material online), which are in line with the
GO analysis of fast-adaptive genes (supplementary table S4,
Supplementary Material online) and previous enrichment
analysis of positively selected genes identified from genome-
wide studies (Nielsen et al. 2005; Begun et al. 2007; Enard et al.
2016).

We next asked whether coadaptation plays a role in the
adaptive evolution of interacting proteins to a broader ex-
tend, including both fast- and slow-adaptive proteins. To ad-
dress this question, we analyzed and compared adaptation
rates of all D. melanogaster PPIs available in STRING database
with high confidence, and we found that protein partners of
fast-adaptive proteins (xa > 0.15) have significantly larger
maximum/average xa compared with slow-adaptive proteins
(fig. 3). We further analyzed and visualized adaptive evolu-
tionary rates of proteins in PPI networks of nine different
biological pathways extracted from Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, including the im-
mune system, xenobiotics biodegradation, response to the
environment, aging and development, genetic information
processing, sensory system, transport and catabolism, cell
growth and death, and metabolism. We observed that, in
these PPI networks, proteins with relatively large xa tend to
interact with each other (fig. 4A and B). We also noticed that,
for pathways that are previously known as adaptation-
hotspots (e.g., immune system), fast-adaptive proteins can
act as central nodes and are coadaptively evolving with other
fast-adaptive proteins (fig. 4A and C). Although in pathways
such as transport and catabolism, fast-adaptive proteins are
mainly at PPI periphery. Specifically, we observed that in path-
ways related to the immune system and environmental ad-
aptation, where adaptive evolution often occurs, fast-
adaptive proteins have a comparable number of interactors
as other genes (fig. 4C and D), whereas in conserved pathways
such as transport and catabolism, fast-adaptive genes are of-
ten at network peripheries and have significantly fewer inter-
actors (fig. 4E and F). In line with these findings, we found that
xa are larger in pathways that harbor fast-adaptive proteins
as central nodes than other pathways (supplementary fig. S7,
Supplementary Material online).

Physical Interactions Contribute to Coadaptation of
Fast-Adaptive Genes
Having established that molecular interactions contribute to
the adaptive evolution of protein sequence, we then investi-
gated whether these physical molecular interactions could
drive protein–protein coadaptation. To do this, we looked
into interacting fast-adaptive protein pairs that are associated
with known or inferred complex structural models. For
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inferred complex structural models, we superimposed the
structural models of the pair of proteins onto their high-res-
olution homologous complex structures. Here we illustrated
coadaptation at the PPI interface in two examples: Toll-4/
Spatzle and Spn28Db/CG18563 (fig. 2B and C).

Toll-4/Spatzle
Toll-4 is a member of TLRs. Previous studies have shown
strong evidence of adaptive evolution of Toll-4 in
Drosophila and mammals (Levin and Malik 2017;
Slodkowicz and Goldman 2020), and implied the important
roles of ligand binding in the positive selection and coevolu-
tion of Toll receptors and Spatzle proteins (Lima et al. 2021).
Toll-4 can bind to Spatzle and trigger further innate immune
responses with high confidence (inferred from STRING data-
base). In the previous section, we showed that several posi-
tively selected sites in Spatzle overlap with Toll-Spatzle
interfaces (fig. 1F). Here, we further showed that, in Toll-4,
many significantly positively selected sites were located at the
interface for Spatzle (fig. 2B), which is in line with a previous
study of Toll-4 in Drosophila willistoni (Levin and Malik 2017).

Spn28Db/CG18563
Spn28Db is one of the serine protease inhibitors in
D. melanogaster expressed in male accessory glands, whereas
CG18563 belongs to the protein family of trypsin-like cyste-
ine/serine peptidase domain. The interactions between the
two proteins were predicted with high confidence from the
STRING database, and the molecular interactions can be in-
ferred from the existing crystal structure of serpin and bacte-
ria protease complex (PDB code 1EZX). We observed many
positive selected sites at the molecular interface between the
two proteins (fig. 2C), suggesting that physical interactions
might play a role in the coadaptation of the two proteins.

Most Geographically Differentiated Nonsynonymous
Single Nucleotide Polymorphisms in Protein-Coding
Genes Are Adaptive
To learn more about the relationship between short-term
adaptation to local environments and long-term adaptive
evolution, we extracted residues with significant allele fre-
quency differentiation across latitudes in North America
(Svetec et al. 2016) and Africa (Lack et al. 2015). For the
DPGP3 African population data, we followed the same pro-
tocol as Svetec et al. (2016) to identify significantly differen-
tiated single nucleotide polymorphism (SNPs; see Population

FIG. 2. Coadaptation of fast-adaptive proteins. (A) Subclusters of PPI networks of fast-adaptive proteins. Only proteins with at least one partner
were shown. Examples of molecular interactions that might regulate coadaptation in fast-adaptive proteins: (B) Toll-4 (gray) and spz (orange, with
green representing the other spz monomer), (C) Spn28Db (gray, serine protease inhibitor 28Db) and CG18563 (cyan, with Go term “serine-type
endopeptidase activity”). A putative N-terminus (transparent beads) of Toll-4 was built by superimposition from 4LXR, since the N-terminus was
missing in the structural model. Complex structural models of Spn28Db and CG18563 were inferred from 1EZX.
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Genetics of DPGP3 African Population). We then computed
evolutionary rates (x), adaptation rates (xa), nonadaptation
rates (xna), and proportions of adaptive changes (a) of these
residues as in the previous section (fig. 5A and B and supple-
mentary fig. S8, Supplementary Material online). We observed
that, in both the North American population and the African
population, these sites have significantly higher proportions
of adaptive changes (fig. 5A and B) than other SNPs, suggest-
ing that they can be hotspots for adaptive evolution. To find
out whether these SNPs are related to even longer-term adap-
tive evolution, we inferred positive selection sites of each
protein-coding gene from phylogenic data (see Material
and Methods). We found that geographically differentiated
nonsynonymous SNPs are significantly enriched for long-term
positive selection (supplementary fig. S9, Supplementary
Material online). To further characterize structural and func-
tional properties of short-term genetic variations, we mapped
geographically differentiated nonsynonymous residues to dif-
ferent structural and functional characteristics, such as intrin-
sic structural disorder (ISD), relative solvent accessibility
(RSA), PPI-sites, DNA-sites, and ligand-binding sites. We

found that these nonsynonymous SNPs were significantly
enriched in disordered regions and protein surfaces, as well
as in PPIs and ligand binding (supplementary fig. S9,
Supplementary Material online). To better visualize the char-
acteristics of these SNPs, we used Toll-4 as an example. We
mapped its geographically differentiated nonsynonymous
sites onto its structural model. We found that these sites
are either positively selected or are located very close to pos-
itively selected sites (fig. 5C and D). For example, highly dif-
ferentiated sites in the North American population, N279
(false discovery rate [FDR] 3e-7) and H431 (FDR 3e-6) were
predicted to be positively selected both at a probability of
P¼ 0.9. Although another highly differentiated site, D424 was
close to three positively selected sites S401 (P¼ 0.8), H431
(P¼ 0.95), and V448 (P¼ 0.8). We also noticed some differ-
entiated sites that may be located within ligand binding sites,
including F297 (FDR 3e-3), S311 (FDR 3e-3), H431 (FDR 3e-6),
and H462 (FDR 1e-2). In the structure of Toll4, we also ob-
served three highly differentiated sites in African populations,
which are S311 (FDR 4e-2), H431 (FDR 2e-2), and S490 (FDR
2e-4). We noticed that all the three sites overlapped with

FIG. 3. Coadaptation of PPIs in D. melanogaster. For fast-adaptive proteins, adaptation rates of their partners (orange box plot) are significantly
larger compared with slow adaptive proteins (blue box plot). Max xa of protein partners are shown in (A and C) and averaged xa, of protein
partners are shown in (B and D). PPI from STRING with median confidence (combined score larger than 0.4) are shown in (A and B), and PPI with
high confidence (combined score larger than 0.7) are shown in (C and D).
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differentiated SNPs in North America and two of them (S311
and H431) localized within ligand binding sites (fig. 5D), fur-
ther supporting our observation that ligand binding sites in
some genes may undergo recurrent adaptive evolution.

Discussion
In this study, we systematically studied the impact of struc-
ture- and function-related gene properties on protein se-
quence evolution and adaptation in D. melanogaster
genome. We found that molecular interactions in proteins
contribute to the variation of protein sequence adaptive evo-
lution. A novel discovery of this work is that molecular inter-
action sites including PPI sites and protein–DNA interaction
sites are hotspots for adaptative evolution. We revealed that
fast-adaptive proteins tend to interact with each other fre-
quently and protein partners of these fast-adaptive proteins
tend to have higher adaptation rates, suggesting that coad-
aptive evolution might be common in D. melanogaster. By
visualizing examples of interacting fast-adaptive proteins, we
further demonstrated that physical interactions may contrib-
ute to the coadaptation of fast-adaptive proteins.

Protein surface and intrinsic disorder regions are frequent
targets for adaptive evolution and contribute to the variations
of protein sequence adaptive evolution (Afanasyeva et al.
2018; Moutinho et al. 2019). However, the detailed mecha-
nisms underlying these observations remain unclear. One
possible explanation would be that these regions are fre-
quently linked to intermolecular interactions (Afanasyeva
et al. 2018; Moutinho et al. 2019). For example, Moutinho
et al. (2019) hypothesized that molecular interactions in-
volved in host–pathogen coevolution were the major driver

of protein adaptation. Here, we further identified that pro-
portions of possible molecular interaction sites inside proteins
contribute to the variations of protein sequence adaptive
evolution. These molecular interaction sites or regulatory sites
at protein surfaces can be hotspots of protein adaptation.
Indeed, some specific molecular interactions have been linked
to adaptive evolution in several case studies (Hughes and Nei
1988; Bachtrog 2008; Schott et al. 2014; Levin and Malik 2017),
a recent study on sweet taste receptors in the songbird radi-
ation (Toda et al. 2021), and large-scale studies based on
proteins with high-quality structural models (Slodkowicz
and Goldman 2020). In the latter study, the authors showed
that amino acids under positive selection in mammals tend
to cluster closer to binding sites of exogenous ligands than
expected by chance (Slodkowicz and Goldman 2020), sug-
gesting an important role of functionally important regions in
adaptive evolution. Here, we extend the conclusion to D.
melanogaster genome, including proteins with or without
high-resolution structural models. We also showed that in
addition to exogenous ligands, endogenous ligands might
also contribute to adaptive evolution, while the latter might
explain why interacting proteins tend to evolve coadaptively.

Notably, previous studies showed that multi-interface pro-
teins tend to evolve more slowly than single-interface pro-
teins (Kim et al. 2006) and that proteins with many
interactors tend to evolve slowly (Jordan et al. 2003), which
seems to be contradictory to our results that proteins with
more interaction sites evolve faster and have faster adapta-
tion rates. Here, we argue that, in our study, we used sequence
profiles to predict molecular interaction sites in proteins at a
genomic scale, rather than only looking into proteins with

FIG. 4. Rates of protein sequence adaptive evolution in the PPI network of different functional pathways. The PPI networks showed the adaptive
evolution in the immune system (A) and transport and catabolism (B). In pathways that are hotspots of adaptive evolution, for example,
environmental adaptation (C) and immune system (D), fast-adaptive proteins can act as central nodes. Although in conserved pathways, for
example, genetic information processing (E) and transport and catabolism (F), fast-adaptive proteins are often at the periphery of the PPI network.
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high-resolution structures. In this way, we may capture many
weak or transient interactions, which are evolving faster than
obligate and conserved interactions (Mintseris and Weng
2005). Meanwhile, we did not exclude IDRs or intrinsically
disordered proteins (IDPs) in our study, which are widespread
in D. melanogaster genome. It has been suggested that IDR/
IDP tend to evolve fast due to the lack of structural restraints
(Echave et al. 2016). In the functional aspect, IDR/IDP are
thought to be promiscuous binders through many multiple
binding mechanisms, including forming static, semistatic, and
fuzzy or dynamic complexes (Uversky 2019), suggesting that
the evolution of IDR/IDP cannot be explained merely by the
lack of structural restraints. Indeed, IDP and IDR in the human
genome were found to be undergoing extensive adaptive
evolution (Afanasyeva et al. 2018). At last, it has been recog-
nized that, except for allosteric regulations, encounter com-
plexes (Gabdoulline and Wade 1999) might also play an
important role in mediating intermolecular interactions,
such as protein–protein association (Tang et al. 2006) and
protein-ligand binding (Re et al. 2019). Since encounter resi-
dues that are responsible for encounter complexes do not

reside in conserved binding interfaces, these residues could be
under relaxed purifying selection or even positive selection,
which could be another yet-to-identify mechanism that con-
tributes to protein sequence adaptive evolution.

We showed that fast-adaptive proteins are enriched in mo-
lecular functions such as reproduction, immunity, and environ-
mental information processing (Begun and Whitley 2000;
Lazzaro et al. 2004; Begun and Lindfors 2005). We further dem-
onstrated that fast-adaptive proteins tend to interact with each
other more frequently than random expectations, suggesting
coadaptation might be common among fast-adaptive proteins.
Mechanisms contributing to the coadaptation could be: 1)
interacting fast-adaptive proteins are often enriched in similar
molecular functions and under similar selective pressure; and 2)
interacting fast-adaptive undergo coevolution through physical
interactions. In this study, we showed two examples that adap-
tive evolution could occur at PPI, which suggest that physical
interactions could contribute to the coadaptation of fast-
adaptive proteins in D. melanogaster. Moreover, we showed
that coadaptation might exist to a broader extend rather than
only among fast-adaptive proteins. Specifically, proteins that

FIG. 5. Adaptive evolution in significantly differentiated SNPs. The significantly differentiated SNPs at different FDR cutoffs all show much higher
proportions of adaptative changes (a) than genome-wide expectation in the North American population (A) and African population (B) (t-test,
****, P< 1e-4). (C) Significantly differentiated nonsynonymous SNPs of North American populations in Toll-4. Ligands are shown in cyan by
superimposing crystal structure of Toll-Spatzle (PDB code 4BV4) on to Toll-4 structural model. Residues N279 and H431 are both highly
differentiated (FDR 3e-7 and 3e-6) and positively selected (both at a probability of P¼ 0.9). Other highly differentiated sites, F297, S311, H424,
H431, and H462 are located near ligand binding sites or positively selected sites. (D) Significantly differentiated nonsynonymous SNPs of African
populations in Toll-4. Two highly differentiated SNPs, S311 (FDR 4e-2), and H431 (FDR 2e-2), exist in the North American population and are
located near ligand-binding sites.
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interact with fast-adaptive proteins tend to have higher adap-
tation rates. Since molecular interactions contribute to adap-
tive evolution, it is reasonable to hypothesize that coadaptation
at a broader extend could be regulated by these interactions.
Actually, it has been suggested that interacting proteins tend to
have similar evolutionary rates and the possible mechanism
would be the coevolution of physical interactions (Pazos and
Valencia 2008).

In this study, we found that amino acids showing great
geographical differences often overlap with sites that show
adaptive signals between species. These loci follow similar
patterns as adaptive changes, that is, they are enriched in
disordered regions, protein surfaces, and functionally impor-
tant regions. These results suggest that population differen-
tiation of protein-coding genes can be an important basis for
long-term adaptive evolution. In other words, many SNPs are
repeatedly selected for the adaptive processes in evolution.
Importantly, our results indicate that most of the strongly
differentiated clinal amino-acid changes are adaptive, suggest-
ing that nonselective forces play a less essential role in the
SNPs that show great geographical differences. Our results
also support a large effect of spatially varying selection on
protein sequence and structures (Storz and Kelly 2008).
Interestingly, our previous work showed that geographically
differentiated SNPs often occur on the same orthologous
genes between species but rarely the same SNPs (Zhao
et al. 2015). Thus, it would be interesting to extend this
work to D. simulans to study parallel protein evolution at
the structural level.

It should be noted that studies at the genomic scale that
aim to uncover the function- or structure-related con-
straints imposed on protein sequence evolution and adap-
tation share similar limitations that for most of the proteins
or residues, structural or functional information would be
incomplete or even missing. To overcome this, in this study,
we used highly accurate neural network-based tools to pre-
dict molecular interactions, secondary structures, ISD, RSA
for each of the proteins. In this way, we were able to identify
key factors that impact protein sequence evolution and
adaptation in a less accurate but rather systematic fashion.
Notably, it has been reported that false positives are non-
negligible in methods to the estimation of adaptive evolu-
tion (Markova-Raina and Petrov 2011), and other mecha-
nisms including translational selection were acting on the
evolution of protein-coding genes (Larracuente et al. 2008),
which together hinder our understanding toward protein
evolution and protein adaptation. Another limitation of our
study is that we did not include indels, especially nonframe-
shift indels, as it is very difficult to address the adaptive
effects of indels. However, with method development and
increased knowledge of protein structures, this would be an
important question to investigate in the future. In recent
years, deep learning-based predictors and estimators have
contributed to our knowledge of protein structure (Jumper
et al. 2021), protein function (Kulmanov and Hoehndorf
2020), or even protein evolution (Schrider and Kern 2018).
We hope that with the availability of more and more cu-
rated structural, functional information, and complex

structural models of proteins in the near future, we will
be able to uncover the precise role of molecular interactions
in protein sequence adaptive evolution.

Materials and Methods

dN/dS Ratio (x)
We used a maximum likelihood method to infer dN/dS ratio
(x) of D. melanogaster protein-coding genes using the ge-
nome sequences of five species in melanogaster subgroup
(D. melanogaster, D. simulans, D. sechellia, D. yakuba, and
D. erecta). The protein-coding sequences were extracted
from the alignments of 26 insects, which were obtained
from UCSC Genome Browser (http://hgdownload.soe.ucsc.
edu/downloads.html). The sequences were further processed
by GeneWise (Birney et al. 2004) to remove possible insertions
and deletions using the longest isoforms of the corresponding
D. melanogaster protein sequences as references (FlyBase ver-
sion r6.15) (Thurmond et al. 2019). The processed sequences
were then realigned by PRANK -codon function (Löytynoja
2014). The conservation scores and coverages of the align-
ments can be found in supplementary fig. S10,
Supplementary Material online. We used codeml in PAML
(Yang 2007) to compute gene-specific x using M0 model. We
removed sequences that have more than 15% of their nucleo-
tides not aligned (gaps) to D. melanogaster genes in more
than two species. To further avoid numeric errors and ensure
reasonable estimations, we only retained relatively divergent
sequences that are: 1) divergent with dS larger than 0.3 and
(2) less divergent with dS larger than 0.1 and dN smaller than
0.001 (dS�dN). At last, there were 12,118 genes in total that
passed all the criteria and were assigned gene-specific x,
containing 6,538,872 amino acids. We also calculated site-
specific x by using likelihood ratio tests (LRT) comparing
M7 model against M8 model, and M8fix model against M8
model (Yang et al. 2005), respectively. For genes that passed
LRT, we extracted potentially positively selected sites with the
probability being positively selected (P) greater than 0.5. In
the examples of positive selection around molecular interac-
tion sites in high-quality structural models, we list sites with
P> 0.5, P> 0.8, and P> 0.9. In cases where we did not specify
the probabilities being positively selected, we used the more
stringent probability cutoff of 0.9.

Rate of Adaptive and Nonadaptive Changes
We recalled all SNPs of 205 inbred lines from the DGRP,
Freeze 2.0 (Huang et al. 2014; http://dgrp2.gnets.ncsu.edu).
We then generated 410 alternative genomes using all mono-
allelic and bi-allelic SNP data sets. We extracted the coding
sequences of D. melanogaster genes from the generated
alternative genomes, removed all possible insertions and
deletions using GeneWise (Birney et al. 2004) as described
earlier. We then align all the coding sequences to their
corresponding aligned coding sequences using PRANK -co-
don function (Löytynoja 2014). We removed polymor-
phisms segregating at frequencies smaller than 5% to
reduce possible slightly deleterious mutations
(Charlesworth and Eyre-Walker 2008). In order to avoid
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possible effects of low divergence between D. simulans and
D. melanogaster (Keightley and Eyre-Walker 2012), we used
D. yakuba as outgroup to estimate nonsynonymous poly-
morphisms (Pn), synonymous polymorphisms (Ps), nonsy-
nonymous substitutions (Dn), and synonymous
substitutions (Ds) by MK.pl (Begun et al. 2007; Langley
et al. 2012). Similar to Begun et al. (2007), we only analyzed
genes with at least six variants for each of substitutions,
polymorphisms, nonsynonymous changes, and synonymous
changes. We used an extension of MK test, asymptotic MK
(Messer and Petrov 2013; Uricchio et al. 2019), to estimate
the proportions of adaptive changes (a). The rate of adap-
tive changes (xa) was then calculated as xa ¼ xa and the
rate of non-adaptive changes as xna ¼ x � xa. Details of
the asymptotic MK test were as follows:

(1) Classical MK test. According to Smith and Eyre-Walker
(2002), the proportions of adaptive changes for protein-
coding genes can be calculated as follows:

a ¼ 1� DsPn

DnPs
:

According to this equation, we could estimate the propor-
tion of adaptive changes and carry out classical MK test by
applying Fisher’s exact test.

(2) Asymptotic estimation of a. A known problem of the
classical estimation of a above is the accumulation of slightly
deleterious mutations at low frequencies. We therefore used
an extension of MK test, asymptotic MK test approach
(Messer and Petrov 2013) to estimate the proportions of
adaptive changes. As in original aMK, we defined a(x) as a
function of derived allele frequency (x):

a xð Þ ¼ 1� DsPnðxÞ
DnPsðxÞ ;

where Pn(x) and Ps(x) are number of nonsynonymous and
synonymous polymorphisms at frequency x, respectively.
However, the original approach may suffer from numeric
errors when there were very few polymorphic sites, which is
quite common in many of D. melanogaster genes. To make
the estimations more robust while preserving the same
asymptote, we further defined Pn(x) and Ps(x) as total
number of Pn and Ps above frequency x as described in
Uricchio et al. (2019). We fitted a(x) to an exponential
curve of a(x) � exp(�bx)þc using lmfit (Newville et al.
2014) and determined the asymptotic value of a at the
limit of x, 1.0. We then estimate the rate of adaptive
changes (xa) as

xa ¼
Na=LN

dS
¼ dNa

dS
¼ dNa

dN
� dN

dS
¼ ax;

where Na is the number of adaptive changes and dNa¼Na/LN

is the number of adaptive changes per nonsynonymous site.
Finally, we calculated the rate of nonadaptive changes (xna)
as xna ¼ x � xa. The final data set contains 7,192 protein-
coding genes, with the smallest xa being 0.00 and largest
being 1.29.

Structure-/Function-Related Properties of
D. melanogaster Proteins
We obtained function-related properties mentioned in the
main text as following. We derived D. melanogaster gene ages
(Zhang et al. 2010; Kondo et al. 2017) for genes that are
specific to Drosophila, and from GenTree (Shao et al. 2019)
for genes that are beyond Drosophila clade. We then assigned
a pseudo-age to each of the genes. Specifically, there are 11
age groups from “cellular organisms,” assigning to a pseudo
age value of 0, to “melanogaster,” assigning a pseudo age value
of 10. We downloaded D. melanogaster PPI from STRING
database (Szklarczyk et al. 2019). A cutoff of a combined score
larger than 0.7 was used to retain high confident PPI for fur-
ther analysis. We then used BSpred (Mukherjee and Zhang
2011) to predict PPI sites and DRNApred (Yan and Kurgan,
2017) to predict DNA binding sites. For each protein, we
calculated ratios of protein interaction residues (PPI-site ratio)
and ratios of DNA binding residues (DNA-site ratio) by divid-
ing total predicted protein interaction sites and DNA binding
sites over protein length, respectively. For structure-related
properties, we used DeepCNF (Wang et al. 2016) to predict
these properties for each gene, including three-state second-
ary structures (helix, sheet, and coil), structural disorder, RSA.
Further, we calculated the ratios of helix, sheet, helixþsheet,
and coil residues of each gene from predicted secondary
structures. DeepCNF (Wang et al. 2016) is a deep learning
method to capture complex sequence–structure relation-
ships and was proved to have high accuracy in the prediction
of protein secondary structures (Yang et al. 2018), structural
disorder (Necci et al. 2021), and RSA (Wang et al. 2016). For
each gene, we computed ISD and RSA, as protein-length
normalized summations of the probabilities of each residue
being disorder and exposed, respectively.

Gene Expression Patterns
We downloaded the gene expression profile from FlyAtlas2
(Leader et al. 2018). We converted Fragments Per Kilobase of
transcript per Million mapped reads (FPKM) to Transcript
per Million mapped reads (TPM) by normalizing FPKM
against the summation of all FPKMs as follows:

TPMi ¼
FPKMiP

FPKMj
� 106:

After TPM conversion, we only retained genes with expres-
sion level larger than 0.1 TPM for further analysis. We treated
male and female whole-body TPM as male and female ex-
pression levels. We calculated the mean expression level by
averaging male and female TPM. We used the following Z-
score to describe male specificities of D. melanogaster genes:

zscore ¼ TPMðmale expressionÞ � TPMðfemale expressionÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd2 male expressionð Þ þ sd2ðfemale expressionÞ

p :

We calculated tissue specificities of genes using tau values
(Yanai et al. 2005) based on the expression profiles of 27
different tissues.
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High-Quality 3D Structures of D. melanogaster
Proteins
We downloaded high-quality structures or structural models
of D. melanogaster proteins from protein data bank (PDB;
Burley et al. 2019), SWISS-MODEL Repository (Bienert et al.
2017), and MODBASE (Pieper et al. 2011), with descending
priorities. For example, if there were 3D structures of the same
protein or protein region in multiple databases, we first con-
sidered high-resolution structures from PDB; if no structures
were found in PDB, we then considered SWISS-MODEL
Repository; and at last from MODBASE. In addition, we
used blastp (Camacho et al. 2009) to search homologs of
each D. melanogaster protein against all PDB sequences
with an E-value threshold of 0.001. We further carried out
comparative structural modeling using RosettaCM (Song
et al. 2013) to model high-quality structural models of pro-
teins or protein regions that were not available in PDB,
SWISS-MODEL Repository and MODBASE. For each
RosettaCM simulation, we used no more than five most sig-
nificant hits from blastp search. For proteins that are in com-
plex forms, we only extracted monomers for further analysis.
Finally, we obtained 14,543 high-quality structural models,
corresponding to 11,284 genes. These structural models con-
tain 2,691,913 unique amino acids, 41.2% of all the residues in
genes that were assigned x.

Evolutionary Rates of Different Structural/Functional
Sites
We classified amino acids into different classes of structural/
functional properties. Specifically, we classified three classes
for both ISD and RSA according to the probability of residues
being disordered or exposed: ordered or buried (0.00–0.33),
medium (0.33–0.67), disordered or exposed (0.67–1.00). For
both PPI and DNA binding, we classified two classes: PPI- or
DNA-site (binding sites), None-PPI or None-DNA (corre-
sponding null sites for PPI or DNA binding). For residues
that have 3D structures, we used STRESS (Clarke et al.
2016) to predict putative ligand binding sites and allosteric
sites from all the high-quality structures or structural models.
We chose STRESS over other programs because it takes both
geometry and protein dynamics into account and has been
used in genome-wide studies and explained many poorly
understood diseases associated variants in humans (Clarke
et al. 2016). The allosteric sites were further classified as sur-
face critical or interior critical according to their locations. We
then classified these residues into four groups: LIG (ligand
binding sites), Surf. Crit. (surface critical sites), Interior Crit.
(interior critical sites), and Others (other sites). For each of the
site classes, we randomly sampled 100 sequences, each con-
taining 10,000 amino acids. We computed x, xa, and xna for
the randomly sampled sequences similar to the steps de-
scribed in the above sections.

Population Genetics of DPGP3 African Population
We analyzed 20 high-quality genomes in high latitude South
Africa and 30 high-quality genomes in low latitude Ethiopia
(Lack et al. 2015). We called all biallelic SNPs and removed
SNPs segregating at frequencies smaller than 5% to reduce

possible slightly deleterious mutations. Similar to Svetec et al.
(2016), for each SNP in both populations, we calculated the
fixation index, FST, and used ormidp.test from epitools pack-
age in R to perform the odds ratio test for independence. For
SNPs at each chromosome arm, we calculated the FDR using
the Bioconductor q-value package (https://github.com/
jdstorey/qvalue, last accessed December 1, 2021).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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