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Abstract

Motivation: Droplet-based single-cell RNA-seq (dscRNA-seq) data are being generated at an unprecedented pace,
and the accurate estimation of gene-level abundances for each cell is a crucial first step in most dscRNA-seq analy-
ses. When pre-processing the raw dscRNA-seq data to generate a count matrix, care must be taken to account for
the potentially large number of multi-mapping locations per read. The sparsity of dscRNA-seq data, and the strong
3’ sampling bias, makes it difficult to disambiguate cases where there is no uniquely mapping read to any of the can-
didate target genes.

Results: We introduce a Bayesian framework for information sharing across cells within a sample, or across multiple
modalities of data using the same sample, to improve gene quantification estimates for dscRNA-seq data. We use an
anchor-based approach to connect cells with similar gene-expression patterns, and learn informative, empirical priors
which we provide to alevin’s gene multi-mapping resolution algorithm. This improves the quantification estimates for
genes with no uniquely mapping reads (i.e. when there is no unique intra-cellular information). We show our new
model improves the per cell gene-level estimates and provides a principled framework for information sharing across
multiple modalities. We test our method on a combination of simulated and real datasets under various setups.

Availability and implementation: The information sharing model is included in alevin and is implemented in
Cþþ14. It is available as open-source software, under GPL v3, at https://github.com/COMBINE-lab/salmon as of ver-
sion 1.1.0.

Contact: asrivastava@cs.stonybrook.edu or rob@cs.umd.edu

1 Introduction

RNA-sequencing, with subsequent gene and transcript quantification,
has been an important tool for exploring genome-wide expression
patterns using both bulk and single-cell experiments. With recent
advancements in single-cell transcriptomic sequencing technologies,
various droplet-based RNA-sequencing (dscRNA-seq) methods (Klein
et al., 2015; Macosko et al., 2015; Zheng et al., 2017) have gained
popularity due to their ability to generate data with higher quantita-
tive accuracy, sensitivity and throughput than previous approaches.
These dscRNA-seq protocols have a unique output where each read is
associated with a cell barcode, to facilitate separation of information
between individual cells, and a unique molecular identifier (UMI) tag
that allows detecting and deduplicating PCR amplified molecules.
Multiple pre-processing pipelines exist that use varying algorithms
and methodologies to perform cell barcode correction and whitelist-
ing, read alignment or mapping, and UMI deduplication, to eventual-
ly provide gene quantification estimates for each cell. Some of these
pipelines use complete alignment of the reads to the reference, such as
alevin (Srivastava et al., 2019), STARsolo (Dobin, 2019), Cell-Ranger
(Zheng et al., 2017) and Hera-T (Tran et al., 2019), whereas others
use lightweight mapping methods, such as bustools (Melsted et al.,
2019). To the best of our knowledge, each method, except alevin, dis-
cards reads that multi-map between genes. To date, such approaches

validate accuracy by demonstrating near-perfect correlation to esti-
mates from Cell-Ranger.

In alevin, Srivastava et al. (2019) propose a novel framework for
generating accurate gene-expression estimates for each cell given the
read sequences from a dscRNA-seq experiment. It is shown how dis-
carding gene multi-mapping reads, as is typically done by other
existing dscRNA-seq quantification pipelines, can lead to biased and
inaccurate expression estimates for certain genes and gene families.
Subsequently, it is also demonstrated that alevin reduces this bias by
providing a framework for assigning multi-mapping reads to genes
rather than discarding them. Specifically, after a UMI resolution and
deduplication phase (which assigns multi-mapping UMIs on the
basis of parsimony), UMIs are placed into gene-level equivalence
classes, associating each UMI with the set of genes to which it maps.
Ambiguous reads that belong to equivalence classes with more than
one gene label are probabilistically assigned using an expectation–
maximization (EM) algorithm. The EM algorithm works by inte-
grating information from reads that are confidently assigned to a
single gene, either as a result of the parsimony-based UMI resolution
algorithm or because this was the only gene to which the underlying
read aligns. This information helps to disambiguate reads that be-
long to multi-gene equivalence classes, and it is shown, through vari-
ous analyses, that the framework provides better gene-expression
estimates than approaches that discard multi-mapping reads.

VC The Author(s) 2020. Published by Oxford University Press. i292

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36, 2020, i292–i299

doi: 10.1093/bioinformatics/btaa450

ISMB 2020

https://github.com/COMBINE-lab/salmon
https://academic.oup.com/


However, in situations where there is no unique evidence to dis-
ambiguate and assign a read among genes from its equivalence class
with some confidence, the optimization method used by alevin uni-
formly divides the read count across all genes from the single equiva-
lence class. This set of genes is then labeled as Tier 3 in the alevin
output. Genes within a cell that have some unique evidence, or share
equivalence class with genes that do, are labeled as Tier 2. Hence,
Tier 2 genes are assigned read counts with some level of confidence
by the EM algorithm. Finally, Tier 1 contains genes that have reads
uniquely assigned to them at the UMI deduplication step, and hence
their count can be estimated with the greatest confidence by the EM
algorithm. This method of equivalence class and tier assignment is
further detailed in Figure 1. In this study, we focus on genes labeled
as Tier 3, and propose an approach for improving the accuracy of
their quantification, instead of uniformly dividing read counts be-
tween them.

Our proposed model works by sharing information, either across
closely related cells within the sample, or derived in some other fash-
ion from the assay, such as in the case of spatial transcriptomics
(ST) data. This information is integrated into the inference algo-
rithm by introducing empirical Bayesian priors, and we show that
the proposed Bayesian framework improves gene abundance esti-
mates for Tier 3 genes under various metrics, based on tests using
simulated and real datasets in different setups. The idea of sharing
information across data modalities, using an empirical prior, has
been previously considered in the context of bulk RNA-seq (Liu,
2016) . Relatedly, the idea of sharing information across samples
has also been applied in the context of imputation for various types
of sparse genomic datasets, such as SNP genotyping and GWAS
studies (Chou et al., 2016; Visscher et al., 2017). However, for
single-cell quantification data, most imputation methods rely on in-
trinsic properties of the data due the absence of an external reference
and work only post hoc on already generated gene count matrices
(Amodio et al., 2019; Arisdakessian et al., 2019; Chen and Zhou,
2018; Deng et al., 2019; Eraslan et al., 2019; Gong et al., 2018;
Huang et al., 2018; Li and Li, 2018; Linderman et al., 2018; Lopez
et al., 2018; Miao et al., 2019; Mongia et al., 2019; Talwar et al.,
2018; Tang et al., 2018; van Dijk et al., 2018; Wagner et al., 2017;
Wang et al., 2019; Zhang and Zhang, 2018). Therefore, they do not
have access to either the information contained in, or the constraints
imposed by, the UMI-to-gene mappings. Our approach, on the other
hand, utilizes shared information directly in the quantification phase
to improve UMI assignment and resolution of multi-mapping reads.
Furthermore, this information is used only in the form of an empiric-
al prior, and the resulting quantification estimates are still strictly
constrained by the observed data. Hence, the likelihood of inducing
globally significant false signals, as has been reported in the case of
some single-cell RNA-seq imputation methods (Andrews and
Hemberg, 2018), is small.

2 Materials and methods

2.1 Bayesian framework
After UMI deduplication, alevin models the read assignment problem
as an optimization problem and iteratively assigns the ambiguous
reads to potential candidates in a manner that maximizes (at least lo-
cally, within a cell) the joint likelihood. However, it cannot utilize the
confidence information from neighboring cells, or from cells of the
same type. Since a high level of sparsity is an inherent property of con-
temporary dscRNA-seq experiments (Hicks et al., 2018), and due to
the random process of capturing RNA molecules, in expectation, sam-
pling can exhibit considerable variation across cells. Hence, we expect
cells in an experiment to fall into categories of specific cell-types, and
for cells of the same type to share similar expression patterns (Stuart
et al., 2019). However, for a specific gene, we do not expect that the
molecules originating from the gene will be uniformly captured and
sampled equally well across all cells of the type. Therefore, sharing
confidence in the expression estimates across cells can be particularly
effective in improving cell-level expression estimation. Similarly, we
expect information from other assays, using either the same cells or
even the same cell-type, to exhibit highly correlated gene abundances.
We integrate this information using Bayesian priors by changing our
optimization algorithm from an EM algorithm to a variational
Bayesian optimization algorithm (Nariai et al., 2013) with an inform-
ative prior for low-information genes, i.e. genes assigned to Tier 3.
This is a variant of the same collapsed variational Bayesian estimation
method (VBEM) used in Salmon (Patro et al., 2017) for bulk RNA-
seq abundance estimation.

Similar to Salmon’s VBEM, we aim to quantify the expression,
given a set of known genes G and a set of gene-level equivalence
classes E with their associated UMIs. Each equivalence class is
labeled with a set of genes and has an associated set of UMIs, such
that each UMI is attributed to at least one read that multi-maps only
across the set of genes in the equivalence class. Here, the set of UMIs
are taken after appropriate deduplication using alevin’s graph-based
UMI deduplication algorithm (Srivastava et al., 2019). We use the
VBEM algorithm to allow sharing quantification information across
cells via the use of priors. Specifically, we define the gene-UMI count
assignment matrix as Z, where, based on E, zij ¼ 1 if UMI j is
derived from gene i. We also define the probability of generating a
molecule from a particular gene according to the probability vector
q (analogous to the nucleotide fraction in a typical bulk RNA-seq
probabilistic model; Li and Dewey, 2011). Hence, we can write the
probability of observing a set of deduplicated UMIs U as follows:

PrfUjZ;Gg ¼
YN

j¼1

XM

i¼1

Prfgijqg � Prfujjgi; zij ¼ 1g (1)

where jUj ¼ N is the number of total molecules in the experiment (i.e.
the number of deduplicated UMIs) and jGj ¼M is the number of genes.

In this study, we take a variational Bayesian approach to gene-
expression estimation. Therefore, instead of seeking the maximum-
likelihood estimates, we infer (through variational approximation)

Fig. 1. Alevin categorizes the quantification estimates based on their confidence into three tiers. Here we assume two transcript t1 and t2 coming from two genes g1 and g2 re-

spectively. The toy example shows three tiers (from left to right) based on the mapping of the reads. Tier 1 estimates are from gene unique equivalence classes, Tier 2 estimates

are the cases where any gene in the equivalence class has unique evidence and finally Tier 3 when no gene in the equivalence class has uniquely mapping reads
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the posterior distribution of q. This posterior distribution can be
defined as:

PrfqjU;Gg /
X

Z
PrfUjG;Zg � PrfZjqg � Prfqg (2)

where both PrfUjG;Zg and PrfZjqg can be estimated via a vari-
ational approach (Hensman et al., 2015). Although numerous meth-
ods for expression estimation from bulk RNA-seq data have
previously adopted a variational Bayesian approach (Hensman
et al., 2015; Nariai et al., 2013, 2014; Patro et al., 2017), they have
all made use of uniform or uninformative priors. The novelty of our
method comes from both adopting this approach in the single-cell
context, and from setting the prior for q, in an informative, data-
driven, and cell-specific manner. We expect that, subject to careful
selection, information in a single-cell sequencing experiment can be
meaningfully shared between distinct but related cells. Note that our
method aims to accurately assign reads to the genes to which they
map, and does not alter the expression level of genes with zero ex-
pression in the data, as may be the case with imputation-based
approaches. We explain below how information from related cells,
both within a sample and across assays, can be shared, and show
how this principle can be applied under various scenarios to improve
gene quantification accuracy.

2.2 Anchoring to obtain informative priors
Cells of the same type within a sample share similar expression pat-
terns (Stuart et al., 2019). However, due to both biological variabil-
ity and, crucially, to the low capture rate and random sampling
process in single-cell sequencing experiments, even cells of the same
type do not always exhibit near-identical global gene-expression
profiles. This means that a given gene from two cells of the same
cell-type within a sample could have varying expression estimates,
and could be assigned different tiers in individual cells by the alevin
algorithm. Specifically, a gene may be assigned Tier 3 in one cell and
Tier 1 or 2 in the other, based on the specific sequenced reads and
UMIs observed, and their mapping patterns. For example, if all of

the reads arising from the gene come from an ambiguous region
shared with other genes, then this gene will be assigned Tier 3.
Whereas if this gene, in another cell of the same type, has sequenced
reads coming from a unique region, then it will be assigned as Tier 1
(we have strong evidence of its existence in the cell). Hence, cells of
the same type can potentially have different confidence levels in their
gene estimates, irrespective of the associated count. This variation
can be used to improve quantification of Tier 3 genes. This scenario
is depicted in Figure 2, which details how this information can play
an instrumental role while quantifying these genes.

To first verify that it is possible to gain information in this way,
we look at the fraction of cells that assign a particular gene to Tier 3
out of the total number of cells where the gene is expressed. This is
because priors will be informative only when obtained from cells
where the gene has uniquely mapping reads (Tier 1) or is influenced
by reads mapping uniquely to genes sharing an equivalence class
(Tier 2). To do this analysis, we quantify the human PBMC 4k data-
set (10� Genomics, 2017), using alevin supplemented with the
whitelist output by Cell-Ranger. This experiment contains a total of
4340 whitelisted cells. The results of this analysis, shown in
Figure 3, suggest that most genes are assigned Tier 3 in <10% of the
cells and, therefore, estimates from the other cells can be inform-
ative. For the 7484 genes that were assigned Tier 3 in at least one
cell, 37.1% are assigned Tier 1 and 51.9% are Tier 2 in other cells
where the gene is expressed. Hence, the varying degree of confidence
in expression estimates across cells can be leveraged in an inform-
ative way to improve Tier 3 estimates. Note that all analyses hence-
forth are done using the 10� PBMC 4k dataset, except where
mentioned.

Based on these results, we can see that genes relegated to Tier 3
in a given cell frequently have unique evidence in other cells within
the same sample. To take advantage of this property, the next step is
finding ‘neighboring’ cells that might be useful for sharing this infor-
mation to disambiguate read assignment between Tier 3 genes. We
only use information from cells with a similar global expression pro-
file within the sample. To find similar cells for sharing this evidence,
we use Seurat’s (Stuart et al., 2019) cellular barcode anchoring

Fig. 2. Motivation: Given two cells of similar cell type A, we select two reverse transcribed RNA molecules from Gene A, with unique Cell Barcodes (CBs) and UMIs. Since the

fragmentation of a molecule happens at random, the molecule from the first cell (on the top) is fragmented from a region uniquely identifiable for Gene A while the molecule

from the second cell (on the bottom) comes from sequence similar region of Gene B. Top cell then has high confidence, Tier 1 abundance estimate for Gene A, whereas the bot-

tom cell has a Tier 3 estimate. Assuming the global expression profiles of these cells are similar, our proposed Bayesian model shares this information across cells to improve

the quantification estimates for the second cell.
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scheme that defines a framework to connect two experiments based
on the similarity in the gene-expression patterns of the cells’ assayed
in the two experiments. The algorithm works by calculating the ‘2
distance across datasets, generating two distance matrices and then
defines anchors as cells that are neighbors under both distance meas-
ures. The full algorithm implemented in Seurat is more involved,
and includes various scoring metrics and parameters. Although ini-
tially intended for matching cells across samples, we use this anchor-
ing algorithm to connect cells within the sample, in order to define
cell-specific priors as input for our Bayesian algorithm.

To generate cell barcode anchors, we first quantify the sample
using the standard alevin algorithm (henceforth referred to as EM),
and divide the quantification estimates for all cells into two equal

sets. We then run the Seurat anchoring algorithm on these sets, treat-
ing the two subsets as two separate samples. In order to identify
anchors for a larger number of cells, we repeat the anchoring step
multiple times, randomly dividing the quantifications into two equal
groups each time. We repeat the anchoring step 30 times for all
experiments in this article, as we observe on the simulated data that
the gain after 30 iterations is small (Fig. 4). We filter the anchors
based on the score output by Seurat, using only anchors with a score
>0.5. In a typical single-cell experiment, this is expected to find
anchors for about 80% of the cells. The prior for a cell is then
defined as the expression estimates, using the original EM-based al-
evin run, of the cell assigned as the anchor. However, this process
can eventually assign multiple anchors for a single cell. To compen-
sate for this, we calculate the prior by taking the average of the ex-
pression estimates from all the anchors. This prior is used to
optimize the quantification estimates of Tier 3 genes with multi-
mapping reads in the alevin pipeline, while keeping the prior uni-
form for Tiers 1 and 2 genes.

3 Results

3.1 Improved estimates using intra-sample information
To test the hypothesis that combining the Bayesian framework with
priors obtained from the anchoring procedure described in Section
2.2 can lead to improved quantification estimates for Tier 3 genes,
we devised two separate experiments. We detail these two setups
below, one relying on simulated data, and the other relying on ex-
perimental data with ‘equivalence class knockout (KO)’.

3.1.1 Simulated data

To analyze the improvements in gene quantification estimates on
simulated data, we use the empirical dscRNA-seq data simulation
tool Minnow (Sarkar et al., 2019). Minnow models various features
and protocols involved in the generation of dscRNA-seq data, like
PCR amplification and sequencing errors, to generate fastq files
with the reads and the true cell-by-gene count matrix. We use
Minnow to simulate a dscRNA-seq experiment with 4340 cells and
�20 million UMIs using alevin (EM-based) quantifications on the
10� PBMC dataset as input. We then compared the quantification
estimates against the truth, predicted on the simulated data using al-
evin, with and without priors, and Cell-Ranger. The priors from
VBEM-based alevin were generated, as explained above, using the
Seurat anchoring algorithm iteratively.

The results from this analysis are presented in Figure 5a, where
VBEM represents quantification estimates using priors and EM signi-
fies the quantification estimates without priors. We calculate the
Spearman correlation between each method and the ground truth pro-
vided by Minnow, focusing on genes assigned Tier 3 in individual cells
by alevin. Although the fraction of expressed genes assigned Tier 3 in
each cell is low, as shown in Figure 5b, improvement in the accuracy
of the gene abundance estimates is significant across hundreds of cells
and shows that using informative priors, even from within a sample,
can improve quantification. The result also shows that the correlation
between estimates from Cell-Ranger and truth is much lower. This is
expected since these genes will have a high number of multi-mapping
reads that will be discarded, not just when using Cell-Ranger but also
when using other dscRNA-seq quantification methods.

3.1.2 Experimental data with KOs

To test that our proposed VBEM method, given informative priors,
can improve the accuracy of experimental data quantification, we
performed an experiment that we refer to as equivalence class KO.
Alevin’s pipeline for dscRNA-seq quantification has multiple phases.
After the initial phase of cell barcode whitelisting and read mapping,
alevin outputs an intermediate file. This file contains details of the
transcript equivalence classes, including the associated cell barcodes
and UMI counts. These equivalence classes are similar to the gene-
level equivalence classes explained before, except that the class
labels are transcripts that share UMIs after the deduplication step.

(a)

(b)

Fig. 3. (a) The distribution of number of genes against the fraction of cells that have

Tier 3 assignment for these genes. For example, there are around 1000 genes that are

assigned Tier 3 in 0.1–0.2 fraction of the total number of cells. (b) The percentage of

cells assigning each tier to the genes, showing that the degree of confidence in the

quantification estimates varies across cells even for a single gene. Note that both these

plots are made using 7484 genes that have been assigned Tier 3 in at least one cell

Fig. 4. Ratio of cells matched in each iteration of the Seurat anchoring algorithm,

splitting the dataset into two random, equal sets in each iteration
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(a) (b)

Fig. 5. (a) Comparison of the cell-wise Spearman correlation of Tier 3 genes quantified using Cell-Ranger, EM- and VBEM-based alevin on simulated experiment. (b) Ratio of

Tier 3 genes in each cell (these are genes that may be impacted by the priors, leading to increased correlation with the truth)

(a) (b)

(c) (d)

Fig. 6. (a) A toy example explaining the KO experiment. We use the equivalence classes from an alevin (EM based) run on the full PBMC dataset and remove all the transcript-

unique equivalence classes to generate a KO sample. In the example, assume each gene has a single transcript. (b) The distribution of number of genes against the fraction of cells

that have Tier 3 assignment for these genes both in the original dataset and the KO dataset, with a shift toward more Tier 3 assignments and increased ambiguity. (c) In the KO

framework, to validate the improved Bayesian approach, we designed the following pipeline. We quantify the full human PBMC dataset (4340 cells) cells and randomly divide the

experiment in two equal parts (A and B). We knockout unique equivalence classes in Set A (2170) cells and repeat the quantification step to generate EM-based estimates. In paral-

lel, we also quantify Set A KO dataset using Bayesian priors. These priors are learnt from Set B, without the KOs, and quantified initially using the EM approach. This gives us the

VBEM estimates on Set A for comparison. (d) Comparison of the cell-wise Spearman correlation for Tier 3 genes from EM-based alevin with VBEM-based, prior enhanced alevin

on real data with KOs (removal of unique equivalence classes). This shows improved estimates under VBEM, with a higher correlation against the initial dataset, without KOs
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We observe, that a majority of the genes assigned to Tiers 1 and 2
after UMI deduplication are the ones associated with transcript
equivalence classes of size 1 (labeled by a single transcript). In order
to increase ambiguity in this data, we can remove all the transcript-
unique equivalence classes from the intermediate file, with the ex-
pectation that this KO will result in a number of genes migrating
from Tiers 1 to 3, as demonstrated in Figure 6a. In essence, by doing
this, we are removing some of the read evidence that will eventually
lead to high confidence gene abundance estimates in Tiers 1 and 2.
The impact of this on the distribution of Tier 3 genes in the PBMC
dataset is shown in Figure 6b. This shows that the KO process
results in an increased number of genes that are assigned Tier 3
across all cells. Note that the KO dataset will also have a smaller
number of UMIs, because of the removal of unique equivalence
classes from the intermediate file, but this will not impact our com-
parative analysis, as explained below. Also, note that we only knock
out here equivalence classes that are transcript-unique, and that
there will still be a considerable number of gene-unique equivalence
classes after parsimonious UMI deduplication has taken place.

In order to ensure that we have cells with high confidence quan-
tification estimates to provide our KO cells with an informative
prior, we did not perform the KO procedure on the complete PBMC
dataset. Instead, we took the alevin quantification estimates on the
PBMC dataset, which has 4340 cells, and divided it into two sets
containing equal numbers of cell barcodes. One of these sets, A, is
our test set from which we KO unique equivalence classes and the
other set, B, is used to generate priors. Iteratively using the Seurat
anchoring algorithm as before, we first find anchors for set A in set
B, then obtain priors from set B and run the alevin VBEM quantifi-
cation method. We also quantify the KO set A using the EM-based
alevin method. These steps are outlined in Figure 6c. Observe that
there can be a bias in the tier assignment of genes that are anchors
for Tier 3 genes in the KO experiment. This is because we are
removing equivalence classes only in set A. Hence, the ratio of an-
chor genes in set B that are assigned Tiers 1 and 2 in KO may be
higher than in the real dataset. This can amplify the accuracy of the
VBEM method in the KO experiment, but will also reflect the actual
gain possible for this methodology under varying circumstances,
such as in samples with higher read depth. Note that we cannot run
Cell-Ranger on this dataset because it utilizes the intermediate file
output by alevin, which cannot be processed directly. However, we
expect similar results as those observed in simulated data, since
multi-mapping genes are not quantified by Cell-Ranger.

In our comparison between the two methods, we find the
Spearman correlation for each cell between the original, EM-based
alevin estimates of the cells in set A and the estimates using the KO
set A under each method. Because the original set A has more high
confidence Tiers 1 and 2 genes, we expect the estimates to be of
higher accuracy. The results from this analysis are presented in
Figure 6d, which shows that the cell-wise correlations of the VBEM
predicted abundances on the KO dataset are higher compared with
the original estimates than are the EM estimates on the KO dataset.
Note that these correlations are calculated for genes that are
assigned Tier 3 in the KO set A, since those are the only genes
impacted by the priors. This test shows that utilizing the anchoring
procedure and extracting informative priors, combined with using a
VBEM-based quantification procedure, can lead to higher accuracy
in abundance estimation.

It is also interesting to note that the anchoring scheme finds high
scoring anchors between set A and set B for only 934 cells. The ef-
fect of this limited anchoring shows up in the correlation histogram
as a bimodal distribution in the VBEM correlation values, signifying
that, as expected, only some of the cells—those for which we were
able to find an anchor in the set B—have improved correlation with
the original quantification estimates.

3.1.3 Information sharing does not affect rare cell types

A common concern when sharing information across cells in
scRNA-seq analysis is that it may contribute to loss of heterogeneity
among the quantified cells (Andrews and Hemberg, 2018; Huang
et al., 2018), removing not only technical ‘noise’, but also important

biological variability that leads to the detection of important fea-
tures, such as rare cell types. To test the hypothesis that the pro-
posed Bayesian framework does not ‘over-regularize’ and lose rare
cell types in downstream processing, we perform the following ex-
periment. We use the human PBMC dataset with 10k cells (10�
Genomics, 2018) and quantify the cells with both the EM- and
VBEM-based approaches, where, for the VBEM-based approach we
use the same procedure of generating priors as discussed in Section
3.1.1. Next, we perform Seurat (Satija et al., 2015) based clustering
on the estimates generated from both the approaches separately and
compare the clusters.

In Figure 7, we show the 2D UMAP embeddings of the clustered
data, colored by cell-type annotations generated using marker genes,
as detailed in the Seurat pipeline (Stuart et al., 2019). We observe
that the clusters with relatively smaller number of cells, such as
pDC, Megakaryocytes and Dendritic cell, are not lost by the
Bayesian correction method. In Table 1, we show that the number
of cells is almost always preserved in the most abundant cluster of
each cell type across the two quantification approaches. We also ob-
serve that CD14þ Monocytes and CD8 effector cell types are div-
ided into two subclusters when quantified with EM while they are
correctly identified as one in case of VBEM.

3.2 Improved estimates using multi-modal information
3.2.1 ST data

Advancements in ST have enabled scientists to relate cells with their
location within a tissue. Specifically, it has been shown how combin-
ing ST with gene-expression profiling in cancer data helps under-
stand multiple components of tumor progression and therapy
outcomes (Thrane et al., 2018). The 10� Genomics Visium is an-
other interesting assay that provides higher resolution and through-
put for spatial gene-expression analysis. We use the open dataset
provided by 10� Genomics of the fresh frozen mouse brain tissue
with 2698 spots in the tissue and process the raw reads through the
alevin framework to generate a gene count matrix for each spot.

To test the Bayesian framework of alevin, we simulate 2698 cells
using the gene count matrix generated by processing the mouse
brain ST visium data from 10� Genomics (2019). We first run EM-
based alevin on the simulated data and use the spatial 2D coordi-
nates from the ST data to learn the prior, i.e. for each cell we use the
nearest eight cells and their mean gene expression from the EM esti-
mates to generate the prior matrix. Then, we provide alevin with the
prior matrix to re-quantify the simulated data using the Bayesian
method to generate VBEM-based estimates. In Figure 8, we show
the cell-wise Spearman correlation of Tier 3 gene estimates for both
EM and VBEM-based methods. We observe a global shift in the
VBEM quantified data, reflecting the increased accuracy obtained
using informative priors from cells located spatially close together.
This result is particularly interesting, as it suggests that the empirical
Bayesian framework we have introduced is modular and flexible, in
that the generation of an informative prior is not tied to a specific
procedure (e.g. the Seurat-based anchoring). Rather, the prior can
be informed by data in the same sample, by assay-specific informa-
tion [nearby or differential cell clusters in spatial data as also shown
by Äijö et al. (2019)] and, perhaps, even across distinct modalities
(e.g. between Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq) and RNA-seq for cells assayed with both
protocols in the same sample).

4 Discussion and conclusion

In this work, we improve upon our previously proposed alevin pipe-
line for quantification of dscRNA-seq data. The existing alevin pipe-
line uses a maximum likelihood-based procedure after the UMI
deduplication phase to accurately resolve multi-mapping reads,
which are typically discarded by other methods. Although this ap-
proach uses unique read evidence from within a cell to optimize
read assignment, it uniformly divides read counts where no unique
evidence is available. The set of genes with this uniformly divided
distribution are assigned Tier 3 by in the alevin output. Our
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proposed method uses a Bayesian framework to improve Tier 3 gene
quantification.

This method works by sharing high confidence quantification in-
formation between cells. Information is shared only across cells that
have similar gene-expression profiles (or which are spatially proxim-
ate in the case of ST data), but the exact expression estimates vary
due to sparsity and uneven RNA capture in single-cell sequencing
protocols. We show that, under several different experimental set-
ups, our information-sharing framework consistently improves Tier
3 dscRNA-seq quantification estimates. This approach is especially
useful for highly ambiguous estimates where there is no intra-
cellular unique information available to accurately quantify the
genes, but where simply discarding the multi-mapping reads would
lead to the loss of potentially important biological information.

Although we have focused on Tier 3 genes in this study, this in-
formation sharing model can be extended further to improve the
UMI deduplication procedure as well, before the construction of
equivalence classes. For example, instead of basing UMI deduplica-
tion on the principle of parsimony in alevin, priors can be used to
drive deduplication. This can lead to improvements in abundance
estimates for all genes in the reference. Similarly, with advances in
single-cell sequencing protocols, this framework can be extended to
incorporate priors from different technologies. For example, as we
have demonstrated, spatial data can be useful for setting the prior in
the proposed alevin framework. This improves accuracy by relying
not on similar gene-expression profiles, but cells that are in close
proximity in physical space. Further, one can imagine that other
assays, like paired single-cell ATAC-seq and RNA-seq, would allow
useful information sharing within the same sample but across data
types and modalities. We believe this framework has the potential to
open a new direction of enabling multi-modal information sharing
to improve quantification of single-cell data.

Table 1. The number of cells observed across various cell types is

similar when clustering is performed on EM- and VBEM-based

quantification estimates, suggesting that the information sharing

approach does not eliminate meaningful heterogeneity in gene ex-

pression between cells

Cell type/no. of cells EM VBEM

CD16þ monocytes 318 322

CD8 effector 222 þ 144 358

CD4 naive 1015 1021

Megakaryocytes 49 49

NK cell 517 522

CD14þ monocytes 1758 þ 1211 2962

pDC 68 68

CD8 naive 333 331

B-cell progenitor 455 453

Dendritic cell 74 74

CD4 memory 1428 1416

Double negative T cell 587 583

Pre-B cell 916 925

Note: The annotations are generated using Seurat’s marker gene analysis.

Fig. 8. Comparison of the cell-wise Spearman correlation of Tier 3 genes quantified

using EM- and VBEM-based alevin on ST data

(a) (b)

Fig. 7. We perform cell clustering using Seurat on PBMC 10k dataset quantified using the EM (left) and VBEM (right) approaches in alevin and color the cells based on their

cell type annotation generated using marker genes
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Resources

The pipeline to replicate the analysis can be found at https://github.
com/COMBINE-lab/alevin-paper-pipeline/tree/master/bayesian_al
evin. We used the gencode 28 reference for human and gencode
mm10 for the mouse references. We use Seurat version 3.0.2 and
cellranger version 3.1 with the following commands:

1. index: cellranger mkref —–genome¼ref —–fasta¼genome.fa ––

genes¼genes.gtf ––nthreads¼16

2. quantification: cellranger count ––id¼cellranger ––fastqs¼fastqs

––localcores¼20 ––localmem¼120 ––transcriptome¼ref
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