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ABSTRACT: Carbon dioxide (CO2) has an essential role in most
enhanced oil recovery (EOR) methods in the oil industry. Oil
swelling and viscosity reduction are the dominant mechanisms in
an immiscible CO2-EOR process. Besides numerous CO2
applications in EOR, most oil reservoirs do not have access to
natural CO2, and capturing it from flue gas and other sources is
costly. Flue gases are available in huge quantities at a significantly
lower price and can be considered economically viable agents for
EOR operations. In this work, four powerful machine learning
algorithms, namely, extra tree (ET), random forest (RF), gradient
boosting (GBoost), and light gradient boosted machine
(LightGBM) were utilized to accurately estimate the viscosity of
CO2−N2 mixtures. To this aim, a databank was employed,
containing 3036 data points over wide ranges of pressures and temperatures. Temperature, pressure, and CO2 mole fraction were
applied as input parameters, and the viscosity of the CO2−N2 mixture was the output. The RF smart model had the highest precision
with the lowest average absolute percent relative error (AAPRE) of 1.58%, root mean square error (RMSE) of 2.221, and
determination coefficient (R2) of 0.9993. The trend analysis showed that the RF model could precisely predict the real physical
behavior of the CO2−N2 viscosity variation. Finally, the outlier detection was performed using the leverage approach to demonstrate
the validity of the utilized databank and the applicability area of the developed RF model. Accordingly, nearly 96% of the data points
seemed to be dependable and valid, and the rest of them were located in the suspected and out-of-leverage data zones.

1. INTRODUCTION
Carbon dioxide (CO2) has an essential role in some enhanced
oil recovery (EOR) methods in the oil industry. CO2 can be
utilized to improve oil recovery in a broad range of oil
reservoirs.1 Oil swelling and viscosity reduction are the
dominant mechanisms in an immiscible CO2-EOR process.2

Some developments have combined CO2 injection with other
injection methods to minimize problems, such as fingering and
early breakthroughs in case of continuous CO2 flooding.3

These advancements include CO2 water-alternating-gas
(WAG) injection, which benefits from both advantages of
water flooding and gas injection by improving the macroscopic
and microscopic sweep efficiency4,5 and mobility control
through relative permeability reduction,6 and surfactant-
assisted CO2 injection that balances the low CO2 viscosity
and diverts flow to low permeable regions by making foams.7,8

Furthermore, two relatively new methods, polymer-assisted
CO2 injection,9−11 and nanoparticle-assisted CO2 flood-
ing12−14 claim to overcome some drawbacks of previous
methods such as oil trapping in WAG15 and instabilities in

foam.16 Also, polymer decreases gas solubility due to molecular
weight increment.17

Besides numerous CO2 applications in EOR, most oil
reservoirs do not have access to natural CO2, and capturing it
from flue gas and other sources is costly.18 As a result of the
fact that flue gases are available in huge quantities at a
significantly lower price, the oil industry has therefore given
flue gas a great amount of attention.19,20 Also, it is considered
as an environmental solution for reducing greenhouse gas
emissions.21 The composition of flue gas is dependent on the
fuel used in the combustion process but consists mainly of N2,
CO2, and a small fraction of water vapor, O2, and SO2.
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In recent years, several studies have been conducted
comparing the effectiveness of flue gas and pure CO2 in
EOR methods. Johnson et al.23 demonstrated that the flue gas
huff-n-puff technique can likely be economically performed in
some shallow reservoirs. Zhang et al.24 investigated huff-n-puff
cyclic gas injection to improve light oil recovery by CO2/flue
gas using core flood tests and adjusting the Peng−Robinson
(PR) equation of state (EoS) to match laboratory data. They
indicated that the injection of flue gas was the most efficient
approach, whereas CO2 injection was the least efficient. In the
petroleum industry, making accurate predictions of gas
viscosity is truly necessary based on its effect on reservoir
recovery, fluid flow, and storage. In the absence of
experimental measurement, empirical correlations are used to
determine the viscosity of gases.25

The first attempt to calculate the viscosity of CO2−N2
mixtures was made by Leidenfrost and co-workers.26 They
conducted experiments using an oscillating-disk viscometer. At
20 °C, the pressure range was between 1 and 20 atmospheres
(2.13 MPa) with mole fraction variations. They developed
their work on three other binary mixtures, including He/Kr,
He/N2, and Ar/CO2 by investigating the temperature effect in
the range of 20−30 °C. Based on the measured data points, a

second-order polynomial empirical density correlation depends
on the mole fraction, and a temperature-free term was
generated by Kestin et al.27 In 1974, Kestin and Ro28

measured tertiary gas mixtures in addition to binary mixtures
at low densities and temperatures varying from 25 to 700 °C.
Gururaja et al.29 measured the binary system viscosity
including CO2−N2 with the aid of an oscillating disk using
the capillary viscometer method to measure the viscosity of a
wide range of pure gases and mixtures. Depending on low or
high pressures, slip with gas expansion and kinetic correction
must be considered in the capillary method.30 In a recent
study, the viscosity of CO2−N2 was tested by two independent
rotating body viscometers at a low pressure of 0.1 MPa and
high pressures between 3 and 8 MPa in the temperature range
of 273−473 K.31

Although experimental measurements are the most accurate
approaches to determining the viscosity of a gas, practical
difficulties and measurement limits caused the development of
a significant number of correlations. In 1954, Carr et al.32

proposed a two-step graphical correlation method. First,
natural gas viscosity was determined using the apparent
molecular weight at atmospheric pressure and then corrected
by a second plate on desired pressure and temperature.

Table 1. Existing Empirical Correlations along with Their Operational Conditions
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Lohrenz et al.33 calculated the viscosities of in situ reservoir
gases and liquids and their results showed an average absolute
percent relative error (AAPRE) of 16%. Whitson and Brule34

mentioned that some changes in the correlation developed by
Dean and Stiel35 in combination with Standing’s correlation,36

where applicable in high pressure, give acceptable results to gas
viscosity estimation. Vesovic and Wakeham37 introduced a gas
viscosity correlation considering thermodynamic character-
istics at the molecular level. Chen and Ruth38 performed a
comparative evaluation of the well-known natural gas
correlations that had been established prior to 1993 and
claimed that Dranchuk et al.39 correlation provided the most
accurate value of the viscosity ratio. In 2014, Jarrahian and
Heidaryan40 developed a correlation on 29 multi-component
mixtures containing 3231 data points in the pressure range of
0.1−137.8 MPa and the temperature range of 0.1−137.8 °C.
Their research described gas viscosity as a function of diluted
viscosity, pseudo-reduced pressure, pseudo-reduced temper-
ature,41 and pseudo-critical parameters computed using the
Standing technique.36 Sanjari et al.42 suggested a model of
natural gas viscosity employing molecular weight, density, and
temperature. Their correlation’s AAPRE was less than 1%.
Yang et al.43 established a semi-theoretical model based on a
theory that relates natural gas viscosity to temperature and
density, known as the kinetic theory of gas.44 They reported an
AAPRE of less than 1.9% in the temperature and pressure
ranges of 250−450 K and 0.1−140.0 MPa, respectively. Table
1 represents the mathematical correlations of Chen and
Ruth,38 Sanjari et al.,45 Standing,36 and Heidaryan et al.46 along
with their operational conditions.

Experimental methods are typically not cost-effective and
time-consuming. The emergence of artificial intelligence
attracted several researchers since this approach is capable of
dealing with prior challenges in gas viscosity determina-
tion.47,48 Abooali and Khamehchi49 developed a method that
was a function of pseudo-reduced temperature, pseudo-
reduced pressure, apparent molecular weight, and gas density
to predict natural gas dynamics viscosity by operating the
genetic program on a database including 1938 data points.
Deumah et al.50 examined the efficiency of four different
models, namely, multi-linear regression (MLR), decision tree
(DT), random forest (RF), and K-nearest neighbors (KNN),

to estimate the gas viscosity of a specific gas field. They found
that the best accuracy belonged to the DT model by root mean
square error (RMSE) of 0.000832 in pressure and temperature
ranges of 14.7−3500 Psia and 70−221 °F, respectively.
Baniasadi and Khamehchi25 utilized artificial neural networks
(ANNs) on 2083 sets of data of hydrocarbon gas compositions
including methane and heavier components with varying mole
fractions to predict viscosity using reduced temperature,
reduced pressure, and gas density as the main input
parameters. AlQuraishi and Shokir51 implemented generalized
regression neural networks (GRNNs) on 4445 experimental
measurements containing pure gases and gas mixtures to
develop a prediction model for viscosity by an AAPRE of
3.65%. In a recent study, Naghizadeh et al.52 developed a
predictive model to estimate CO2−N2 viscosities using
multilayer perceptron (MLP), boosted regression tree (BRT)
coupled with evolutionary algorithms, cascade forward neural
network (CFNN), and GRNN smart paradigms. The results of
their work yielded RMSE and R2 values of 3.95 and 0.9975,
respectively, for the BRT network coupled with an artificial bee
colony (ABC) optimizer in the testing data set.

The aim of the present study is to provide intelligent
approaches for accurately predicting the viscosity of a CO2−N2
gas mixture. To achieve this, an extensive data bank including
3036 data points on wide ranges of pressure and temperature is
employed. The gaseous mixture viscosity is determined as a
function of pressure, temperature, and CO2 mole fraction by
four developed models, namely, extra tree (ET), random forest
(RF), gradient boosting (GBoost), and light gradient boosting
machine (LightGBM). The robustness of the developed
models is evaluated by graphical and statistical assessments.
In addition, the models’ performance is examined under
physical behavior through trend analyses. To validate the
dataset and certify the applicability domain of the models,
outlier detection utilizing the leverage approach is performed.
Figure 1 shows an overview of the present work step-by-step.

2. DEVELOPMENT OF INTELLIGENT MODELS
2.1. Data Preparation. In order to tune the smart

techniques, a databank containing 3036 data points was
utilized, with input parameters including pressure, temperature,
and mole fraction of CO2 from previous studies.27,33,53−78 This

Figure 1. Overview of the present research.
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data bank was also used by Naghizadeh et al.52 Table 2
summarizes the statistical properties of the dataset. Through-
out the development process, the entire dataset was divided
randomly into two subsets, namely, train and test parts
carrying 80 and 20% of all data points, respectively. The major
part was used to train models, while 20% was used to evaluate
the model’s efficacy and reliability. Furthermore, to allocate the
chance of appearing in the training and validation to each
observation from the databank, K-fold cross-validation was
applied to the training dataset. In order to prevent overfitting
during the models’ training process, K-fold cross-validation was
used. As a consequence, a K-fold of 10 gave the optimum result
according to the size of the viscosity databank for the models.
It means that the training dataset is randomly divided into
tenfolds and then fits the model by applying K-1 (9) folds and
validating the model using the remained fold. After that, the
testing set is used to ensure more reliability and accuracy of the
developed models.

The box plots of the inputs and output parameters are
shown in Figure 2. This figure is a trustable preprocessing

approach to verify the validation of the used data points based
on five statistical features, including minimum, maximum,
median (the middle value of the database), Q1 (the median of
the lower half of the database), and the third quarter or Q3 (the
median of the upper half of the database). The box is sketched
from values Q1 to Q3 with a horizontal line depicted in the
middle to demonstrate the median value. Furthermore, the
lowest point is the minimum and the top point shows the
maximum of the databank. According to this figure, if no data
point is located in the range of more than 1.5 times the box
length, it can be concluded that the databank follows a normal
distribution and there is no outlier data point. As a result,
Figure 2 illustrates that all data points used in this work are
statistically valid and suitable.

2.2. Intelligent Techniques. 2.2.1. Extra Tree (ET). The
ET is a tree-based ensemble learning technique that is widely
applicable in machine learning tasks such as regression and
classification.79,80 The ET algorithm combines a number of
decision trees and applies the averaging approach on each
decision tree’s prediction value.81 Each ET model utilizes all

Table 2. Statistical Description of the Databank Utilized in This Study

parameter mean standard deviation kurtosis skewness minimum maximum status

temperature (K) 296.59 104.02 3.32 0.22 66.50 973.15 input
pressure (MPa) 19.55 47.36 33.64 5.36 0.0013 453.20 input
CO2 mole fraction 0.46 0.48 −1.92 0.16 0 1 input
viscosity (μPa·s) 61.07 80.99 6.85 2.57 6.68 514.70 output

Figure 2. Box charts of the inputs and target values.

Figure 3. Schematic pattern of an ET model.
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the cutting points and divides nodes at these points,
haphazardly. Employing the whole learning data points to
grow the trees in order to minimize the bias values is a key
feature of each ET algorithm.82 Two important parameters of
the ET algorithm include Nmin which denotes the minimum
sample size needed to separate the neurons and K which
presents the number of haphazard splits picked up in each
neuron. The K value determines the training procedure in
every tree’s structure. Reducing the variance and controlling
the overfitting of the model are two significant benefits of an
ET model in comparison to a single decision tree.83 The
maximum depth (the longest path of nodes from the root node
to the last leaf node) and an optimum number of trees are
needed to have a trustworthy efficiency in the ET learning
process.84 Figure 3 illustrates a schematic pattern of an ET
model.
2.2.2. Random Forest (RF). The RF, as depicted in Figure 4,

is a tree-based regression81 and classification85 technique that
aggregates a great number of decision trees. This method was
introduced by Breiman in 2001 utilizing ensemble trees to
predict the target variable which is calculated as the average of
the predictions of the individual regression trees in the
ensemble.86 Also, the part of the training data that is not taken
by the bootstrap sampling to build the tree is defined as the
out-of-bag (OOB) sample which is used for incorporating a
validation step within the fitting procedure.86−88 These OOB
errors are the estimation errors when the tuned RF network is
employed in the OOB samples.88 RF is based on the
randomness of various kinds of decision trees generated from
different data subpools. This tuning procedure can extremely
reduce the model’s variance, control overfitting, and improve
the model’s efficiency.89 The number of trees and features

(predictor) are two crucial variables for tuning the RF model.90

After considering the optimum number of trees and assigning a
bootstrap sample from the training subset to each tree, the
model draws features from the training subset with f
haphazardly selected features for the split point in each
neuron. Then, the split point and the best variable from the
predictor are separated, and every neuron is divided into two
subneurons. Lately, the new forecast value is estimated by
averaging the predicted values of every single tree.91 The most
significant difference between RF and ET algorithms is that RF
selects the optimum split for growing in the tree’s path, while
in the ET algorithm, splits are chosen randomly.92−94

2.2.3. Gradient Boosting (GBoost). The GBoost algorithm
combines weak learners, i.e., learners better than random, into
powerful learners in an iterative procedure.95 As shown in
Figure 5, GBoost is an ensemble tree-based technique which is
widely applied in regression and classification tasks.96,97 In this
method, the training data are strategically resampled to supply
the most beneficial information for every consecutive model.98

GBoost builds the answer and improves the overfitting issue by
reducing the loss functions.99 For this goal, it is suggested to
select a function h(x, θt) to be the most parallel to the negative
gradient (gt(xi))i = 1

N . By choosing an iterative model, we can
overcome the difficulty of the parameters’ prediction. The
function gt(x) for each observed data is defined as follows:

=
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÑ
g x E

y f x
f x
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( , ( ))
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f x f x( ) ( )
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For allowing the replacement of a difficult tuning problem,
one can easily select the new function increment to be the

Figure 4. Schematic image of an RF model.

Figure 5. Schematic structure of a GBoost algorithm.
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most matched with −gt(x) using classic least-squares
optimization as below:99

= [ + ]
=

g x h x( , ) arg min ( ) ( , )t t
i

N

t i i,
1

2

(2)

The following steps represent a general tuning path of the
GBoost model:

(a) initializing the f0̂ as a constant;
(b) calculate the negative gradient of −gt(x);
(c) conform a new base-learner function h(x, θt);
(d) recognize the optimum gradient descent step-size ρt as

below

= [ + ]
=

y f x h xarg min , ( ) ( , )t
i

N

i t i i t
1

1
(3)

(e) Update the model prediction:

+f f h x( , )t t t t1 (4)

In this method, the base-learner phase is just one node and
the loss function is the standard squared error. By proceeding
with the training of the model, the best structure is
obtained.96,99

2.2.4. Light Gradient Boosting Machine (LightGBM).
LightGBM, as shown in Figure 6, is a type of Gradient

Boosting algorithm which is based on the decision tree training
approach.100 This algorithm is a powerful framework for
solving various machine-learning problems.101 Applying less
memory storage is a notable advantage of the LightGBM in
comparison to other machine learning approaches.102 The
LightGBM technique contains two creative methods, namely,
exclusive features bundling (EFB), which is proposed to handle
very large data features without overfitting concerns, and
gradient-based one-side sampling (GOSS), which is regarded
to filter samples to detect split values. Thus, samples with
lower gradient values are satisfactorily trained and have less
training errors. The vital parameters of LightGBM have the
ability to manage numerous data, high speed, and higher
precision in forecasts.102 The following equation is described
the training subset of the LightGBM algorithm:103

= { } =X x y( , )j j j
N

1 (5)

Then, f(̂x) will predict by minimizing the loss function L:

= ·L y f x f x E L y f x( , ( )): ( ) arg min ( , ( ))y x, (6)

Finally, the training step of each individual tree can be
described as follows:103

{ }W q N, 1, 2, 3, ...,q x( ) (7)

In the above equation, N expresses the leaf number in a tree,
q denotes used decision rules in a single tree, and W describes
the weight term of every leaf node.103 Applying Newton’s law
for minimizing the objective function, the training final result
of each step is tuned as below:

[ + ]
=

G L y F x f x, ( ) ( )t
i

N

i t i t i
1

1
(8)

3. RESULTS AND DISCUSSION
3.1. Models’ Development. This research presents four

advanced and robust intelligent models (ET, RF, GBoost, and
LightGBM) to predict the viscosity of the CO2−N2 gas
mixture using pressure, temperature, and mole fraction of CO2
as input parameters. For this purpose, a widespread data bank
consisting of 3036 data points was gathered. Python
programming language applying pandas and numpy libraries
were used to train the intelligent paradigms. To optimize ET,
RF, and GBoost models, wide ranges of hyperparameters, such
as the maximum depth of the trees, the minimum number of
data in each leaf (min sample leaf), the minimum number of
data required to split an internal node (min sample split), the
number of estimators (the number of trees), and learning rate,
especially for GBoost (the step size which means each weight
in all trees will be multiplied by this value), were tested to get
the optimum structure of the models. Accordingly, extensive
ranges including maximum depths from 2 to 100, min sample
leaf from 1 to 5, min sample split from 1 to 6, and the number
of trees from 10 to 1000 were tested. Furthermore, the mean
square error (MSE) was regarded as the lost function during
the tuning of the models. As a result, the best structures of the
prementioned models were constructed by applying the
hyperparameter values reported in Table 3.

In addition, for developing the LightGBM technique, the
optimum structure was earned by the maximum depth of 8, a
learning rate of 0.4, and a number of leaves (the maximum
number of leaves per tree) of 15.

3.2. Statistical Evaluation. Statistical analyses were
utilized to assess the performance of developed models.
Statistical evaluation indices include APRE, RMSE, AAPRE,
standard deviation (SD), and correlation coefficient (R2). Eqs
9−13 provide the mathematical formulas of the statistical
criteria, where n is defined as the number of data, and yi

exp and
yical represent the experimental and calculated gas mixture
viscosity by the proposed model, respectively. Also, y̅ denotes
the average value of actual data points.

Figure 6. Simple structure of the LightGBM. Table 3. Hyperparameter Optimal Values of the ET, RF,
and GBoost Algorithms

model
maximum
depth

min
sample
leaf

min
sample
split n_estimators

learning
rate

ET 23 1 2 80
RF 37 1 2 120
GBoost 7 1 2 66 0.097
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Table 4 provides a summary of the error analysis of the
developed models. As shown, all models had good agreement
with experimental measurements. By AAPRE of 1.58%, the RF
was the most accurate model in all error indices. ET equally
displayed the next high precision of prediction. Furthermore,
GBoost and LightGBM were placed in the following positions
by AAPRE values of 3.51 and 2.95%, respectively. Besides, the
comparison between the results of the proposed RF model and
previous correlations in the literature is presented in Table 5.

As can be seen in Table 5, it is obvious that the RF model
could outperform all prior correlations existing in the literature.

3.3. Graphical Evaluation. Graphical evaluation is one of
the visual approaches used to assess the models. Different types
of plots were introduced for this investigation. The cross plot is
one graphical criterion that compares calculated values versus
experimental data. A tight distribution around the X = Y
straight line indicates that the model reflects a higher degree of
accuracy and there is a better agreement between the estimated
and measured values. Figure 7 depicts the training and testing
steps of all obtained models. As illustrated in the figure, while

all approaches demonstrated acceptable compactness around a
unit slope line, the RF approach displayed a concentrated area
of points around this line in the entire viscosity range. It
validated the method’s high accuracy of prediction.

The error distribution plots of the developed models are
shown in Figure 8. The error distribution diagrams illustrate
the relative error percentage for each data point. More
concentration of data points near the zero line indicates a more
accurate prediction model. Consequently, as shown in the
figure, although all models deviated from measured points at
low viscosity values, a reliable prediction was offered for the
rest of the range. In three models of ET, RF, and GBoost, a
more compact distribution was reported than the LightGBM
approach.

The group error is another effective visual descriptor that
illustrates the average of an error indicator in a separate range
of calculated values. The viscosity range was split into five
equal 100 μPa·s ranges and the AAPRE for each category was
plotted for four models, as shown in Figure 9. This diagram
offers the opportunity to compare the effectiveness of each
model in different ranges with itself and other models and
provides a perspective for obtaining the most accurate method
in each range. According to Figure 9, all applied models could
estimate viscosity with an absolute percent relative error of less
than 4.1% in all ranges. The RF model exhibited a relatively
consistent accurate performance in all ranges with an
acceptable absolute error and provided the most accurate
prediction in viscosity less than 100 μPa·s, while in the other
three models, this range was the least accurately predicted
region. In the viscosity range between 100 and 200 μPa·s, the
performance of all models was close, and gas mixture viscosity
was calculated with an AAPRE of less than 1.18%. Increasing
viscosity enhanced the performance of the GBoost method,
which provided the highest precise prediction at viscosities
greater than 200 μPa·s.

The cumulative frequency graph demonstrates what
percentage of data already has what maximum absolute
percent error. In this technique, the cumulative frequency of
data is plotted versus the absolute percent error. Each model
located higher in this graph is more accurate and offers a more
credible forecast of output and shows that a greater proportion
of data has the same error value in comparison to other
models. The cumulative frequency plot of intelligent models is
depicted in Figure 10. As the figure reflects for the RF model,
more than 94.96% of data had an absolute percent error of less
than 5%, and in the ET model, 92.98% of data were predicted
with an error less than 5.2%. While the performance of

Table 4. Statistical Error Analysis of the Developed Models

models status APRE (%) AAPRE (%) RMSE (μPa·s) SD R2

ET train −0.80 1.70 1.994 0.110 0.9994
test −1.70 3.03 3.328 0.141 0.9981
all −0.98 1.97 2.323 0.117 0.9992

RF train −0.57 1.36 1.961 0.098 0.9994
test −0.82 2.47 3.044 0.064 0.9987
all −0.62 1.58 2.221 0.092 0.9993

GBoost train −1.06 3.28 2.094 0.059 0.9994
test −1.28 4.40 3.873 0.080 0.9974
all −1.11 3.51 2.551 0.064 0.9990

LightGBM train −0.33 2.70 2.437 0.050 0hat.9991
test 0.03 3.95 4.210 0.086 0.9971
all −0.25 2.95 2.881 0.059 0.9987

Table 5. Comparison between the Proposed RF Model in
This Research and Existing Correlations

study
Chen and
Ruth

Sanjari et
al. Standing

Heidaryan
et al.

this work
(RF)

RMSE 23.93 54.25 41.01 49.84 3.04
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LightGBM and GBoost models was stranded in lower
positions compared to that of ET and RF, they also could
estimate 80% of points by errors lower than 4.14 and 5.3%,
respectively.

3.4. Trend Analysis of the Developed RF Model. In
each model’s trend chart, the pattern of changes in the
predicted and measured values due to increasing one variable
parameter can be evaluated by keeping all inputs constant
except one. Trend analysis illustrates the impact of increasing a
parameter on the error value in addition to indicating that the
measured values reflect a logical trend. The effect of
temperature and pressure on the CO2−N2 mixture was studied
in the RF model. Figure 11a illustrates the effect of pressure on
this gas mixture at a constant CO2 mole fraction and at a
temperature of 74 K. Increasing the pressure increases the
attraction force between gas molecules, and increasing the
kinetic energy leads to an increase in gas viscosity. The
temperature effect under different pressure ranges is depicted
in Figure 11b,c, which illustrates that at high pressure, gas fluid
properties become closer to a liquid, and an increase in
temperature accelerates molecular movement and decreases
viscosity by lessening internal friction. Rising temperature
impedes fluid flow at low pressure, which promotes
intermolecular interaction and increases viscosity. The model
accurately predicted viscosity at varying pressures and
temperatures by matching the patterns of physical phenomena.

3.5. Variable Impact Analysis. The relevancy factor is
one of the methodologies of sensitivity analysis. The relevancy
factor determines the impact of each input on the output based
on the Pearson technique, which is calculated by the r value.

The mathematical calculation of r is given in eq 14. This
parameter is limited between −1 and 1. A positive relevancy
factor for one input indicates that the dependent and
independent variables have a parallel trend. This means that
increasing inputs leads to a growing output trend. However, for
r < 0, input has a reverse impact on output; in other words, an
increasing trend in target value comes from decreasing
independent parameters. Furthermore, how much the absolute
value of r is close to 1, there is a stronger relationship between
the two parameters.104
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In the above formula, Iik and Iave
k denote the average value

and the ith value of the kth input, respectively (k could be
temperature, mole fraction of CO2 or pressure). Besides, yi
shows the ith value of the predicted viscosity, and yave
illustrates the average of the predicted viscosity. The impact
of the input variables of the developed models on the viscosity
of CO2−N2 mixtures is illustrated in Figure 12. As can be seen,
the relevancy factor of each input parameter maintained the
same across all models. Pressure by the relevancy factor of
more than 0.73 showed a positive dominance effect. While
pressure and CO2 mole fraction were in a positive relationship
by the target value, the temperature had a negative impact on
the viscosity by −0.37 of the r value. The negative value for
temperature r value means that most of the data were at high
pressure; thus, increasing temperature decreases viscosity.

Figure 7. Cross plots of the developed models in this study; (a) ET, (b) RF, (c) GBoost, and (d) LightGBM.
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3.6. Outlier Detection of the proposed RF model. The
leverage approach is one of the well-known techniques for
evaluating a model’s applicability area by identifying outlier
points by finding the leverage values of each compound.105,106

In this approach, to assess the reliability of the dataset and
model’s applicability, analytical and visual tools are utilized.107

William’s plot identifies outlier data by locating them far from
the bulk of the data.108 In this plot, the standardized residuals,
which measure the variance of predicted values from

experimental data, are sketched versus the diagonal compo-
nents of the hat matrix, referred to as hat values. The formulas
to calculate the hat matrix and standardized residuals are given
in eqs 15−17, where X is a two-dimensional (N × k) matrix, N
and k represent the number of data points and input parameter
variables, respectively, and T symbolizes the transpose matrix.
In standardized residual calculation, ei stands for the difference
between the i-th model’s predicted and experimental value,

Figure 8. Error distribution plots for (a) ET, (b) RF, (c) GBoost, and (d) LightGBM.

Figure 9. Group error for five viscosity ranges for four intelligent
models developed in this research.

Figure 10. Cumulative frequency plot for the developed predictive
models.
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RMSE shows the root mean square error, and Hii indicates the
hat value of the i-th data point.109

= = ×H X X X X X N k( ) ,T 1 T (15)
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In the visual representation of the William’s plot, the data
are considered valid if it is placed in the zone that is limited
between 0 ≤ H ≤ H* and −3 ≤ SR ≤ 3. In this zone, points
are considered valid data and are included in the model’s
applicability domain. Outlier data points are placed below the
leverage limit (H*), but they are not in the range of −3 ≤ SR
≤ 3, recognized as suspected data. The data show a hat value
higher than H* based on their SR divided into good high
leverage and bad high leverage. Good high leverage refers to
the zone in which the standardized residual is located in the
range of −3 ≤ SR ≤ 3, implying that the measurements of
these data points are valid, but they are outside the

applicability domain of the model. The data points with SR
> 3 or SR < − 3 are bad high-leverage points, which are
outside of the model’s applicability domain and are not
predicted well.109

William’s plot of the RF model for predicting viscosity is
shown in Figure 13. The leverage limit value is obtained as

0.0039. As demonstrated in the plot, a major portion (nearly of
96%) of the databank was located in the valid data region.
Therefore, the leverage approach validated the dataset and
certified the applicability domain of the applied model.

4. CONCLUSIONS
In the present research, the viscosity of CO2−N2 mixtures was
modeled utilizing smart modeling approaches considering
pressure, temperature, and mole fraction of CO2 as inputs. For
this goal, a widespread databank consisting of 3036 data points
was collected from different literature sources. The main
conclusions of the present study are as follows:

Figure 11. Effect of the pressure and temperature on the gaseous mixture’s viscosity of the RF model.

Figure 12. Relative importance of temperature, pressure, and CO2
mole fraction on the developed models.

Figure 13. William’s plot for outlier detection of the proposed RF
model.
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1. The results showed the superiority of the RF model in
comparison to other developed models with an AAPRE
of 1.58% and a correlation coefficient of 0.9993.

2. All the developed models in this study demonstrated a
high precision and satisfactory agreement between
experimental and predicted viscosity values.

3. Cross-validation analysis showed that all developed
models in this research could outperform the prior
related work, without overfitting.

4. The developed smart schemes can be ordered in terms
of their AAPRE values as below:

< < <RF ET LightGBM GBoost

5. The trend analysis of gas mixture viscosity change curves
indicated that the RF model could forecast the real
behavior of the CO2−N2 viscosity variation accurately.

6. Lately, outlier detection using the Leverage method
showed that nearly 96% of the data points were placed in
the valid area, and the used databank was valid and
reliable.
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