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Abstract
Purpose: Coronavirus disease 2019 (COVID-19) has become a global pan-
demic and is still posing a severe health risk to the public.Accurate and efficient
segmentation of pneumonia lesions in computed tomography (CT) scans is vital
for treatment decision-making. We proposed a novel unsupervised approach
using a cycle consistent generative adversarial network (cycle-GAN) which
automates and accelerates the process of lesion delineation.
Method: The workflow includes lung volume segmentation, healthy lung image
synthesis, infected and healthy image subtraction, and binary lesion mask gen-
eration. The lung volume was first delineated using a pre-trained U-net and
worked as the input for the following network. A cycle-GAN was trained to gen-
erate synthetic healthy lung CT images from infected lung images.After that, the
pneumonia lesions were extracted by subtracting the synthetic healthy lung CT
images from the infected lung CT images. A median filter and k-means cluster-
ing were then applied to contour the lesions. The auto segmentation approach
was validated on three different datasets.
Results: The average Dice coefficient reached 0.666 ± 0.178 on the three
datasets.Especially, the dice reached 0.748 ± 0.121 and 0.730 ± 0.095, respec-
tively,on two public datasets Coronacases and Radiopedia.Meanwhile, the aver-
age precision and sensitivity for lesion segmentation on the three datasets were
0.679 ± 0.244 and 0.756 ± 0.162. The performance is comparable to existing
supervised segmentation networks and outperforms unsupervised ones.
Conclusion: The proposed label-free segmentation method achieved high
accuracy and efficiency in automatic COVID-19 lesion delineation. The seg-
mentation result can serve as a baseline for further manual modification and a
quality assurance tool for lesion diagnosis.Furthermore,due to its unsupervised
nature, the result is not influenced by physicians’ experience which otherwise is
crucial for supervised methods.
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1 INTRODUCTION

The coronavirus disease 2019(COVID-19) has become
a global public health problem and now still affects bil-
lions of people’s life. According to the World Health
Organization, the pandemic has caused over 2 million
deaths by April 2021.1 The typical symptom of COVID-
19 includes cough, fever,and pneumonia after infection.2

Clinically, computed tomography (CT) scans are com-
monly used to evaluate the progress and severity of
pneumonia3,4 due to their high resolution in three dimen-
sions and broad availability compared to other imaging
modalities. Accurate delineation of pneumonia lesions
is vital for evaluating disease progression and assess-
ing the severity of infection which is crucial for treat-
ment decision making.5 However, manual segmentation
is time-consuming and labor-intensive. Therefore, auto-
matic segmentation methods are highly demanded.

In the past decade, deep learning has shown its
tremendous power and potential in various radiologi-
cal applications, including image segmentation,6,7 dis-
ease classification, and synthetic image generation.8–11

Since the beginning of the COVID-19 pandemic, deep
learning, incorporating various image modalities like CT,
X-ray, and ultrasound,4,12–15 has been applied in clin-
ical diagnosis, predicting disease progression,16 clas-
sifying pneumonia types and assessing the severity
of infection.4,17 However, existing methods are mostly
based on supervised learning which requires substan-
tial data labeling by radiologists as training references.
For example, U-net networks have been used for the
classification and segmentation of COVID-19 lesions in
CT scans.18–20 The results vary greatly among differ-
ent studies, partially due to the inter- and intra-observer
variations in the training lesion labeling by different
radiologists.18

Compared to supervised learning, unsupervised
learning does not require training labeling, and hence
gets rid of the burden of manual lesion delineation
and the inter- and intra-observer inconsistency. For
example, Yao et al.21 proposed a label-free pneumo-
nia lesion segmentation method that employed an
unsupervised statistical method to simulate infected
lungs from healthy ones. Zhang et al.22 developed
an unsupervised method to augment lung images for
better follow-up segmentation training using a condi-
tional generative adversarial network (GAN).22 However,
most of these methods focused on data augmenta-
tion with unsupervised networks, and had to rely on
supervised networks to train the lesion segmentation
process.6,21

Cycle consistent GAN (cycle-GAN) is an unsuper-
vised network that has been widely used in medical
image analysis, such as synthetic CT generation23–25

and image transformation between different MRI
sequences.9,24 Inspired by this, we propose a cycle-
GAN-based unsupervised framework for COVID-19

TABLE 1 Dataset information

Database Samples Purpose Description

USTC-1 77 Training CT Images without labeling

USTC-2 14 Validation CT Images with labeling

Coronacases 10 Test CT Images with labeling

Radiopedia 8 Test CT Images with labeling

UESTC 50 Test CT Images with labeling

lesion segmentation. The cycle-GAN is used to con-
vert infected lung slices to healthy lung slices by trans-
forming pneumonia lesions into normal lung tissues.
Then, the lesion is retrieved by subtracting the simulated
“healthy” lung from the original image.The network does
not require any image pairing or manual training label,
hence can improve efficiency and eliminate the inter-
and intra-observer inconsistency otherwise presented in
supervised networks.

2 MATERIALS AND METHODS

2.1 Patient datasets

In this study, CT scans of 77 COVID-19 patients with
positive reverse transcription-polymerase chain reaction
results were collected between December 2019 and
January 2020 in the First Affiliated Hospital of the Uni-
versity of Science and Technology of China (USTC-1
dataset). The data was anonymized before any anal-
ysis. The patient and CT scan information is listed in
Table 1. All CT images were converted to 1×1×1 mm3

spatial resolution and cropped to 256×256 pixels per
slice. The image window level was set to [-800, 100] HU
and all images were normalized to [-1, 1] with a zero
background before being fed into network training. We
selected 1264 healthy CT slices and 1272 slices with
pneumonia lesions from the 77 CT scans as the training
dataset.

Lung volumes were extracted from CT images using
a pre-trained 2D U-net lung segmentation network
which was trained using 285 patients from a pub-
lic dataset LUNA-16.26,30 The average dice similar-
ity of this lung segmentation approach reached over
0.98 in the former study.26 The extracted lung images
were then used as the input of cycle-GAN. Another
dataset including 14 patients from the First Affiliated
Hospital of the University of Science and Technol-
ogy of China (USTC-2 dataset) was used as the val-
idation set. Three more datasets, including two pub-
lic databases (Coronacases and Radiopedia) and one
obtained from a published study21 (UESTC), were used
as the test set.The details of these datasets are listed in
Table 1.
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F IGURE 1 The scheme of the proposed method. Gxy, Gyxare generators for generating synthetic “Healthy” images and “Infected” images.
𝓁GAN,𝓁cycle, 𝓁idtentity are three loss functions used for training. Dx, Dy are two discriminators that distinguish real and synthetic images

2.2 Cycle-GAN structure

In the training stage, we first used a cycle-GAN strategy
to generate synthetic healthy lung CT slices. The net-
work architecture is illustrated in Figure 1.We denote the
infected lung CT slices by domain X and healthy lung CT
slices by domain Y, the probability distribution for each
domain is referred as Px and Py , respectively. The gen-
erator GXY denotes the mapping process from domain
X to domain Y , and GYX denotes the mapping from
domain Y to domain X . X̃ , Ỹ are synthetic “infected”and
“healthy” lung slices. Two adversarial discriminators DX
and DY are used to distinguish real input images and
synthesized images.The architecture of the generator is
a U-Net variant and consists of eight stages, as shown
in Figure 2. Unlike the original U-net,7 instance normal-
ization, which can better preserve image details in the
image generation process, is applied immediately after
each convolutional layer except for the last one. All con-
volution filters in the generator have a size of 3× 3 pixels.
We set the channel number of the first block to 64. In the
encoder part, the width and height of the feature map
are halved using convolution with a stride of 2 instead
of max pooling. In the first four stages, the channel num-
ber is doubled after the feature map passes each layer,
while in the last four stages the channel number is fixed
to 512. All the feature maps in the encoder part are con-
catenated with their counterparts in the decoder part.
The encoder and decoder parts are symmetric.

The discriminator DX and DY are implemented by a
70 × 70 Patch-GAN.27 The architecture of the discrim-

inator is illustrated in Figure 3. The stride is set to 2 in
the first three convolution layers and 1 in the last two
layer,and the padding is 1 in all convolution layers.Leaky
ReLu activation is applied with a slope of 0.2 after each
convolution layer,except the last one. In the first convolu-
tion layer, a feature map with 64 channels is generated.
After that, the channel number is doubled after the fea-
ture map passes each layer. In the last layer, the output
is reduced to one channel.

The generators and discriminators are trained by
solving a min-max problem: min

GXY ,GYX
max

DX ,DY
𝓁total(GXY ,

GYX , DX , DY ) where 𝓁total(GXY , GYX , DX , DY ) is defined
as:

𝓁total (GXY , GYX , DX , DY ) = 𝓁GAN (GXY , DY , X, Y )

+ 𝓁GAN (GYX , DX , Y, X ) + 𝜆cycle𝓁cycle (GXY , GYX )

+ 𝜆identity𝓁identity (GXY , GYX ) (1)

where 𝓁total is the total loss aiming to learn the mapping
function between the source and target domain. 𝜆cycle
and 𝜆identity are introduced in (1) mainly to weigh the
importance of the three losses. After optimization, we
set 𝜆cycle = 10 and 𝜆identity = 5.
𝓁GAN is the loss function of the discriminator calcu-

lating the difference between synthetic “healthy” slices
and real healthy slices. To maintain stability during the
learning process, we here choose L2 loss in the
LSGAN28 as our loss function instead of the sigmoid
cross-entropy in regular GANs.29 The 𝓁GAN is defined
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F IGURE 2 The structure of the U-Net generator. The size of the input and output image is 256 × 256. The encoder and decoder parts each
have eight stages. Skip connection is applied to each stage

F IGURE 3 The structure of the discriminator. In the 1st layer, convolution and Leaky-ReLu are applied. In the 2nd–4th layers, convolution,
instance normalization, and Leaky-Reu are implemented. Only one convolution layer is applied in the last layer

as:

𝓁GAN = 𝔼x∼Px

[
(DY (GYX (x)) − 1)2

]
+ 𝔼y∼Py

[
DY (y)2

]

+ 𝔼y∼Py

[
(DX (GXY (y)) − 1)2

]

+ 𝔼x∼Px

[
DX (x)2

]
(2)

where x ∼ Px denotes the learning process on domain
X.𝓁cycle is used to keep the consistency of the two gen-
erators GXY and GYX , and is defined as:

𝓁cycle (GXY, GYX) = 𝔼x∼Px
[|GYX (GXY (y)) − x|1]

+ 𝔼y∼Py
[|GXY (GYX (x)) − y|1] (3)

where | ⋅ |1 is the 𝓁1 norm.Since we only want to convert
unhealthy lung CT slices into healthy ones, an identity
loss 𝓁identity in (1) is designed to keep the image fea-

tures when a healthy slice is an input into the generator.
Identity loss is defined as:

𝓁identity (GXY, GYX) = 𝔼y∼Py
[|GXY (y) − y|1]

+ 𝔼x∼Px
[|GYX (x) − x|1] (4)

We used the ADAM optimization method to train all the
networks, with 𝛽1 = 0.5 and 𝛽2 = 0.999. Kernels were
initialized randomly with a Gaussian distribution. We
updated the generators and the discriminators at each
iteration. The input image slice was randomly cropped
to patches of 256 × 256-pixel size. The number of
mini-batches was 1, and the number of epochs was
100. The learning rate was initially set to 0.0002 and
linearly decreased to 0 in the last 50 epochs. The train-
ing was stopped at the 85th epoch which rendered stabi-
lized optimal dice similarity coefficient (DSC) results. All
the hyperparameters were validated on the validation
set (USTC-2). The training was conducted on a Linux
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F IGURE 4 The framework of post-processing. (a–e) shows the image after subtraction of the synthetic “healthy” image from infected image
(a), median filtering (b), k-means clustering with zero background (c), gaussian filtering (d), and hole filling, erosion, and dilation (e). (f) is the
ground truth

machine with an NVIDIA RTX 2080Ti GPU and took
8 h.

2.3 Image post-processing

The post-processing steps are illustrated in Figure 4.
The synthetic healthy image was subtracted from its
corresponding real infected image to obtain a differ-
ent image. The lung CT slices from each patient were
reshaped into a 3D volumetric image. Median filtering
was applied to suppress noise and remove small islands.
Then k-means clustering was used to segment the
lesion from the low-intensity background. A 5 × 5 Gaus-
sian kernel was employed, slice by slice, to smoothen
the lesion edge.Finally,erosion and dilation with a radius
of 1 pixel were performed to further remove small and
isolated regions. All post-processing steps, except the
Gaussian filtering, were implemented on the 3D vol-
umetric image. The post-processing procedures were
done in MATLAB 2018A and took less than 2 min for
each patient. As a comparison, we also compared the k-
means clustering method with Otsu thresholding which
is commonly used for thresholding segmentation.

To summarize the lesion segmentation process, a U-
net previously trained on a publicly available dataset
LUNA-1630 was applied to segment the lung volume first.
Then a cycle-GAN network was trained and employed
to generate the corresponding synthetic healthy lung
images from the infected lung images in the USTC-1
dataset. Finally, the lesion was obtained after subtrac-
tion of the synthetic healthy lung images from the corre-
sponding infected lung images. The subtraction images

containing lesions were combined into a 3D volumetric
image based on which post-processing steps were per-
formed to fine-tune the segmented lesion volume. The
whole process is automated and does not need manual
labeling of lung lesions as network training references.

2.4 Segmentation evaluation

In this study, the DSC, volume precision (vPSC), and
volume sensitivity (vSEN) defined in Equations (5)–(7)
were used to evaluate the performance of the proposed
segmentation method.The Vpre and Vgt in the equations
represent the predicted and ground truth lesion volume.

DSC (%) =
2
(

Vpre ∩ Vgt
)

Vpre + Vgt
× 100% (5)

vPSC (%) =
Vpre ∩ Vgt

Vpre
× 100% (6)

vSEN (%) =
Vpre ∩ Vgt

Vgt
× 100% (7)

When it comes to the diagnosis, doctors are more
interested in whether there is a lesion and where it is
rather than how accurate the delineation is. We pro-
posed an evaluation approach to count whether there
is any lesion in different subvolumes of the lung. To
mimic this process, the lung volume was divided into 12
subvolumes as illustrated in Figure 5. Each subvolume
was counted as positive if there was at least one lesion,
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F IGURE 5 The 12 subvolumes in the lung volume division. The
lung volume is divided into 12 regions equally

and negative otherwise. Three additional metrics were
used for comparison between the proposed segmen-
tation method and other methods. The detection accu-
racy (ACC), precision (PSC), and sensitivity (SEN) are
defined respectively as:

ACC(%) =
TP + TN

TP + TN + FP + FN
× 100% (8)

PSC(%) =
TP

TP + FP
× 100% (9)

SEN(%) =
TP

TP + FN
× 100% (10)

The paired t-test was used to statistically com-
pare the proposed method with other methods, that
is, nnUNet-2D, nnUNet-3D,31 Cople-Net,18 Inf -Net32,

and NormNet.21 As for those comparison methods,
the nnUNet-2D/nnUNet-3D network was trained and
validated on any two of the three datasets (Coro-
nacases, Radiopedia, and UESTC) and tested on the
remaining one dataset using a 5-fold cross-validation
method; for all other networks, the network parameters
were directly borrowed from the previous publica-
tions to build networks for the tests run on the three
datasets.

3 RESULTS

Table 2 shows the comparisons between the pro-
posed method and several existing supervised and
unsupervised methods. The results of our method
reach a dice coefficient of 74.8 ± 12.1% and 73.0 ±

9.5% on the Coronacases and Radiopedia datasets,
respectively. The volume precision and volume sensi-
tivity are 81.3 ± 8.8%, 73.5 ± 20.5% on Coronacases
and 77.3 ± 17.8%, 72.6 ± 11.1% on Radiopedia. As
shown in Table 2, our approach is comparable with
the supervised Cople-Net method and outperforms
the semi-supervised Inf -Net method on these two
datasets. The performance of our method on the
UESTC database reaches 64.4 ± 19.2%, which is still
higher than Inf -Net. We also compared our method with
a state-of -the-art unsupervised label-free21 method
(denoted as “NormNet” in Table 2). Our method results
in higher scores in most indices and is more robust than
the “NormNet” method when implemented on different
datasets. The results also indicate that k-means clus-
tering performs better than Otsu thresholding in image
post-processing.

Paired t-test results are shown in Table 3. It is
observed that the proposed method is comparable with
the supervised methods in most cases. For example,
our method is comparable to nnUNet-2D, nnUNet-3D,
and Cople-Net on the Coronacases dataset, and com-
parable to nnUNet-3D, Cople-Net, and Inf -Net on the
Radiopedia dataset. In UESTC, however, our method
renders an inferior outcome compared to the supervised
methods, but still outperforms the unsupervised method
NormNet.

The proposed method performs well even in small
lesion segmentation.Figure 6a shows that a small lesion
with only 2-mm width is correctly delineated. As shown
in Figure 6b, our method can also readily separate
lesions from the chest wall. Interestingly, our method
catches some low contrast lesions which are skipped
by radiologists during manual segmentation, as shown
in Figure 6c.

Figure 7 demonstrates the performance of our
method compared to existing supervised methods.
These lesions are varied in shape, size, and position.
As shown in Figure 7a, our method localized and delin-
eated, while other methods missed, the lesion close to
the trachea. Our method performs better than Inf -Net
and Cople-Net on a large lesion segmentation as shown
in Figure 7b, while is comparable to all existing super-
vised methods in segmenting small lesions isolated in
the lung volume and nearby the chest wall as shown in
Figure 7c,d.

As shown in Table 4, the average accuracy of our
method on three datasets reaches 79.1%,which is com-
parable to the supervised methods. Our method outper-
forms the semi-supervised Inf -Net in detection accu-
racy and precision, except sensitivity. The results for the
paired t-test on detection accuracy are shown in Table 5.
As shown both in Tables 4 and 5, there is no significant
difference between our method and nnUNet-2D, and a
similar capability for lesion diagnosis can be observed
between our method and all supervised methods when
performed on database Coronacases and Radiopedia.
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F IGURE 6 Segmentation results for lesions of various sizes. (a–c) are segmentation images from different patients. The upper right panel
is the zoom-in of the boxed area in each image. The red outlines are from the proposed method, and the green is the ground truth. The red
arrow in (c) points to a sagittal plane across the lesion

F IGURE 7 Results comparison between different segmentation methods. (a–d) show segmentation results from four different patients. The
green, red, and blue areas are true positive, false negative, and false positive, respectively. The orange arrow in (a) points to a lesion that can
only be detected by the proposed method
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TABLE 2 The comparison between the proposed and existing methods on dice similarity coefficient (DSC), volume precision (vPSC), and
volume sensitivity (vSEN)

Coronacases (10) Radiopedia (8)
Method DSC (%) vPSC (%) vSEN (%) DSC (%) vPSC (%) vSEN (%)

SUPERVISED METHOD nnUNet-2D 72.2 ± 14.5 86.4 ± 16.1 64.2 ± 16.4 79.2 ± 0.5 75.5 ± 11.2 85.0 ± 6.4

nnUNet-3D 77.0 ± 10.9 74.2 ± 14.7 82.2 ± 11.5 73.0 ± 9.6 66.5 ± 17.9 86.2 ± 9.2

Cople-Net 76.7 ± 8.2 79.5 ± 14.9 75.9 ± 7.6 77.8 ± 6.7 83.1 ± 14.9 75.6 ± 10.1

Inf -Net 59.5 ± 16.8 59.4 ± 19.2 65.2 ± 22.2 64.8 ± 12.0 72.6 ± 17.2 63.0 ± 18.2

UNSUPERVISED METHOD NormNet 68.7 ± 15.8 85.1 ± 7.0 62.1 ± 22.8 59.4 ± 17.4 60.4 ± 19.7 61.8 ± 18.4

Proposed (Otsu) 70.9 ± 14.3 68.2 ± 21.1 81.1 ± 9.1 65.3 ± 12.6 65.5 ± 15.6 70.6 ± 16.6

Proposed (k-means) 74.8 ± 12.1 81.3 ± 8.8 73.5 ± 20.5 73.0 ± 9.5 77.3 ± 17.8 72.6 ± 11.1
UESTC (50) Average(68)
DSC (%) vPSC (%) vSEN (%) DSC (%) vPSC (%) vSEN (%)

SUPERVISED METHOD nnUNet-2D 74.8 ± 11.4 80.7 ± 15.6 71.5 ± 11.9 74.9 ± 11.4 80.9 ± 15.3 72.1 ± 13.2

nnUNet-3D 69.5 ± 16.8 86.7 ± 13.1 61.1 ± 18.5 71.0 ± 15.5 82.5 ± 15.6 67.1 ± 19.5

Cople-Net 84.0 ± 7.1 90.8 ± 5.6 79.1 ± 10.6 82.2 ± 7.8 87.4 ± 9.9 79.1 ± 10.8

Inf -Net 41.8 ± 18.4 92.6 ± 3.6 36.6 ± 20.6 47.1 ± 19.6 43.1 ± 22.6 60.1 ± 18.2

UNSUPERISED METHOD NormNet 61.4 ± 19.4 61.3 ± 26.1 77.6 ± 19.6 62.4 ± 18.6 64.7 ± 23.5 73.5 ± 20.0

Proposed (Otsu) 62.4 ± 16.2 58.4 ± 19.6 75.0 ± 23.1 64.0 ± 14.8 59.0 ± 17.8 77.3 ± 21.6

Proposed(k-means) 64.4 ± 19.2 74.2 ± 19.9 63.2 ± 24.7 66.6 ± 17.8 67.9 ± 24.4 75.6 ± 16.2

TABLE 3 The paired t-test p-values for dice similarity coefficient
(DSC) comparison between the proposed and compared methods

Coronacases Radiopedia UESTC Average

nnUNet-2D 0.614 ≤ 0.010 ≤ 0.001 ≤ 0.001

nnUNet-3D 0.302 0.618 0.017 0.008

Cople-Net 0.280 0.060 ≤ 0.001 ≤ 0.001

Inf -Net 0.005 0.110 ≤ 0.001 ≤ 0.001

NormNet 0.271 0.013 0.376 0.151

4 DISCUSSION

In this study, we propose a label-free method for
delineating COVID-19 lesions using cycle-GAN. This

TABLE 5 The paired t-test p-values for detection accuracy
comparison between the proposed and compared methods

Accuracy Coronacases Radiopedia UESTC Total

nnUNet-2D 0.905 0.096 0.641 0.542

nnUNet-3D 0.953 0.247 0.004 0.036

Cople-Net 0.717 0.534 ≤ 0.001 ≤ 0.001

Inf -Net 0.297 0.083 ≤ 0.001 ≤ 0.001

unsupervised method shows great potential in lesion
segmentation without employing labeled data and is
validated on different databases. The proposed method
is robust and less database-dependent and effectively
eliminates the labeling inconsistency otherwise existing

TABLE 4 The accuracy (ACC), precision (PSC), and sensitivity (SEN) on three different datasets

Coronacases (10) Radiopedia (8)
Method ACC (%) PSC (%) SEN (%) ACC (%) PSC (%) SEN (%)

nnUNet -2D 94.2 ± 8.0 93.4 ± 11.9 97.1 ± 6.7 88.3 ± 15.3 81.9 ± 26.0 99.0 ± 3.2

nnUNet -3D 83.3 ± 20.0 76.7 ± 26.2 98.0 ± 6.3 87.5 ± 20.5 81.7 ± 29.1 100.0 ± 0.0

Cople-Net 86.7 ± 15.8 79.5 ± 27.8 98.6 ± 4.5 91.7 ± 12.4 85.0 ± 25.2 95.8 ± 10.1

Inf -Net 70.0 ± 32.7 69.7 ± 32.7 100.0 ± 0.0 75.8 ± 32.0 74.6 ± 33.9 100.0 ± 0.0

Proposed (k-means) 90.0 ± 10.2 87.5 ± 20.4 96.4 ± 6.3 86.7 ± 12.6 95.0 ± 15.8 81.6 ± 18.8
UESTC (50) Average (68)
ACC (%) PSC (%) SEN (%) ACC (%) PSC (%) SEN (%)

nnUNet -2D 76.5 ± 17.7 68.5 ± 24.1 99.3 ± 3.0 80.7 ± 14.5 74.0 ± 24.4 99.3 ± 3.0

nnUNet -3D 85.3 ± 12.7 78.8 ± 20.2 98.2 ± 5.2 85.4 ± 14.8 78.9 ± 22.1 98.2 ± 5.2

Cople-Net 90.8 ± 9.9 85.8 ± 17.8 97.5 ± 7.7 90.4 ± 11.1 84.8 ± 20.2 97.5 ± 7.7

Inf-Net 54.7 ± 24.5 54.6 ± 24.8 99.7 ± 1.8 59.9 ± 27.6 59.6 ± 28.0 99.7 ± 1.8

Proposed (k-means) 74.8 ± 22.7 73.8 ± 28.6 92.4 ± 12.9 79.1 ± 20.8 77.7 ± 26.8 92.4 ± 12.9
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F IGURE 8 Segmentation limitations for the proposed method. The green contours are manual labels representing the ground truth and the
red ones are automatic segmentation results by the proposed method

in supervised learning approaches. It can work as
an efficient and independent automatic segmentation
method or can provide a start point for physicians’
follow-up refinement.

There are still some limitations to the proposed unsu-
pervised method. First, as shown in Figure 8a, the
method may miss some small and low contrast lesions.
Second, the lung CT slices delineated by a U-net were
used as the input, which may bear some false positive
lesions misclassified from the top part of the liver. On
three test sets, the top liver from three patients of a total
of 68 (4.34%) was misclassified as a lesion. One exam-
ple is shown in Figure 8b. Moreover, the sample number
in this study might not be sufficiently large, particularly
lacking patients with lesions in the top and bottom of
the lung volume, potentially resulting in mis-delineation
as shown in Figure 8c.

On the other hand, the network was trained with
2D images due to hardware limitations. This strategy
didn’t make full use of the three-dimensional property
of CT images. Future studies using 3D image input may
improve segmentation accuracy, particularly in terms of
the contour continuity along the image thickness direc-
tion. Despite this, the proposed unsupervised method
still achieved decent segmentation results, with a dice
value of 74.8% and an accuracy of 90.0% on the Coro-
nacases public database. In the future, the unsupervised
method can be combined with more sophisticated post-
processing methods, such as texture analysis or even
additional deep learning networks, to further improve
segmentation results.

5 CONCLUSIONS

In this work, we propose a label-free approach that
can accurately and efficiently delineate the COVID-19
lesions automatically in CT scans. The training pro-
cess of the unsupervised network does not rely on any
labeled data. The automatic segmentation can provide
a start point for further manual refinement and can work
as a quality assurance tool for lesion diagnosis. Due to
its unsupervised nature, the result is not influenced by

physicians’ experiences which otherwise is crucial for
supervised methods.
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