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A challenging task for the biological neural signal-based human-exoskeleton interface

is to achieve accurate lower limb movement prediction of patients with hemiplegia

in rehabilitation training scenarios. The human-exoskeleton interface based on

single-modal biological signals such as electroencephalogram (EEG) is currently

not mature in predicting movements, due to its unreliability. The multimodal

human-exoskeleton interface is a very novel solution to this problem. This kind of

interface normally combines the EEG signal with surface electromyography (sEMG)

signal. However, their use for the lower limb movement prediction is still limited—the

connection between sEMG and EEG signals and the deep feature fusion between them

are ignored. In this article, a Dense con-attention mechanism-basedMultimodal Enhance

Fusion Network (DMEFNet) is proposed for predicting lower limb movement of patients

with hemiplegia. The DMEFNet introduces the con-attention structure to extract the

common attention between sEMG and EEG signal features. To verify the effectiveness

of DMEFNet, an sEMG and EEG data acquisition experiment and an incomplete

asynchronous data collection paradigm are designed. The experimental results show

that DMEFNet has a good movement prediction performance in both within-subject and

cross-subject situations, reaching an accuracy of 82.96 and 88.44%, respectively.

Keywords: human-exoskeleton interface, lower limb movement prediction, multimodal, dense con-attention

mechanism, hemiplegia rehabilitation training

1. INTRODUCTION

Neurological diseases after spinal cord injury are one of the major causes of ipsilateral limb
locomotion impairments, leading to functional disability and loss of independence in daily living
activities for patients with hemiplegia (Langhorne et al., 2011). To reach better independence,
early movement intervention in rehabilitation training is key to restoring motor function. The
recent advances in a robotic exoskeleton have provided many technological solutions to movement
intervention in rehabilitation training (Zimmermann et al., 2019; Lee et al., 2020; Keeling et al.,
2021). Functional improvements have been reported in patients with hemiplegia (Chisari et al.,
2015; Morone et al., 2018) after robot-aided rehabilitation training with a lower limb exoskeleton.
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In this context, it is of paramount importance to develop
advanced human-exoskeleton interfaces to enhance the
interaction between the wearer and the robotic exoskeleton and,
thus, his active involvement, and maximizing the rehabilitation
outcome (Lagoda et al., 2012; Gui et al., 2017; Lau et al., 2020).

Human-exoskeleton interface (HEI) is the core to enhance
the interaction between the user and the robotic exoskeleton,
and its main function is to predict the movement of exoskeleton
wearers. Traditionally, HEI based on the physical signal, such as
inertial measurement unit signal, is certainly one of the earliest
used interfaces to predict the movements of the exoskeleton
wearer (Beil et al., 2018; Zhu et al., 2020a). However, this kind
of HEI makes low participation of patients in rehabilitation
training. The rehabilitation outcome in the training process is
not high. For this reason, biological neural signals [such as
electroencephalogram and surface electromyography (sEMG)]
have been introduced to the human-exoskeleton interface. This
kind of HEI needs patients’ active involvement. It uses patients’
biological neural signals to predict their movement and usually
achieves more effective rehabilitation outcomes.

The HEI based on biological neural signal is mainly
divided into HEI based on sEMG and HEI based on
electroencephalogram (EEG). Because of the strong correlation
between sEMG signal and movement, the HEI based on sEMG
signal has been earlier and most applied to robotic to help predict
the movements of exoskeleton wearers (Lambelet et al., 2017;
Yun et al., 2017; Wang et al., 2020). However, the usability
of sEMG-based HEI strongly depends on the wearer’s residual
muscular functions. If the sEMG activity is highly affected by the
limb’s paresis, the prediction of the wearer’s movement could be
compromised by muscle weakness and early fatigue, making the
use of these assistive HEI unfeasible on patients with hemiplegia
(Millán et al., 2010). For this reason, the HEI based on EEG
(also called brain-computer interface, BCI) is introduced into the
robotic exoskeleton for predicting the movements of exoskeleton
wearers. Some previous study has verified the feasibility of BCI
in predicting movements of hemiplegic patients (Bhagat et al.,
2016; Spüler et al., 2018; Dai et al., 2020). However, the EEG
signal’s signal-to-noise is low. It is susceptible to interfere with the
environment and the patient’s own limb movement and mood.
These issues have strongly limited the diffusion of BCI in a
broader population of patients and for applications outside a
controlled laboratory environment.

The development of multimodal signal fusion technology
urges people to use various biological neural signals to
design HEI. HEI based on multimodal signals can realize the
information complementarity between different modal data,
and enhance the reliability of the HEI based on single-modal
signals. These interfaces are usually fusion between sEMG and
EEG signals, some studies have proved that the HEI based
on multimodal signals can achieve a more accurate movement
prediction (Li et al., 2017, 2020; Sarasola-Sanz et al., 2017;
Nann et al., 2020; Tortora et al., 2020b). Previous studies
have initially explored the feasibility of multimodal-based HEI
in rehabilitation training, but there are some shortcomings:
1) There are few studies on the HEI for hemiplegic lower
limb movement prediction. The work of predecessors mainly
focused on the HEI based on hemiplegic upper limb movement

prediction. 2) In previous study, sEMG signals and EEG signals
were usually collected simultaneously (most studies focus on
the upper limbs of hemiplegia, and upper limb movements
have little interference with EEG signal collection). This kind
of experimental paradigm interferes greatly with EEG signals
during the collection of biologic signals of lower limb movement,
which will affect the reliability of the HEI. 3) In the research of
HEI based on multimodal signal fusion, most HEI just simply
merge the movement prediction results or data channels of
different modal signals. Few studies have considered the fusion
of sEMG and EEG signal features, let alone the deep connection
between sEMG and EEG signal features.

In response to the above problems, this article proposes a
multimodal enhanced fusion human-exoskeleton interface for
lower-limb hemiplegia movement prediction. This interface uses
a dense co-attention (DCA) mechanism to achieve the mapping
and deep fusion between sEMG and EEG signal features. The
main contributions are as follows:

• An experimental paradigm for the incomplete asynchronous
acquisition of EEG and sEMG signals is designed, which solves
the problem of large interference to EEG signals from the
synchronous acquisition of EEG and sEMG signals of the
hemiplegic lower limbs.

• Aiming at the high accuracymovement prediction of the lower
limbs of hemiplegia, a DCA mechanism based Multimodal
Enhance Fusion Networks (DMEFNet) is proposed, which
realizes themapping and deep fusion between the sEMG signal
and the EEG signal feature.

• In the two cases of within-subject and cross-subject, the
lower limb movement prediction performance of DMEFNet
is compared with six traditional machine learning-based
movement prediction models and two deep learning-based
movement prediction models.

2. RELATED STUDY

Human-exoskeleton interface is a kind of Human-robot interface
(HRI). According to different biological signals, HRI can be
divided into HRI based on sEMG signal (MHRI) and HRI based
on EEG (BCI).

2.1. Related Work of MHRI-Based
Movement Prediction
As the biological signal most relevant to exercise, sEMG has
been applied to HRI for a long time, and the research on
MHRI is particularly rich. An entire MHRI includes three
main processing stages data collection and processing, feature
extraction, and classification. Traditional MHRI mainly extracts
some manual normative time-domain, frequency-domain, and
time-frequency domain features, and then uses machine learning
methods to construct the mapping between features and different
movements (Yun et al., 2017; Cai et al., 2019; Wang et al.,
2020). Literature (Yun et al., 2017) proposed an ANN-based
upper limb movement prediction model. This model uses the
sEMG signals of three muscles from the hemiplegic patients’
forearms to predict the movements of the upper limbs of the
patients, which can achieve more accurate movement prediction.
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Cai et al. (2019) proposed an SVM-based upper limb movement
prediction method, which uses the sEMG signal of the unaffected
upper limb muscles of the hemiplegic patient to predict the
movement of the patient’s shoulder and elbow joints, with an
accuracy of 93.56%.

Deep learning can automatically extract the best feature
set from sEMG signals. Many researchers have explored
the application of deep learning in MHRI-based movement
prediction methods (Allard et al., 2016; Côté-Allard et al.,
2019). Allard et al. (2016) proposed a multi-layer CNN gesture
prediction model based on sEMG for robot guidance tasks. The
model automatically extracts the frequency domain features of
different gesture movements through the CNN architecture, and
the average accuracy of gesture prediction for 18 subjects is
93.14%. Considering that the movement prediction model based
on deep learning usually requires a lot of data, this will generate a
lot of labor cost and time cost. Côté-Allard et al. (2019) proposed
a gesture prediction model based on transfer learning, which uses
the sEMG signals of 17 subjects to achieve an average accuracy
of 98.53%.

2.2. Related Work of BCI-Based Movement
Prediction
A brain-computer interface (BCI) enables direct communication
with a robot via EEG signals (Wolpaw et al., 2002). Traditionally,
BCI is mainly used in the field of medical rehabilitation to realize
the perception of user intent. BCI also includes the same three
data processing stages (Lotte et al., 2018), and unlike MHRI, BCI
based on traditional machine learning methods mainly extracts
some manual normative spatial domain features (Lee et al.,
2019), and then uses machine learning methods to construct
the mapping between spatial domain features and different
movements. Literature (Wang et al., 2017) used the common
space pattern (CSP) model to extract the spatial features of the
subject’s motor imagery (MI) EEG signals and then designed a
support vector machine-based BCI to realize accurate prediction
of lower limb movements.

Recent research has explored the application of deep learning
in BCI (Gao et al., 2020; Tortora et al., 2020a). Tortora et al.
(2020a) proposed a gait pattern prediction method based on
an LSTM architecture. This method uses the LSTM construct
to automatically extract and classify the timing features of
the EEG signal, which can achieve an accuracy of 92.8%.
Gao et al. introduced a deep learning method to cope with
the ’BCI Illiterate’ phenomenon, in which case some subjects
present unsatisfactory performance with low classification
accuracies. They constructed a convolutional neural network
with long short-term memory (CNN-LSTM) framework, where
the network allows extracting the spectral, spatial, and temporal
features of EEG signals. The results show that the DLmethod can
reach 91.86% for EEG illiterate subjects (Gao et al., 2020).

2.3. Related Work of HRI Based on
Multimodal Signals
Human-robot interface based on multimodal signals has more
or fewer limitations, so recent attempts to overcome the

limitations of single-modal signal-based HRI have brought
forward approaches combining multiple HRIs, including at least
one BCI integrated with other BCIs or other biologic signals
(e.g., sEMG and electrooculogram). Zhu et al. (2020b) used
the combination of EEG and electrooculogram (EOG) signals
to realize the grasping and moving tasks of the robotic arm,
with an average accuracy of 92.09%. Literature (Tortora et al.,
2020b) proposed a hybrid HRI to predict walking phases of both
legs from the Bayesian fusion of EEG and sEMG signals, the
HRI significantly outperforms its single-signal counterparts, by
providing high and stable performance even when the reliability
of the sEMG signal activity is compromised temporarily.
However, the previous study simply spliced signals or signal
features of different modes together. These works did not
consider the deep connection and fusion between different modal
signals, which resulted in poor robustness of HRI movement
prediction performance, especially in the case of cross-subjects.

With the research of attention mechanisms, some researchers
try to use attention mechanisms to fuse essential features of
different modal signals to improve the classification performance
of HRI (Khushaba et al., 2020; Tao et al., 2020; Zhang et al.,
2021; Zhao and Chen, 2021). Zhang et al. used a multi-
dimensional feature fusion network framework to detect muscle
fatigue, which used a time-domain attention network and a
frequency-domain attention network to extract important time-
domain features and frequency-domain features in sEMG signals,
respectively, and then Feature fusion is performed, and the
results show that the proposed framework can effectively improve
the detection performance of muscle fatigue (Zhang et al.,
2021). After extracting the time-series features of EEG data in
different frequency bands, Zhao et al. used the self-attention
mechanism to extract the essential features of EEG signals in
different frequency bands to extract the accuracy of HRI in
emotion recognition (Zhao and Chen, 2021). These studies
demonstrate that the attention mechanism can extract important
components between differentmodal signal features and improve
the classification performance of HRI. However, it does not
consider the correlation between different modal features and the
parts that concern each other.

The co-attentionmechanism is a popular network structure in
the field of computer vision in the past 2 years. It is widely used
in cross-modal retrieval research to find common areas of interest
between data features of different modalities, thereby enhancing
the fusion of data features (Nguyen and Okatani, 2018; Yu et al.,
2019). In the study of this article, we introduced a co-attention
mechanism to design the human-exoskeleton interface for the
lower limb movement prediction of patients with hemiplegia.
This interface uses the co-attention mechanism to achieve deep
fusion between sEMG and EEG signal features, which can
improve the lower limbmovement prediction performance of the
human-exoskeleton interface.

3. METHOD

The goal of this article is to design a human-exoskeleton interface
for hemiplegic lower limb rehabilitation training. Its core method
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is to use sEMG and EEG signal data to predict the movements of
the lower limbs. This section presents the methodology details of
the proposed movement prediction model.

3.1. Overview of the DMEFNet Model
Figure 1 visualizes the proposed DMEFNet movement
prediction model. Since this paper designs an incomplete
asynchronous sEMG and EEG signal acquisition experimental
paradigm (refer to section 4.1 and Figure 3 for details), the
input of the model is divided into two parts: the first part is
the asynchronous (individually) collected motor imagery EEG
(MI-EEG) data (XEEG1 ∈ ℜC1×T1 ), and the second part is the
synchronously collected sEMG data (XsEMG ∈ ℜC2×T2 ) and EEG
data (XEEG2 ∈ ℜC1×T2 ). According to the data input and feature
extraction methods, the entire model architecture consists of
four parts. The first part is the feature extraction of XEEG1, using
the EEGNet (Lawhern et al., 2018) to extract the features of the
first part of the MI-EEG data. The second part is the feature
extraction of XEEG2 and XsEMG, where the features of sEMG
data are extracted using the previous study’s MCSNet (Kecheng
et al., 2021), and the second part of the MI-EEG data is extracted
using the EEGNet model. The third part is DCA symmetric
network (Nguyen and Okatani, 2018). It is used to obtain the
fusion feature representation of the data XEEG2 and XsEMG.
The fourth part is movement classification/prediction, which
classifies the features extracted from the first and third parts.

3.2. EEG Signal Feature Extraction
In the DMEFNet model, for the asynchronously collected MI-
EEG data XEEG1 and the synchronously collected MI-EEG
data XEEG2, the EEGNet model is used for feature extraction.
EEGNet (Lawhern et al., 2018) is a compact BCI model
proposed by Lawhern. It has good generalization ability for EEG
signals collected under different paradigms, and can also achieve
good classification performance for small-scale data. The entire
EEGNet mainly contains two modules, the first module contains
a CNN layer and a depthwise CNN layer. The CNN layer is
mainly used to learn the frequency domain features of EEG
signals in different frequency bands, and the depthwise CNN
layer is to learn the spatial features of different frequency domain
features. The secondmodule of EEGNet is a separable CNN layer,
which is used to combine and optimize the features between
different channels. After passing the EEGNet model, the features
of EEG data XEEG1 and XEEG2 can be expressed as:

FEEG1 = EEGNet(XEEG1),

FEEG2 = EEGNet(XEEG2),
(1)

3.3. sEMG Signal Feature Extract
For the synchronously collected sEMG data XsEMG, this article
uses the previous work MCSNet to perform feature extraction
on the XsEMG data. MCSNet contains a total of 3 modules. The
first module is an LSTM layer, which is used to extract the
time domain features of the sEMG signal channel by channel.
The second module is a two-layer CNN network. It extracts
the frequency domain features under the time domain features
of different channels (that is, the time-frequency features of

different channels of the sEMG signal). The third module of
MCSNet is a Depthwise CNN layer, which is used to combine and
optimize the time-frequency features between different channels.
Namely, it is used to extract the synergy features between the
sEMG signal channels. Same as above, the feature extracted from
XsEMG data can be expressed by Equation 2.

FsEMG = MCSNet(XsEMG), (2)

3.4. DCA Symmetric Network
Dense Co-Attention Symmetric Network (DCAN) was
originally proposed to solve the visual question answering
(VQA) problems. It presents an architecture that enables
dense and bidirectional interactions between two modalities
and contributes to boosting the prediction accuracy of
answers (Nguyen and Okatani, 2018). The network contains
three main parts: feature extraction, stacked DCA layers, and
prediction. In the DMEFNet model, we only use the stacked
DCA layers of DCAN to achieve the mapping and deep fusion
between sEMG and EEG signal features (as shown in Figure 2).

Since Stacked DCA Layers requires the input of the
two modal data to have the same length in the feature
representation dimension, we performed the reshape operation
on the simultaneously collected sEMG and EEG signal features
after feature extraction. The sEMG signal feature after the reshape
operation, M0, is sized to (d × nm), and the EEG signal feature
after the reshape operation, E0, is sized to (d × ne). M0 [M0 =

reshape(FsEMG)] and E0 [E0 = reshape(FEEG2)] are fed into the
DCA layer directly.

The DCA layer does not change the dimensions of the input
and output. For the DCA (i)-st layer, the output from the
previous layerMi−1 and Ei−1 are first interacted bymultiplication
with a learnable weight matrix Wi and get the affinity matrix of
sEMG and EEG signal (refer to the Equation 3).

Ai = Ei−1
TWiMi−1, (3)

where Ai ∈ ℜne×nm ,Wi ∈ ℜd×d is a learnable weight matrix.
Then we normalize Ai row-wise to derive attention maps

on sEMG features conditioned by each EEG feature and also
normalize Ai column-wise to derive attention maps on EEG
features conditioned by each sEMG feature, as shown in
Equation 4.

AMi = softmax(Ai),

AEi = softmax(AT
i ),

(4)

Next, Mi−1 and Ei−1 interact by multiplying AMi and AEi ,
respectively, obtaining PMi and PEi . Finally, the result of the
DCA (i)-st layer, Mi and Ei are computed after the interaction
by concatenating Mi−1 to PEi , Ei−1 to PMi (refer to the
Equations 5 and 6). The features of sEMG and EEG have been
further integrated.

PMi = Mi−1A
T
Mi
,

PEi = Ei−1A
T
Ei
,

(5)
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FIGURE 1 | The overall architecture of the DMEFNet model. This model contains two feature extraction modules, a feature fusion module, and a lower limb movement

prediction module. The feature extraction module uses EEGNet and MCSNet to extract the features of EEG signals and sEMG signals, respectively. The feature fusion

module enhances the co-attention between sEMG and EEG signal features through the DCA mechanism.

FIGURE 2 | Structure of the dense co-attention (DCA) layer.

Frontiers in Neuroscience | www.frontiersin.org 5 April 2022 | Volume 16 | Article 796290

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shi et al. Multimodal Human-Exoskeleton Interface

FIGURE 3 | The incomplete asynchronous acquisition paradigm of the sEMG and EEG data acquisition experiment. The upper part is the three lower limb

movements. The lower part is the incomplete asynchronous acquisition paradigm of sEMG and EEG data. As can be seen from the figure, EEG signals and sEMG

signals are not collected completely asynchronously. After 7.5s, the EEG signal and sEMG signal are collected simultaneously. Considering that the sEMG signal will

be activated within 0.5–1 s before the action is performed, and the subject needs a period of time to respond to the sound prompt, this paper believes that the sEMG

signal and EEG signal collected simultaneously in 7.5–8.5 s have an important role in the prediction of the lower limb movement of hemiplegia. According to the

definition in Section 3.1, XEEG1 is the EEG signal data collected in the period of 5.5–7.5s. XEEG2, XsEMG are the EEG and sEMG signal data collected simultaneously

during the 7.5–8.5 period, respectively.

Mi = ReLU(WMi

[

Mi−1

PEi

]

+ bMi )+Mi−1,

Ei = ReLU(WEi

[

Ei−1

PMi

]

+ bEi )+ Ei−1,

(6)

where WMi ,WEi ∈ ℜ(d × 2d) and bMi , bMi ∈ ℜ(d × 1) are
learnable weight matrix and bias.

After the calculation through the stacked DCA layers, we
flatten the outputs of the DCA layer and the asynchronously
collected EEG signal feature FEEG1, and they are followed by a
softmax operation. Finally, we can get the predicted lower limb
movement. It can be expressed by Equation 7.

Labelpredicted = Softmax(Flatten(FEEG1,MN ,EN)). (7)

where Labelpredicted is the label of lower-limb movement
predicted, N is the number of DCA layers.

3.5. Comparison With Other Movement
Prediction Approaches
In terms of movement prediction models based on traditional
machine learning, we compare the performance of DMEFNet
with six traditional movement prediction models based on
handcrafted features. In the selection of sEMG signal features,
referring to the research conclusions of time domain and
frequency domain features in the literature (Phinyomark et al.,
2012), we finally selected the feature of Mean Absolute Value

(MAV), WaveLength (WL), Zero Crossings (ZC), 6-order
Auto-Regressive coefficient (6-AR), and average Power Spectral
Density (PSD). As for EEG signal features, we chose the most
commonly used CSP features. Linear Discriminant Analysis
(LDA), Decision Tree (DT), Naive Bayes (BES), Linear Kernel-
based Support Vector Machine (LSVM), Radial Basis Function-
based Support Vector Machine (RBFSVM), K Nearest Neighbor
(KNN), and Artificial Neural Network (ANN) are chosen as
the classification/prediction model. All the traditional movement
prediction models are implemented by MATLAB’s Classification
Learner Toolbox and Neural Net Pattern Recognition Toolbox.

In terms of deep learning, we compared the performance
of DMEFNet with EEGNet and our previous study MCSNet.
The specific structure has been described in Section 3. We
implemented these models in PyTorch. For specific details of the
model, see https://github.com/mufengjun260/DMEFNet.

4. EXPERIMENTS AND RESULTS

In this part, an sEMG and EEG signal incomplete asynchronous
acquisition experiment is designed to verify the effectiveness of
the method proposed in this manuscript. Section 4.1 describes
the acquisition experiment process and data preprocessing
methods. Section 4.2 gives the implementation details of model
training. In Section 4.3, we show the DMEFNet movement
prediction model results and compare DMEFNet with other
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movement prediction models in the case of within-subject and
cross-subject.

4.1. sEMG and EEG Data Acquisition
Experiment
A total of 10 healthy subjects are invited to participate in the
experiment. Considering that the synchronous acquisition of
sEMG and EEG signals during the movement of the lower
limbs will cause a great interference to the EEG signals,
an experimental paradigm is proposed for the incompletely
asynchronous acquisition of sEMG and EEG signals (as shown
in Figure 3). Under this paradigm, each subject completed the
motor imagery task under the three movements of standing,
sitting, and walking and performed these movements. The sEMG
signals of subjects’ lower limb muscles and EEG signals are
collected during this period.

4.1.1. Participants
The 10 subjects (7 men, 3 women) have an average age of 24
years, a height between 160 and 180 cm, and a weight between
50 and 82 kg. All subjects can independently complete the lower
limb movements involved in the experiment, and they are in
good physical and mental condition with no injuries to the lower
limbs. Before the experiment, each subject had been explained the
contents of the experiment and signed an informed consent form.
This experiment was approved by the Research Ethics Committee
of the University of Electronic Science and Technology of China.

4.1.2. Procedures
Before the experiment, record the relevant physical parameters
of the subject, and inform the experimental procedure to the
subject. Then let the subject wear an EEG cap, apply electrode
gel, and paste sEMG acquisition electrodes on the 10 muscles of
the left and right legs (the rectus femoris, vastus lateralis, tibialis
anterior, biceps femoris, and lateral gastrocnemius of every leg, as
shown in Figure 4). During the experiment, the subjects naturally
relax, standing in front of the computer screen, and then follow
the incomplete asynchronous acquisition experimental paradigm
to perform the corresponding actions (first perform motor
imagery task, and then perform the corresponding lower limb
movements), details as follows:

• 0–3s: The computer emits a “di” prompt. A video about lower
limb movement is played on the screen, reminding subjects of
the movement to perform MI tasks.

• 3–5.5s: The screen is in a black screen state. At 3.5s, the
computer emits a “di” prompt for the second time and a
“+” pattern appears on the screen, prompting the subject to
prepare for the MI task. The “+” pattern lasts for a total of 2s,
and then the computer screen returns to a black screen state.

• 5.5–8s: The screen is in a black screen state, and the subject
is performing a MI task. The MI task lasted 2.5s. At 7.5s, the
computer emits a "di" prompt for the third time to remind
the subject to prepare to perform the corresponding lower
limb movement.

• 8–10s: The screen is in a black screen state, and the subject
performs the corresponding lower limbmovement. The whole
movement is completed within 2s.

• 10–15s: The “©” pattern appears on the screen, reminding the
subject that the single-movement data collection experiment
is over. The subjects rest and return to the position and
posture at the beginning of this experiment, waiting for the
next experiment.

There are three groups in the whole experiment, and
each group contains 30 lower limb movements, of which 10
are standing, sitting, and walking. The walking and sitting
movements appear randomly in the first 20 movements, and the
last 10 movements are standing movements (Because performing
a sitting or walking movement requires the subject to be in a
standing position, and performing a standingmovement requires
the subject to be in a sitting position. This also helps subjects
perform MI tasks). During the whole experiment, myoMUSCLE
(an sEMG acquisition device, Scottsdale, and American) and
waveguard (an EEG acquisition device, Hengelo, and The
Netherlands) are used to record the subject’s lower-limb sEMG
signal and MI EEG signal data.

4.1.3. Data Processing
myoMUSCLE (1,500 Hz, 10 channels) collects the sEMG signal
data of each lower limb movement of the subject, and waveguard
(1,000Hz, 32 channels) collects the EEG signal data of eachMI of
the subject. After obtaining the sEMG data, a 50Hz notch filter is
used to remove the power frequency interference of the current,
and a 10–450 Hz bandpass filter is used to retain the effective
information of the sEMG signal. As for the EEG data, a 0.3–30Hz
band-pass filter is used to retain the effective information of the
MI EEG signal. Since the application of this article is aimed at the
prediction of lower extremity hemiplegia rehabilitation training
(the subject first performsMI, and then performs lower extremity
movement prediction), this article only uses the EEG signal data
during the period of 5.5 − 8.5s and the sEMG signal during the
period of 7.5 − 8.5s. Considering the availability of biological
nerve signal data on the affected side of the hemiplegia patient,
we only take the sEMG signal channel and EEG signal channel
of the subject’s one-side body (i.e., 5 sEMG signal channels + 16
EEG signal channels) to train the proposed model. In addition,
for the sEMG signal, this article uses 200ms (including 300-time
series data) as a time window to segment the sEMG signal, and
themovement step of the timewindow is 100-time series data (Yu
et al., 2015; Shen et al., 2019).

4.2. Implementation Details
DCA mechanism based Multimodal Enhance Fusion Networks
is implemented using the PyTorch library (Paszke et al., 2017). In
DMEFNet, the network’s hyper-parameters (C1, C2, T1, T2) are
set to (14, 2,000, 5, 1,500), and all LSTM’s output and hidden unit
are of dimension 300. Exponential linear units (ELU) (Clevert
et al., 2015) are used to introduce the nonlinearity of each
convolutional layer. To train our model, we use the Adam
optimizer to optimize the model’s parameters, with the default
setting described in Kingma and Ba (2014) to minimize the
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FIGURE 4 | The muscle used in the sEMG and EEG data acquisition experiment.

FIGURE 5 | Within-subject movement prediction performance, the input of six traditional machine learning-based movement prediction models are sEMG and EEG

multimodal data. Four-fold cross-validation is used to avoid the phenomenon of model overfitting, averaged over all folds and all subjects. Error bars denote two

standard errors of the mean.

categorical cross-entropy loss function. We run 1,000 training
iterations (epochs) and perform validation stopping, saving the

model weights, which produces the lowest validation set loss. All
models are trained on NVIDIA RTX2080Ti, with CUDA10.1 and
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TABLE 1 | Within-subject movement prediction performance (Test set ACC).

Lower limb movement prediction accuracy of test set

Method 1 2 3 4 5 6 7 8 9 10 AVE ACC

Single modal (sEMG data) LDA 0.79 0.79 0.89 0.78 0.82 0.67 0.79 0.79 0.87 0.74 0.79

DT 0.60 0.61 0.77 0.77 0.77 0.57 0.75 0.67 0.74 0.76 0.70

LSVM 0.84 0.81 0.92 0.77 0.81 0.73 0.80 0.80 0.88 0.76 0.81

RSVM 0.84 0.78 0.91 0.86 0.83 0.74 0.82 0.82 0.90 0.75 0.83

KNN 0.78 0.75 0.83 0.76 0.75 0.65 0.74 0.75 0.77 0.69 0.75

MCSNet 0.85 0.93 0.96 0.93 0.93 0.59 0.93 0.89 0.96 0.81 0.88

Single modal (EEG data) LDA 0.34 0.39 0.46 0.41 0.38 0.31 0.40 0.44 0.52 0.49 0.41

DT 0.39 0.37 0.37 0.49 0.36 0.30 0.34 0.35 0.45 0.48 0.39

LSVM 0.35 0.38 0.45 0.44 0.36 0.32 0.36 0.44 0.51 0.49 0.41

RSVM 0.36 0.42 0.44 0.44 0.39 0.32 0.39 0.48 0.52 0.51 0.43

KNN 0.37 0.35 0.43 0.51 0.36 0.30 0.36 0.46 0.50 0.42 0.41

EEGNet 0.41 0.33 0.44 0.33 0.52 0.44 0.48 0.52 0.48 0.37 0.43

Multimodal (sEMG & EEG) LDA 0.84 0.81 0.91 0.81 0.82 0.75 0.86 0.78 0.88 0.81 0.83

DT 0.80 0.77 0.86 0.76 0.73 0.68 0.86 0.77 0.85 0.75 0.78

LSVM 0.80 0.79 0.93 0.83 0.81 0.72 0.88 0.77 0.84 0.86 0.82

RSVM 0.85 0.84 0.92 0.88 0.83 0.74 0.89 0.84 0.88 0.87 0.86

KNN 0.82 0.73 0.82 0.73 0.75 0.66 0.76 0.70 0.77 0.72 0.75

DMEFNet 0.78 0.81 0.93 0.85 1.00 0.81 0.81 0.78 0.85 0.67 0.83

Bold values represent the average accuracy for multiple subjects.

FIGURE 6 | Cross-subject movement prediction performance averaged over all folds. Error bars denote two standard errors of the mean.
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cuDNN V7.6. Our parameter settings and code implementation
can be found at https://github.com/mufengjun260/DMEFNet.

4.3. Experiment’s Result and Discussion
We compared the performance of the proposed DMEFNet
model with six traditional machine learning-based movement
prediction models and two deep learning-based movement
prediction models in movement classification/prediction in both
the within-subject and cross-subject situations.

4.3.1. Within-Subject Classification
For within-subject, we divide the data of the same subject
according to a ratio of 7:3 and then use 70% of the data to train the
model for that subject. Four-fold cross-validation is used to avoid
the phenomenon of model overfitting. Simultaneously, repeated-
measures analysis of variance (ANOVA) is used to test the results
statistically (using the number of subjects and the classification
model as factors, and the model classification/prediction result
(accuracy) as the response variable).

We compare the performance of traditionalmachine learning-
based movement prediction models (LDA, DT, BES, LSVM,
RBFSVM, KNN, and ANN) with DMEFNet. Within-subject
results across all models are shown in Figure 5. From the figure,
we can clearly observe that in the case of single-modal data, the
accuracy of the movement prediction model based on the sEMG
signal is much greater than that of the movement prediction
model based on EEG signal, which shows that the sEMG signal
contains more information related to lower limb movement.
Second, the accuracy of lower limb movement prediction based
on multimodal signals is better than that based on single-
modal signals, which shows that the combination of sEMG
and EEG signals can complement information and enhance the
performance of the movement prediction model. Furthermore, it
can be clearly found that, in the two cases of single modal data
and multimodal data, the performance of DMEFNet proposed
in this article for lower limb movement prediction is not the
best compared to other movement prediction models. However,
its performance in movement prediction is close enough to the
best movement prediction models, such as MCSNet using sEMG
single-modal data and RBFSVM using multimodal data. It can be
seen intuitively from Table 1 that their performance gap is less
than 5%. DMEFNet contains an attention mechanism and deep
learning network framework, while a single subject itself contains
not much training data. In this case, the movement prediction
performance of the model is close enough to the performance
of the machine learning-based movement prediction model,
indicating that DMEFNet can also extract effective fusion features
in the case of small sample data, which proves that DMEFNet
is effective.

Table 1 shows the prediction accuracy of each subject under
different movement prediction models. It can be found that
the same movement prediction model has a large difference
in the accuracy for different subjects, especially the lower limb
movement prediction model based on EEG signal, this further
supports the large individual differences in EEG signals.

In general, the DMEFNet proposed in this paper can obtain
a better lower limb movement prediction performance in the

within-subject situation, and its performance is not statistically
different from the performance of other contrast movement
prediction models (P > 0.05).

4.3.2. Cross-Subject Classification
In the case of cross-subject, we randomly selected the data of
seven subjects to train the model and selected the data of three
subjects as the test set. The whole process is repeated five times,
producing five different folds.

Cross-subject prediction results across all models are shown
in Figure 6. It can be seen that the traditional and deep learning-
based movement prediction models have poor performance
in both cases of single modal and multimodal data, which
shows that handcraft features cannot effectively characterize the
common features of signals of multiple subjects under the same
movement. In the case of single modal data, the performance
of the movement prediction model based on deep learning is
better than that based on traditional machine learning, which
shows that the features extracted by the deep learning framework
are better than handcrafted features. The important thing is, the
DMEFNet model proposed in this paper can achieve the highest
accuracy of 88.44% in lower limb movement prediction, which
has a significant statistical difference (P < 0.05). This means
that the DMEFNet proposed in this article can more effectively
find the co-attention and mutual mapping relationship between
sEMG and EEG signal features, and achieve more accurate lower
limb movement prediction.

5. CONCLUSION

In this article, a DCA mechanism based HEI is proposed for
lower limb movement prediction in hemiplegia rehabilitation
training. The interface constructs a DMEFNet, it uses EEGNet
and MCSNet structure to extract the features of EEG and sEMG
signals and introduces the DCA mechanism to enhance the
common attention between sEMG and EEG signal features, and
achieves the deep fusion of multi-modal signal features. An
sEMG and EEG data acquisition experiment and an experimental
paradigm for the incomplete asynchronous acquisition of EEG
and sEMG signals are designed to verify the effectiveness of the
DMEFNet model, which solves the problem of large interference
to EEG signals when the synchronous acquisition of sEMG and
EEG signals of the hemiplegic lower limbs. The experiment
results show that DMEFNet has a good movement prediction
performance in both within-subject and cross-subject situations.
In the future, we consider applying the proposed HEI to an actual
exoskeleton platform for rehabilitation training. In addition, We
will focus on the study of HEI that can be rapidly adaptive for
cross-subject.
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