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Calculation of four-dimensional (4D) dose distributions requires the remapping of 
dose calculated on each available binned phase of the 4D CT onto a reference phase 
for summation. Deformable image registration (DIR) is usually used for this task, 
but unfortunately almost always considers only endpoints rather than the whole 
motion path. A new algorithm, 4D tissue deformation reconstruction (4D TDR), 
that uses either CT projection data or all available 4D CT images to reconstruct 4D 
motion data, was developed. The purpose of this work is to verify the accuracy of 
the fit of this new algorithm using a realistic tissue phantom. A previously described 
fresh tissue phantom with implanted electromagnetic tracking (EMT) fiducials 
was used for this experiment. The phantom was animated using a sinusoidal and 
a real patient-breathing signal. Four-dimensional computer tomography (4D CT) 
and EMT tracking were performed. Deformation reconstruction was conducted 
using the 4D TDR and a modified 4D TDR which takes real tissue hysteresis 
(4D TDRHysteresis) into account. Deformation estimation results were compared 
to the EMT and 4D CT coordinate measurements. To eliminate the possibility of 
the high contrast markers driving the 4D TDR, a comparison was made using the 
original 4D CT data and data in which the fiducials were electronically masked. 
For the sinusoidal animation, the average deviation of the 4D TDR compared to 
the manually determined coordinates from 4D CT data was 1.9 mm, albeit with 
as large as 4.5 mm deviation. The 4D TDR calculation traces matched 95% of the 
EMT trace within 2.8 mm. The motion hysteresis generated by real tissue is not 
properly projected other than at endpoints of motion. Sinusoidal animation resulted 
in 95% of EMT measured locations to be within less than 1.2 mm of the measured 
4D CT motion path, enabling accurate motion characterization of the tissue hys-
teresis. The 4D TDRHysteresis calculation traces accounted well for the hysteresis 
and matched 95% of the EMT trace within 1.6 mm. An irregular (in amplitude 
and frequency) recorded patient trace applied to the same tissue resulted in 95% 
of the EMT trace points within less than 4.5 mm when compared to both the 4D 
CT and 4D TDRHysteresis motion paths. The average deviation of 4D TDRHysteresis 
compared to 4D CT datasets was 0.9 mm under regular sinusoidal and 1.0 mm under 
irregular patient trace animation. The EMT trace data fit to the 4D TDRHysteresis 
was within 1.6 mm for sinusoidal and 4.5 mm for patient trace animation. While 
various algorithms have been validated for end-to-end accuracy, one can only be 
fully confident in the performance of a predictive algorithm if one looks at data 
along the full motion path. The 4D TDR, calculating the whole motion path rather 
than only phase- or endpoints, allows us to fully characterize the accuracy of a 
predictive algorithm, minimizing assumptions. This algorithm went one step further 
by allowing for the inclusion of tissue hysteresis effects, a real-world effect that 
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is neglected when endpoint-only validation is performed. Our results show that 
the 4D TDRHysteresis correctly models the deformation at the endpoints and any 
intermediate points along the motion path.  

PACS numbers: 87.55.km, 87.55.Qr, 87.57.nf, 87.85.Tu 

Key words: validation, real tissue phantom, tissue deformation, SBRT, 4D CT, 
4D dose

 
I. INTRODUCTION

Due to the increasing use of highly conformal radiation therapy treatments in the body (e.g., 
SBRT), motion management continues to grow in importance in radiation oncology. A widely 
used tool for characterizing patient-specific organ/tumor motion is four-dimensional computed 
tomography (4D CT). In addition to the accurate knowledge of patient-specific organ motion 
gained by use of 4D CT imaging, another application of recent interest is the calculation of a 
so-called ‘4D dose distribution’. A 4D dose distribution can be generated by calculating dose 
on the individual phases of the 4D scan and then remapping dose from all phases onto a com-
mon ‘reference’ phase, and finally summing for a total dose. 

Since each binned CT phase of the 4D CT represents the patient slightly deformed from any 
other CT phase, deformable image registration (DIR) algorithms are essential to facilitating 
the remapping of dose from multiple CT phases onto a single reference phase for summation 
to generate the 4D dose distribution. B-spline registration has been widely used for DIR in the 
context of radiation therapy.(1) It generally involves interpolation/smoothing, which leads to 
reduced accuracy for large deformations, rendering the calculated deformation noninvertible 
and requiring a greater number of sampled anatomical points to maintain accuracy. Thus, the 
further away from the reference phase such algorithms operate, the greater the registration 
error would be — thus penalizing large deformations. More recently, DIRs have been pro-
posed which employ a diffeomorphic motion model using splines,(2) an approach which still 
penalizes larger deformations, but uses a chain of velocity fields from CT-phase to CT-phase to 
approximate a fluid flow model. Other authors have applied incompressible fluid flow models 
directly to phase-binned 4D CT image data in order to find correspondences and to estimate 
voxel trajectories.(3-5) 

Hinkle et al.(6) extended such an algorithm in order to apply  it to either raw CT projection 
data (if available) or CT images to estimate motion during the image reconstruction process in 
a maximum a posteriori (MAP)-deformation algorithm, allowing for tracking of organ motion. 
We will refer to this practice of fitting a spatiotemporal motion model directly to raw imaging 
data as a 4D tissue deformation reconstruction (4D TDR). In order to alleviate DIR limitations, 
the 4D TDR performs a joint registration wherein a spatiotemporal motion model and a single 
image are matched simultaneously to all the other images. Regularization of the motion model 
may then be used to diminish the impact of image artifacts on the resulting motion estimate. 
The 4D TDR does not require the input to be full volumes, but can accept as input the raw time-
stamped projection data directly from the scanner.(6) Due to the use of projections, a deformation 
reconstruction algorithm (and thus the 4D TDR) can “reconstruct” (using projection data) the 
images needed to accurately display deformation at any time t. If projection data is not available 
the use of already reconstructed images forces the algorithm to assume slow deformation (i.e., 
a static anatomy during the longer time needed to generate all projections of an image), and 
thus the 4D TDR can only assign a specific image to a specific time (ideally the time stamp of 
the image is right at the same time where half the time has passed to acquire all projections for 
this specific image). We would like to emphasize that the 4D TDR is not a deformation image 
registration (DIR) algorithm, which is limited by the predetermined number of phases (and thus 
images) and by the inherent potential for misaligned phase for some images. Such an algorithm 
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can produce not only the best-fit motion estimate, but also an anatomical volume image which 
is reconstructed during the motion estimation process. Artifacts resulting from binning errors 
are avoided in this model, since the raw images are never binned. This approach allows recon-
struction of a motion path at any time or position while providing a lower signal to noise ratio.

Typical validations of motion models previously described employ one of two broad compu-
tational categories: mathematically-based(5,7,8) and/or proof of performance by comparison with 
manually delineated organ contours/landmarks derived from retrospective patient datasets. All 
of these authors, therefore, mention the difficulties in achieving accuracy for validation beyond 
interobserver uncertainties and, thus far, none has described voxel to voxel accuracy validation. 
The accuracy of deformation estimates is, therefore, generally expressed through the deviation 
measured for the two end state of motion when compared to a calculated estimation. All studies 
thus far assume perfect fit of the model to reality at the deformations start phase. 

Brock(9) had multiple institutions analyze a contrast-injected liver study using 25 natural 
landmarks (vessel bifurcations) in the liver. Brock’s work represents an extensive sample of 
tested DIR algorithms, with the best one resulting in an average 3D error of 1.8 mm between the 
start phase and the required end phase, called “vector magnitude”. In this case, the average error 
expresses the match of multiple landmarks at the CT-phase endpoint. Deviations between DIR 
calculation and intermittent CT-phase measurements on the motion path (i.e., before the motion 
path is completed) are usually neglected. In terms of the 4D dose calculation, an understanding 
of these errors is equally important. Even if multiple CT phases are analyzed, the calculation 
process involves the independent computation of multiple volume-to-volume registrations (i.e., 
the point trajectory model is only piecewise smooth and CT-phase artifacts in any one image 
can drastically affect estimated point trajectories, falsifying the motion path). DIR, itself, further 
limits the capability of measuring deviations caused by a difference of the time–location relation, 
as estimated and measured. Thus, current studies are limited in their verification of measured 
landmark locations regarding their temporal–spatial accuracy, and therefore published errors 
often use deformation endpoints. Regardless of the method employed, it is obvious that, for the 
subsequently calculated 4D dose distribution to be accurate, the deformation calculated must 
be accurate on a voxel-to-voxel scale over the whole motion path and at any moment in time. 

Previous validation studies, including that of Brock,(9) evaluate the performance of DIR 
algorithms by comparing the position of high-contrast feature points against “ground truth” 
positions. Such evaluations are useful in determining algorithms which fail to map easily 
identified points reliably, but offer little information about the performance of an algorithm in 
low-contrast regions, such as the interior of the liver.  Since DIR and 4D TDR algorithms each 
use image contrast to guide motion estimation, it is considerably more challenging to evaluate 
performance at low-contrast points. In this work, we validate the performance of a 4D TDR 
algorithm in such a way. Even though it is infeasible to track as many low-contrast points using 
fiducials as are commonly used in extracted-feature studies, the additional challenge provided 
by the lack of contrast makes such validation quite useful.

We believe it reasonable to submit that the most meaningful validation of voxel-to-voxel 
accuracy for a given DIR or 4D TDR will require use of a deformable phantom capable of 
repeatable, realistic simulation of all important tissue specific behaviors, including voxel defor-
mation and hysteresis. Further, not only is an end-to-end validation of motion needed, but so 
is a full analysis of the error in time and location of voxels. For this reason we have designed, 
constructed, and previously reported on a clinically realistic porcine liver phantom which is 
capable of producing patient-equivalent tissue deformation.(10) Here we use this real-tissue 4D 
phantom to produce periodic 3D-motion, equivalent to that typically observed in patients, to 
validate the free-form diffeomorphism/smooth velocity flow 4D TDR model.(6) By performing 
accurate measurements of the deformation in the phantom using 4D CT and electromagnetic 
tracking data, and comparing them against the deformation predictions, we directly evaluate 
the performance of this 4D TDR. We believe this to be the first time that such a time-relevant 
voxel-to-voxel validation of deformation has been performed.

 



118  Szegedi et al.: Four-dimensional tissue deformation validation 118

Journal of Applied Clinical Medical Physics, Vol. 14, No. 1, 2013

II. MATERIALS AND METHODS

A previously described motion phantom containing a porcine liver lobe(10) with fiducials 
embedded for voxel-to-voxel accuracy testing of our previously reported 4D TDR(6) allows for 
a quantitative validation approach without interobserver influence. The phantom reproduces 
liver fiducial motion, which is equivalent to respiratory-driven human liver fiducial motion 
measured in patients.(11)

A.  Data acquisition 
The phantom was prepared with a freshly explanted porcine liver containing three electromag-
netic tracking (EMT) transponders (~ 8 mm long and 2 mm in diameter). A phantom motion 
controller that runs sinusoidal and irregular patient-recorded breathing pattern, via a piston, 
was applied onto the liver. For this study, we independently used either a sinusoidal trace with 
a 6 s period or a patient trace, which was selected for its moderate irregularity in period and 
amplitude. The fiducials within the tissue define locations at which voxel to voxel tracking 
accuracy is directly validated. A surrogate marker box was placed on the chest-motion platform 
of the phantom during 4D CT acquisition. A GE LightSpeed RT16 CT scanner (GE Healthcare, 
Waukesha, WI) with the real-time position management (RPM) system (Varian RPM, Varian 
Medical Systems Inc., Palo Alto, CA)(12-14) was used for the 4D CT acquisition. A description of 
the GE phase-binned 4D CT acquisition and processing has been previously published by Pan et 
al.(15) Images were acquired using 1.25 mm slices while maximizing the number of images that 
can be obtained for a 4D CT dataset. The GE system in our institution allows for a maximum 
of 3000 images within one 4D CT study. Due to technical settings, the image number of 4D 
CT ranged from 2880 to 2944 images for the acquisitions. A sample image, showing an axial 
image of the liver lobe with two EMT transponders can be seen in Fig. 1. 

Image data were processed using the GE AW SIM MD software (version 7.6) (GE Healthcare) 
to generate 20 separate phase-binned CT image sets, each with approximately 128–144 images, 
depending on the length of couch movement during data acquisition. This 4D CT data were 
then used to generate a complete motion path for each fiducial. 

Fig. 1. Typical axial slice of the prepared liver tissue phantom with two EMT transponders visible.
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In order to confirm the accurate 4D CT measurement of fiducial motion and to understand 
the natural variation of motion within tissue, the phantom’s complete motion was tracked for 
multiple periods using an EMT localizing and tracking system (Calypso Medical Technologies 
Inc., Seattle, WA), located in a separate treatment vault. In each case, the animation lasted 
approximately 10 minutes. The EMT-generated data (10 Hz for individual transponders), uti-
lizing a higher temporal positional acquisition rate than 4D CT, were compared to the 4D CT 
measured fiducial coordinates motion pattern and, ultimately, to the 4D TDR predicted motion 
pattern. Table 1 details the sequence of phantom image acquisitions using one liver. 

B.   Data processing 
Data points in the phase sampled CT data were analyzed by one manual observer. Data points 
in the 4D TDR were acquired through software means. Two stationary reference point coordi-
nates were used as basis for evaluation of measurement accuracy and as origins from which to 
measure all distances within and between 4D CT datasets, allowing comparisons from different 
CT phases. To create a spatiotemporal link between 4D CT and 4D TDR-generated data, the 
piston position acts as a common reference point to map the 4D CT phase-based data into the 
temporal/amplitude-based frame of the 4D TDR. The EMT fiducials’ locations were compared 
against the motion pattern generated by the respective fiducial in the phase binned 4D CT data. 
For visualization, Fig. 2(a) shows a sagittal 4D TDR reconstructed image containing the liver 
and animating piston compared to the raw sagittal 4D CT image in Fig. 2(b). 

The 4D TDR-predicted fiducial motion patterns were calculated, allowing for comparison 
with the 4D CT-phase binned motion pattern. To confirm the accuracy of the 4D CT measure-
ment, which represents the ‘ground truth’ for comparison with the 4D TDR, the shortest 3D 
distance of each EMT trace point to the interpolated CT-phase binned motion track was calcu-
lated. Good agreement of the 4D CT with the high temporal resolution EMT indicates accurate 
(i.e., artifact free) 4D CT measurement of fiducial motion patterns. 

Table 1. Sequence of imaging and tracking acquisition for one porcine liver.

 Acquisition Sequence Animation Trace

 4D CT Sinusoidal
 4D CT Patient
 Calypso Sinusoidal
 Calypso Patient

Fig. 2. 4D TDR reconstructed image (a) and according raw 4D CT image (b).

(a) (b)
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B.1 Maximum a posteriori (MAP) 4D tissue deformation reconstruction (4D TDR) 
We used all raw, time-stamped 4D images to reconstruct and estimate deformations in anatomy. 
In order to estimate a 4D image, we employed the method previously outlined in detail by Hinkle 
et al.(6) Using the breathing trace from the RPM system, along with the data time stamps, the 
raw image data were tagged with a breathing-signal amplitude. The algorithm employs a steep-
est descent scheme, which maximizes the posterior likelihood under a prior distribution placed 
on the velocity fields. Our aim is to receive smooth velocity fields and a realistic and feasible 
deformation solution. An example of such velocity fields can be seen in Fig. 3. 

For any given RPM breathing signal amplitude, the velocity fields are then used to define a 
fluid flow which is integrated to obtain a mapping representing deformations in anatomy from 
the base amplitude. By varying the amplitudes according to the original breathing signal and 
applying these deformations at each measured amplitude, the trajectories of individual points 
in the anatomy are tracked. 

B.2 Accounting for hysteresis motion with the 4D TDR (4D TDRHysteresis)
The phantom challenges any DIR or 4D TDR algorithm by its natural tissue hysteresis condi-
tions. For a periodic breathing pattern under conditions of hysteresis, a given voxel’s trajectory 
essentially corresponds to tracing one half of an approximately elliptical 3D path whenever 
the breathing signal is rising (exhale) and the other half when the breathing signal is falling 
(inhale). Langner and Keall(16) investigated 5D image reconstruction using two-parameter bin-
ning methods and found that the time derivative of the breathing signal, in combination with the 
breathing signal itself, gave the best parameterization. The time derivative of the RPM signal 
is obtained by applying a low-pass filter to remove noise, then computing the time derivative 
using the central difference method. Therefore, the 4D TDRHysteresis received partitioned data 
(i.e., two disjoint sets — those with positive breathing signal derivative and those with nega-
tive breathing signal derivative). The resulting two, amplitude-index motion estimates were 
then jointly estimated, along with a common base image, estimating motion on each side of 
the hysteresis loop. This joint estimate was seen to produce an accurate motion path estimate 
and a more accurate base image. 

Fig. 3. Three velocity fields of the tissue phantom undergoing a forward motion (images to be viewed from left  
to right).
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B.3  Electronic masking of fiducials in porcine liver
To avoid the possibility of the deformation algorithm benefitting from the unfair advantage 
of being ‘driven’ by the implanted fiducials, all 4D CT image data were copied and fiducial 
locations were masked in the second dataset. Images containing fiducials or clearly visible 
artifacts of fiducials were processed prior to being submitted to the 4D TDR. In the original 
slice data, a rectangular region encompassing the streak artifacts centered around each fiducial 
was outlined, and a homogeneous region of equivalent size, containing unaliased liver tissue, 
was chosen in the same slice and tiled into the erased region. After tiling and successful visual 
verification of fiducial masking, pixels along the edges of the masked region were blended 
with their original values using a Tukey (cosine-tapered) window function. This resulted in 
the slices being effectively masked of evidence of the fiducials while retaining the texture of 
homogenous liver tissue. Fiducials were erased in all slices ± 12.5 mm along the superior and 
inferior direction. 

 
III. RESULTS 

A.  Comparison of 4D CT measurement to EMT tracking measurement 
In order to ensure that the ‘ground truth’ 4D CT measurement accurately characterizes liver defor-
mation without phase binning errors, we compared the measured 4D CT location of the EMT 
fiducials against the measured EMT traces. The accuracy of the EMT system has been reported 
to be less than 0.5 mm in any direction for motion speeds of up to 3 cm/s.(17) Our comparison 
of the EMT and 4D CT motion tracks shows that 95% of the EMT points are within 1.2 mm of 
the 4D CT measurements (Table 2). A histogram of 3D distances of the measured EMT points 
to the closest interpolated 4D CT point of both 4D CT datasets using the sinusoidally (sin) 
animated liver indicates good agreement between the two measurement techniques, as depicted 
in Fig. 4, thereby confirming the accuracy of the 4D CT measurement and the reproducibility 
of motion. The same porcine liver, animated with a recorded patient (pat) trace captured with 
the RPM device, shows a greater variation of tissue motion due to the changes in each breath. 
Figure 5 shows a histogram of point distances between 4D CT and EMT for a patient trace 
porcine liver phantom animation. The difference in sinusoidal and patient trace animation can 
be seen in Fig. 6, which depicts an example of the EMT point clouds for sinusoidal (red) and 
patient (blue) animation of the porcine liver in two dimensions. While the EMT measurement 
points for the sinusoidal animation are clustered, clear, and distinct, the patient trace animated 
measurement (blue) shows a wider spread of motion in line with the animation variation. 

Table 2. Percentile distances of the EMT trace points in millimeter distance to 4D CT points.

 Percentile of EMT Points 4D CT Data (measured)

 95% 1.2 mm
 99% 1.4 mm
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Fig. 4. Comparison of EMT measurement of fiducial positions vs. 4D CT marker tracking for sinusoidal animation.

Fig. 5. Comparison of EMT measurement of fiducial positions vs. 4DCT marker tracking for patient trace animation.
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B.   Measurement errors 
For the measurement of the coordinates of the two stationary markers in the phantom in all 20 
binned CT sets, the fiducials’ position in superior–inferior direction can vary based on slice 
thickness, which imposes an uncertainty of half the slice dimension (i.e., 0.675 mm). Our error 
analysis revealed that the standard deviation of fiducial position measurements is submillimeter. 
We were able to localize the center of a stationary BB from all CT phases with 0.1 mm standard 
deviation at 1.25 mm slice thickness with the phantom. 

The maximum phase sampling error (MPSE) for the 4D CT datasets after binning, as stated 
by the AW software, was 1% indicating correct phase assignment. 

Figure 7 displays the 4D TDR estimations of the 4D CT dataset with fiducials (lined track) 
and the respective calculation with fiducials masked (dotted track). For same datasets, negligible 
differences are found, as shown in Fig. 7, for one representative fiducial’s track. The average 
deviation between the two corresponding 4D TDR motion paths was less than 0.1 mm, thus 
indicating that high-contrast fiducials do not drive the 4D TDR and that masking the fiducials 
is acceptable. For the purpose of this article, we therefore continue with the masked dataset 
results only.  

Fig. 6. EMT point clouds for sin (red) and pat (blue) animation of the same porcine liver in two dimensions.



124  Szegedi et al.: Four-dimensional tissue deformation validation 124

Journal of Applied Clinical Medical Physics, Vol. 14, No. 1, 2013

C.  4D CT measurement and 4D TDR prediction without breathing signal derivative
Human tissue exhibits hysteresis during respiration.(18,19) It is reasonable to anticipate challenges 
to a DIR or 4D TDR to correctly model such behavior. Based on the deviation vector between 
each of the measured fiducial positions (4D CT) and the corresponding 4D TDR predicted 
position for the two sinusoidal animated 4D CT scans, it becomes clear that the accuracy of 
prediction of the 4D TDR algorithm suffers, especially when passing the center portion of the 
motion hysteresis (see Fig. 8). The roughly elliptical track of a moving fiducial, represented 
by the open circles in Fig. 8, as measured from the 4D CT is indicative of the natural porcine 
liver tissue hysteresis. This particularly valuable feature of the porcine liver phantom utilized 
here allows for a precise characterization of a tissue hysteresis.

Table 3 presents comparisons of the 4D TDR results to the acquired sinusoidal animated 
4D CT dataset. While the average error is low (1.9 mm) for the 3D distances between 4D 
TDR and 4D CT, it is noted that maximum deviations from a measured position could be as 
large as 4.5 mm for specific locations. Table 4 shows the 95% and 99% percentile of the EMT 
point-cloud compared to 4D TDR predicted motion tracks with the calculation resulting in a 
95% percentile of EMT points up to 2.8 mm. Figure 9 is a graphical representation of the 4D 
TDR to EMT match. 

Fig. 7. 4D TDR tracks calculated from 4D CT (straight line) and 4D CT with masked fiducials (dotted lines).
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Fig. 8. Tracks calculated with 4D TDR (dotted line) compared with 4D CT measurements (circles). Note the hysteresis 
shown in the 4D CT measurement.

Table 3. 3D deviation of the 4D TDR and TDRHysteresis vs. the 4D CT-measured points.

 Sum 3D Vector Δ (mm)
 GE AW Phase 4D TDRHysteresis 4D TDR

 0% 0.87 1.22
 5% 0.36 1.10
 10% 0.61 0.54
 15% 0.35 1.15
 20% 0.59 1.64
 25% 0.80 2.11
 30% 0.71 1.95
 35% 1.03 1.26
 40% 0.70 1.14
 45% 0.61 0.98
 50% 1.12 0.93
 55% 0.30 0.44
 60% 0.15 0.48
 65% 0.86 1.83
 70% 0.70 2.46
 75% 1.36 3.84
 80% 1.90 4.31
 85% 2.04 4.54
 90% 1.75 3.22
 95% 0.95 1.97
 3D Vector 0.89 1.86
 3D Vector Max Error (mm) 2.04 4.54
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D.  Comparison of EMT tracking to the 4D TDRHysteresis prediction (i.e., with 
breathing trace derivative) 

The 4D TDRHysteresis solution, incorporating the RPM time derivative, results in a 0.9 mm aver-
age 3D distance from the measured sinusoidal animated 4D CT-phase datasets with fiducials. 
All 4D CT point distances for representative CT-phase bins are presented in Table 3. We note 
that a direct consequence of using the 4D TDR means that there is no error-free phase, since all 
data are compared to an average error. The distances for the 95% and 99% percentile of EMT 
points to the 4D TDRHysteresis solution and to the measured 4D CT data are shown in Tables 3 
and 5. A substantial reduction in the average and maximum error between measurement and 
prediction was experienced applying the 4D TDRHysteresis compared to the 4D TDR. The 4D 
TDRHysteresis results in Table 5 are close to the actual measurement comparison listed in Table 
2. A histogram representation of the EMT point cloud matched to the 4D TDRHysteresis estimate 
is displayed in Fig. 10, which compares favorably with the distances measured between EMT 
and 4D CT data shown in Fig. 4.  

Table 4. Percentile distances of the EMT trace points in millimeter 3D distance to the 4D TDR.

 Percentile of EMT Points 3D Distance Between EMT and 4D TDR

 95% 2.75 mm
 99% 2.97 mm

Fig. 9. Comparison of EMT measurement of fiducial positions vs. 4D TDR predicted from the 4D CT dataset.

Table 5. Percentile of the EMT trace points in millimeter distance to the 4D TDRHysteresis  and to measured 4D  
CT data.

 Percentile of EMT Points 4D TDRHysteresis 4D CT Data (measured)

 95% 1.01 mm 1.18 mm
 99% 1.15 mm 1.39 mm
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E.    Comparison of EMT tracking to the 4D TDRHysteresis prediction with patient 
trace-based animation 

The maximum phase sampling error (MPSE) for the patient-trace animated 4D CT dataset 
after binning, as stated by the AW software, was 13%, indicating average phase assignment 
error as it is experienced in real patient data at any day. Based on the 4D TDRHysteresis solution, 
we plotted the measured 4D CT data and overlaid the calculated motion estimate, arriving at 
a hysteresis motion. Figure 11 shows both motion estimates from the 4D TDRHysteresis (sin and 
pat animation) for comparison, using the same liver. The circles represent the measured 4D 
CT fiducial locations. 

Numeric data, representing the 3D distance between measured 4D CT and 4D TDRHysteresis 
is presented in Table 6. We note that a direct consequence of using the 4D TDRHysteresis with 
patient trace animation is the slightly higher average error. Similarly, the distances for the 
95% and 99% percentile of EMT points to the 4D TDRHysteresis solution and to the measured 
4D CT data, shown in Table 7, are substantially bigger due to the greater motion variation. 
The spread of EMT measurements (i.e., the EMT cloud pictured in Fig. 6) result directly from 
the variation induced. A histogram representation of the EMT point cloud matched to the 4D 
TDRHysteresis estimate and the measured 4D CT of the patient trace animation is displayed in 
Figs. 12(a) and 12(b).

 

Fig. 10. Comparison of 4D TDRHysteresis predicted vs. EMT measurement of fiducial positions (mm).
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Fig. 11. EMT point cloud distances to 4D CT measurement (circles) and 4D TDR (line) estimation for pat animated 
porcine liver: (a) the sin-animated liver measurement; (b) the pat animated liver measurement.

Table 6. 4D TDRHysteresis  vs. the patient trace 4D CT measured points.

 Sum 3D Vector Δ (mm)
 GE AW Phase Distance (mm)

 0% 0.65
 5% 0.66
 10% 1.32
 15% 1.17
 20% 1.31
 25% 1.28
 30% 0.82
 35% 0.57
 40% 0.90
 45% 1.52
 50% 1.07
 55% 1.06
 60% 1.09
 65% 1.32
 70% 1.59
 75% 0.85
 80% 0.41
 85% 0.30
 90% 0.67
 95% 0.68
 3D Vector 0.96
 3D Vector Max Error (mm) 1.59

Table 7. Percentile of the EMT trace points in millimeter distance to the patient trace 4D TDRHysteresis  and to measured 
4D CT data.

 Percentile of EMT Points 4D TDRHysteresis with Fiducials 4D CT Data (measured)

 95% 4.52 4.87 mm
 99% 6.42 6.74 mm

(a) (b)
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IV. DISCUSSION

The challenge of mapping all of the individual, phase-specific calculated dose distributions 
onto a common reference frame for summation into an accumulated 4D dose distribution is to 
avoid CT binning artifacts and to maintain voxel trueness. Numerous DIRs have been validated 
with respect to their end-to-end accuracy, leaving one to guess how well the motion path itself 
has been described. Even if motion is calculated from phase to phase, phase binning errors can 

Fig. 12. EMT point cloud distances to 4D CT measurement (a) and 4D TDRHysteresis (b) estimation for pat animated 
porcine liver.

(a)

(b)

(b)
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unduly influence the motion path estimation, and/or the calculation of motion vectors over less 
than optimal number of binned CT phases can influence motion estimates. For 4D cumulative 
dose volume histograms to be accurate enough to be deemed of clinical value, motion has to 
be validated at every point within the path, too. 

DIR validation approaches have been limited to either mathematically-based proofs and/or 
proof of performance by comparison with manually delineated organ contours derived from 
retrospective patient datasets. Highly variable breathing patterns in real human subjects makes 
acquisition of reliable data, as well as accurate measurements of deformation, challenging. 
The effects of irregular breathing invariably cause phase-binning algorithms to mislabel phase 
to images,(20-22) thus causing nontrivial spatial and temporal artifacts and resulting errors in 
DIRs. To avoid the limitations of patient-based studies on accuracy within the motion path and 
binning artifacts, the biologically realistic phantom-based validation is performed here using 
highly reproducible liver tissue motion. The benefits of operating in a completely realistic tis-
sue environment, capable of repeatedly modeling and characterizing real tissue hysteresis and 
deformation, improve validation efforts. The highly reproducible nature of the phantom’s liver 
tissue motion reduces vulnerability to the inaccurate representation of motion in 4D CT which 
occurs in irregularly breathing patients. By avoiding simplified tissue modeling approaches, 
we strived to counter challenges to the evaluation through imaging limitations on real patients. 
The 4D TDR algorithm’s bin-less approach, therefore, is decoupled from the binned CT mea-
sured data. 

Interestingly, more recent reports have described the use of phantoms to address the limita-
tions of patient studies and, thus, improve on the data acquisition needed for accurate validation 
of deformation algorithms. The materials used in these studies were either rigid,(23) or sponge-
like,(23,24) or a mixture of both,(24,25) with translational motion being the predominant motion 
modeled. Unfortunately, the use of nontissue materials in these experiments does not allow 
for fully accurate modeling of the realistic tissue-deformable voxels, nor do they yield entirely 
realistic motion, such as hysteresis. Previous phantoms have therefore been limited in the extent 
to which they could accurately validate deformation estimates due to their somewhat simplified 
tissue modeling approaches. Using the porcine liver with embedded fiducials, we accurately 
characterize tissue hysteresis using 4D CT. The characterized hysteresis pattern allows for study 
of tissue behaviors when faced with irregular motion. The fit of the 4D TDRHysteresis solution 
to the full complex motion path to measured 4D CT and EMT data to within less than 2 mm 
on average can therefore be validated. The average error presented here applies to any point 
within the motion path and not only to motion/deformation endpoints. 

Multiple studies(22,26,27) have used limited sets of retrospective patient data (between 2 and 
5) from 4D CT acquisition to validate their respective deformation models. These and other 
authors have gleaned their results from centroid-to-centroid comparison,(5) volume-overlap-
comparison, image cross-correlation, distance to agreement of manually/visually identified 
landmarks or organ-contours in 2D, as well as in 3D, isointensity contours,(7,28) and other similar 
measures. Average end-to-end errors in such studies are reported to range from 2–3 mm, but 
it is important to note that none of the aforementioned methods report on the complete motion 
path accuracy. While hysteresis has been observed and reported in patients,(18,19) reproducing 
and accurately imaging the same hysteresis has thus far has been very challenging in patients. 
We note that, while our mean error over all phases was below 2 mm, we measured errors as 
large as 7.0 mm for individual CT phases. These larger deviations coincided with positions 
marking the widest cross section of the phantom-produced hysteresis, highlighting the need 
for complete motion-path (i.e., including hysteresis) characterization in patients. The methods 
used for these studies are in contrast to the biologically realistic, phantom-based validation 
performed here which is less vulnerable to the inaccurate representation of motion due to 
irregularly breathing patients

As expected, the greatest opportunities for error reduction in deformation estimation were 
found at the widest part of the tissue hysteresis loop where the error was initially the greatest. 
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The original 4D TDR prediction experienced the greatest error of prediction in the 25%–30% 
and 75%–80% phase range, while the improved 4D TDRHysteresis  experienced significantly 
less error of prediction at these phase ranges, reducing by almost one half the error between 
measurement and calculation (~ 0.5–1.3 mm error). 

We found the realistic tissue deformation phantom to be a valuable tool to prove or to improve 
on the accuracy of the 4D TDR. Our efforts to acquire a complete, nonphase-sampled, 4D TDR 
dataset from another institution to confirm above results have thus far been unsuccessful. Current 
shared datasets available in the public domain are phase-sampled and, thus, would negate the 
most important advantage the 4D TDR offers over other algorithms. Additional verification of 
motion public domain data using the phantom in conjunction with an EMT tracking system as 
shown in Fig. 13 would not be possible either. 

 
V. CONCLUSIONS

Accurate validation over the whole motion path is essential in evaluating the usefulness of any 
DIR or 4D TDR intended for use in 4D dose calculation methods. The phantom allowed the 
quantification of a specific hysteresis motion path using the 4D TDR under realistic conditions of 
regular and irregular animation. While endpoint accuracy was comparable to other publications, 
overall accuracy of the whole sinusoidal motion path of the 4D TDRHysteresis was measured to 
have a 1.4 mm average error compared to the measured data of 4D CT. In comparison to the 
EMT data point cloud, we observed 95% of points to be within 1 mm of the 4D TDRHysteresis 
solution. The 4D TDRHysteresis traces matched 95% of the EMT trace within 1.6 mm when using 
the sinusoidal signal and 4.5 mm when using the patient trace for animation. 

The biologically realistic porcine liver phantom accurately represents and allows charac-
terization of a tissue hysteresis. The fit of the 4D TDR estimated motion trace to the motion 
path as measured by 4D CT and EMT can therefore be validated accurately for a sinusoidal 
and patient trace animated porcine liver. The average error presented here applies to any point 
within the motion path, not only to motion/deformation endpoints. 
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