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A B S T R A C T   

Ovarian cancer (OCa) is a common malignancy in women, and the role of cuproptosis and its 
related genes in OCa is unclear. Using the GSE14407 dataset, we analyzed the expression and 
correlation of cuproptosis-related genes (CRGs) between tumor and normal groups. From the 
TCGA-OV dataset, we identified 20 cuproptosis-related long non-coding RNAs (CuLncs) associ
ated with patient survival through univariate Cox analysis. OCa patients were divided into early- 
stage and late-stage groups to analyze CuLncs expression. Cluster analysis classified patients into 
two clusters, with Cluster1 having a poorer prognosis. Significant differences in “Lymphatic In
vasion” and “Cancer status” were observed between clusters. Seven CRGs showed significant 
expression differences, validated using the human protein atlas (HPA) databases. Immune anal
ysis revealed a higher ImmuneScore in Cluster1. GSEA identified associated signaling pathways. 
LASSO regression included 11 CuLncs to construct and validate a survival prediction model, 
classifying patients into high-risk and low-risk groups. Correlations between riskScore, Cluster 
phenotype, ImmuneScore, and immune cell infiltration were explored. Cell experiments showed 
that knocking down AC023644.1 decreases OCa cell viability. In conclusion, we constructed an 
accurate prognostic model for OCa based on 11 CuLncs, providing a basis for prognosis assess
ment and potential immunotherapy targets.   
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1. Introduction 

In the female reproductive system, ovarian cancer (OCa) is one of the most common malignant tumors [1]. Cuproptosis, a form of 
regulated cell death associated with copper metabolism, has recently gained attention as a critical mechanism implicated in various 
pathological conditions, including cancer [2]. Long non-coding RNAs (lncRNAs), a class of non-coding RNA molecules, have emerged 
as important regulators of gene expression and cellular processes [3]. Increasing evidence suggests a significant interplay between 
cuproptosis and lncRNAs, with profound implications in the development and progression of multiple cancers [4–7]. 

In the context of OCa, both cuproptosis and lncRNAs have been shown to play critical roles in tumor development, progression, and 
treatment response [2,8,9]. Dysregulation of cuproptosis has been observed in OCa cells, with abnormal copper metabolism 
contributing to increased cell survival and chemoresistance [10,11]. Several lncRNAs have been identified as key regulators of 
cuproptotic cell death, affecting the expression of copper-related genes and modulating the sensitivity of OCa to cuproptosis-inducing 
agents [6,12]. 

The purpose of this study is to construct a comprehensive bioinformatics-based model that integrates the signature of cuproptosis- 
related lncRNAs, immune infiltration profiles, and survival prognostic factors for OCa. By utilizing various bioinformatics approaches, 
we aim to identify a specific set of cuproptosis-related lncRNAs that are associated with the pathogenesis and progression of OCa. 
Additionally, we will assess the immune infiltration patterns in OCa and investigate their correlation with the expression of 
cuproptosis-related lncRNAs. Ultimately, our goal is to establish a robust prognostic model that can predict the survival outcomes of 
OCa patients, providing valuable insights for personalized therapeutic strategies and improving patient management. As shown in 
Fig. 1, an overview of the research design is provided. 

2. Materials and methods 

2.1. Data acquisition 

The dataset, with the accession number GSE14407, was obtained from the GEO database (https://www.ncbi.nlm.nih.gov/geo). It 
includes gene expression microarray data for 12 cases of OCa and 12 cases of normal ovarian epithelium. The gene expression RNAseq 
(HTSeq-FPKM), clinicopathological data, survival data, and mutation data for OCa were downloaded from The Cancer Genome Atlas 

Fig. 1. Flowchart of the study.  
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(TCGA) online database (https://cancergenome.nih.gov). To ensure fairness in the analysis, the data of 429 cases from TCGA-OV 
patients were randomly divided into a training set and an internal verification set, maintaining a 1:1 ratio between the two sets. 
The appropriateness of the grouping was validated using a Chi-square test. 

2.2. Identification of the cuproptosis-related lncRNAs (CuLncs) 

We obtained 16 cuproptosis-related genes (CRGs) from previous articles [13,14](Table S1). The TCGA-OV transcriptome data was 
filtered and processed using the R software. We extracted transcriptome data from 429 tumor samples, filtering out genes that showed 
no expression in less than half of the samples. From this data, we extracted the expression information for CRGs as well as the 
expression information for all lncRNAs. By performing a Spearman’s correlation analysis on the expression profiles of CRGs and 
lncRNAs, we obtained an expression matrix specifically for cuproptosis-related lncRNAs, referred to as CuLncs. The statistical sig
nificance level was set at FDR-adjusted P < 0.05 in order to determine the significance of the correlations. 

2.3. Cluster analysis of the cuproptosis-related lncRNAs 

Univariate Cox analysis was performed using the ‘survival’ package [15] in R software to identify CuLncs significantly associated 
with the survival of OCa patients. A significance level of P < 0.01 was used to determine the statistical significance. Furthermore, 
cluster analysis was conducted using the ’ConsensusClusterPlus’ package [16] in R. The analysis was set with k = 2, and based on the 
expression levels of CuLncs associated with survival, TCGA-OV patients were classified into two categories, namely cluster 1 and 
cluster 2. 

2.4. Construction and validation of the cuproptosis-related lncRNAs prognostic signature 

To construct a more refined prognostic model for OCa survival prediction, LASSO Cox regression analysis was performed using 
these CuLncs significantly associated with survival in the training set. The risk score of each OCa patient was calculated as follows: Risk 
score =

∑
(coefficients × gene expression). Subsequently, all OCa cases were divided into low-risk or high-risk groups according to the 

values below or above the median risk score, and the survival curves of the two groups were plotted by the Kaplan-Meier method [17]. 
In addition, a time-dependent receiver operating characteristic (ROC) curve was generated using the “timeROC” package [18] to assess 
the prognostic signature’s effectiveness in predicting 1-year, 3-year, and 5-year survival. A heatmap for both high-risk and low-risk 
groups was generated using the “pheatmap” package [19]. Furthermore, clinical parameters including Age, Stage, Grade, and the 
risk score were incorporated, and both univariate and multivariate Cox analyses were conducted. Forest plots were then constructed to 
visualize the results. Finally, the survival model was validated using the validation cohort. 

2.5. Identification of relevant signaling pathways of cuproptosis-related genes by GSEA 

Functional enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed using the GSEA tool [20] 
(version 4.3.2) with data obtained from the TCGA database. The gene set parameters and enrichment test settings were configured as 
follows. The expression dataset was named after each gene, and the gene sets database chosen was “c2.cp.kegg.v2022.1.Hs.symbols. 
gmt”. A default value of 1000 permutations was employed to compute the Normalized Enrichment Score (NES). Additionally, a 
maximum size threshold of 500 and a minimum size threshold of 15 were applied to exclude larger and smaller gene sets, respectively. 
Significant enrichment was determined by a false discovery rate (FDR) q-value <0.05. When the q-value exceeded 0.05, signaling 
pathways with a P-value <0.05 were selected for enriched analysis. In cases where no signaling pathway had a P-value <0.05, the 
maximum size threshold for excluding larger sets was adjusted to 600 or 700. 

2.6. Screening of cuproptosis-related genes and validation in human protein atlas (HPA) databases 

To investigate the differentially expressed mRNA in CRGs, the ‘limma’ package [21] in the R software was utilized. A threshold of 
adjusted P < 0.05 was established to identify mRNAs exhibiting significant differential expression between two clusters. The protein 
expression of cuproptosis-related genes, which were identified through the screening process, was assessed in both OCa tissues and 
normal ovarian tissues using the HPA portal (https://www.proteinatlas.org/). 

2.7. Tumor microenvironment analysis 

The abundance of immune infiltrates was estimated using the “CIBERSORT” [22] and “estimate” packages in R. To further analyze 
the differences between Cluster 1 and Cluster 2, the ESTIMATEScore, ImmuneScore, and StromalScore were separately calculated. The 
analysis of differential expression between the two clusters was conducted using the limma package, with a significance threshold set 
at P < 0.05. Additionally, violin plots depicting the infiltration of 22 immune cell types, including B cells, Plasma cells, T cells, NK cells, 
Monocytes, among others, between Cluster 1 and Cluster 2, were generated using the “limma” and “vioplot” [23] packages. 
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2.8. Correlation analysis 

Correlation analysis was performed between riskScore and 22 immune cell types, based on Spearman’s correlation method. A 
significance level of FDR-adjusted P < 0.05 was considered statistically significant. The “ggplot2” package [24] was utilized to 
generate scatter plots visualizing the correlation. 

2.9. Cell cultivation and reagents 

The human ovarian cancer epithelial cell lines (A2780 and SKOV3) were obtained from the American Type Culture Collection. The 
human normal ovarian epithelial cells (T29) have been described previously [25]. These cells were systematically nurtured in RPMI 
1640 + 2 mM Glutamine +10 % fetal bovine serum (FBS), maintaining a controlled environment at 37 ◦C with a 5 % concentration of 
carbon dioxide (CO2). Elesclomol (S80741) were purchased from Shanghai yuanye Bio-Technology Co., Ltd. Cupric chloride 
(C106775-1g) was purchased from Aladdin. 

2.10. Cell transfection procedures 

Three small interference RNAs (siRNAs) was designed and synthesized in Jiangsu Genecefe Biotechnology Co., Ltd. The siRNA 
sequences were as follows: siRNA-1 (5′-GACACUUUCUACAUCUUGATT-3′), siRNA-2 (5′-GGCACUGAAGGCACUACAATT-3′), and 

Table 1 
Primers used in this study.  

Primer name Sequence (5′-3′) 

GAPDH-hF TGACAACTTTGGTATCGTGGAAGG 
GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG 
AC023644.1-hF GTGGTAGTCAGGCAATGATTACAG 
AC023644.1-hR CTTGTACTCCGTCAGCGTGA  

Fig. 2. Expression and correlation of cuproptosis-related genes in OV and normal group. Heatmap (A) and boxplot (B) of the expression profiles of 
cuproptosis-related genes in the tumor group and normal group. The transfection efficiency was confirmed by Western blot analysis. (C) Correlation 
analysis of gene expression levels of cuproptosis-related genes in OV. Red represents positive correlation, while green represents negative corre
lation. ns: non-significant; *P＜0.05, **P＜0.01, ***P＜0.001, ****P＜0.0001. 
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siRNA-3 (5′-CCCUGUUGCUGACAGGUUATT-3′). A non-targeting siRNA was employed as the negative control. Transfections were 
carried out using Lipofectamine® 2000 Transfection Reagent (Thermo) in accordance with the manufacturer’s instructions. Cellular 
specimens were collected for subsequent experiments 48 h post-transfection. 

2.11. Reverse transcription-quantitative PCR (RT-qPCR) assay 

Total RNA extraction employed RNAiso Plus (Takara Bio, Inc.). PrimeScript™ RT Master Mix (Takara Bio, Inc.) was used for reverse 
transcription, and SYBR Premix Ex Taq (Takara Bio, Inc.) facilitated RT-qPCR. A LongGene® Real-Time PCR System Q2000B 
(LongGene) was used for qPCR, with GAPDH as a reference gene. Primer sequences are provided in Table 1. 

2.12. Cell counting kit-8 (CCK-8) assay 

Cells were seeded at a density of 1 × 104 per well in a 96-well plate, mixed thoroughly, and incubated overnight. The next day, 
transfection was performed. Six hours post-transfection, the medium was replaced with varying concentrations of Elesclomol-Cu (0 
nM, 20 nM, 40 nM, 60 nM, 80 nM). After 24 h of drug treatment, 10 μl of CCK-8 solution was added to each well. The plates were then 
incubated in the incubator for 1–4 h, and the OD value was measured at 450 nm using a microplate reader (Molecular Devices, LLC). 

2.13. Statistical analysis 

The statistical analysis and data visualization were performed using R (version 4.1.2) (https://www.r-project.org/). Spearman’s 
correlation method was used for correlation analysis. Comparison of parameters between two or more groups was conducted using the 

Fig. 3. Screening of survival-related cuproptosis-associated lncRNAs and analysis of their expression correlation. (A) Network diagram of the 
correlation between cuproptosis-related genes and lncRNAs. Red represents cuproptosis-related genes, while green represents lncRNAs. (B) Iden
tification of survival-related cuproptosis-associated lncRNAs using univariate Cox analysis. (C) Analysis of expression correlation among survival- 
related cuproptosis-associated lncRNAs. Red represents cuproptosis-related genes, while blue represents lncRNAs. *P＜0.05. 

R. Chen et al.                                                                                                                                                                                                           

https://www.r-project.org/


Heliyon 10 (2024) e35004

6

Wilcoxon test. The FDR method was used to correct the P-value for the multiple tests. The P-values were calculated using a two-tailed 
test, and a significance threshold of P < 0.05 was considered statistically significant. 

3. Results 

3.1. Expression patterns of cuproptosis-related genes in OCa 

Obtaining the GSE14407 data set, we found that 9 CRGs showed significant differences in the comparison between the OCa and the 
normal ovarian tissue through gene expression differential analysis (Fig. 2A and B). In addition, the results of co-expression analysis 
showed that the expression of most CRGs was positively correlated, while the expression of CDKN2A and ATP7A was negatively 
correlated (Fig. 2C). 

3.2. Identification and screening of cuproptosis-related lncRNAs 

First, we identified 2329 CuLncs significantly associated with the expression of 16 CRGs in TCGA-OV tumor samples (Fig. 3A). Next, 
we screened 20 CuLncs that were eligible and associated with survival using univariate Cox analysis. Among them, except for 
AC023644.1, which was an unfavorable factor for the survival of OCa patients, the other 19 CuLncs were all associated with good 
survival (Fig. 3B). Furthermore, the correlation analysis results showed that most of the expressions of the 20 CuLncs were positively 

Fig. 4. Expression patterns of cuproptosis-associated lncRNAs in early and late-stage OCa. Boxplot (A) and heatmap (B) of cuproptosis-associated 
lncRNA expression levels were generated for the early-stage and late-stage OCa groups. *P＜0.05, **P＜0.01, ***P＜0.001. 
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correlated with each other (Fig. 3C). 

3.3. Differences in CuLncs expression in early and late stages of OCa 

We divided OCa samples into early group (stage I, II) and late group (III, IV) according to clinical stage. In the comparison of 
expression between the two groups, there were significant differences in 6 CuLncs, including: AC026202.2, AP005205.2, AC015802.4, 

Fig. 5. Expression pattern, survival analysis, and correlation with clinical and pathological parameters of cuproptosis-associated lncRNAs in two 
OCa clusters. (A) Consensus clustering matrix for k = 2. (B) The Kaplan-Meier curves depict the survival rates of two clusters of OV patients. (C) The 
expression pattern of lncRNAs in two clusters is visualized through a heatmap, along with the correlation analysis between lncRNAs and various 
clinical pathological parameters. ***P＜0.001. 
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Fig. 6. Differential expression of cuproptosis-associated genes between the two clusters of OV patients. ns: non-significant; *P＜0.05, **P＜0.01, 
***P＜0.001. 
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Z93930.3, AC108704.1 and AL596214.1 (Fig. 4A). In Fig. 4B, the heatmap shows the different expression patterns of CuLncs between 
early and late groups. 

Identification of cuproptosis subtypes in OCa and comparison of survival and clinicopathological parameters between the two 
subtypes. 

Using the Consensus Cluster Plus package in R, we set k = 2, and finally divided the TCGA-OV samples into cluster 1 and cluster 2 
based on the expression of 20 CuLncs (Fig. 5A). Moreover, survival analysis showed that the survival of OCa patients in cluster 1 was 
significantly worse than that in cluster 2 (Fig. 5B). Based on the cuproptosis subtypes, the clinicopathological parameters of OCa 
patients were analyzed, and the results showed that there were significant differences in ‘Lymphatic invasion’ and ‘Cancer status’ 
(Fig. 5C). 

3.4. Differences in expression of CRGs in cuproptosis subtypes 

In order to explore the expression of CRGs in the two cuproptosis subtypes, we performed differential analysis of CRGs expression. 
The results of gene expression differential analysis showed that there were significant differences in the expression of 7 CRGs in the two 
cuproptosis subtypes (Fig. 6A–O). It was found that the mRNA expression of DLST and SLC31A1 in Cluster 1 subtype was significantly 
higher than that in Cluster 2 subtype, while in Cluster 1 subtype, the mRNA expression level of ATP7B, GCSH, LIAS, LIPT1 and PDHB 
was significantly lower than that in Cluster 2 subtype. Moreover, it was shown in Fig. 7 that the protein levels of CRGs were different in 
the comparison between OCa group and normal ovarian tissue. 

3.5. Analysis of the immune microenvironment based on cuproptosis subtypes 

To investigate the immune microenvironment in two cuproptosis subtypes, we performed immune cell component analysis on the 
TCGA-OV dataset. Our results showed that there was no significant difference in the proportion of most immune cells in the immune 

Fig. 7. Differential protein expression of cuproptosis-related genes in OV and normal ovarian tissues explored by immunohistochemical analysis.  
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microenvironment of the two subtypes, except for NK cells resting and Neutrophils (Fig. 8A). However, the ESTIMATEScore, 
ImmuneScore, and StromalScore of Cluster 1 were significantly higher than those of Cluster 2 (Fig. 8B). 

3.6. Biofunctional analysis based on cuproptosis subtypes 

To further explore the enrichment of KEGG signaling pathways in the 2 cuproptosis subtypes, we performed GSEA. In Fig. 9A, there 
is a difference in gene expression pattern between Cluster 1 and Cluster 2. The enrichment analysis results showed that 146/175 gene 
sets were upregulated in phenotype Cluster 1 and 69 gene sets were significantly enriched at FDR <25 %. In addition, 29/175 gene sets 
were upregulated in phenotype Cluster 2 and 1 gene set was significant at FDR <25 %. The enrichment plots of the top 4 signaling 

Fig. 8. Assessment of tumor immune microenvironment and evaluation of immune cell infiltration level between two clustering groups. (A) 
Infiltration status of 22 immune cells in the two clustering groups. (B) The ESTIMATEScore, ImmuneScore, and StromalScore show differences 
between the two clustering groups. 
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pathways in each subtype, including KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY, KEGG_SPLICEOSOME, KEGG_R
NA_DEGRADATION, etc., were shown in Fig. 9B and C. 

3.7. Construction and validation of the CuLncs prognostic signature 

We developed a prognostic assessment model based on CuLncs. First, we randomly divided all patients into training group (n =
210) and validation group (n = 210) according to the ratio of 1:1. Then, LASSO analysis was used to select the optimal solution, and the 
remaining 11 CuLncs were screened, and the corresponding coefficients were calculated (Fig. 10A and B). Finally, the risk score 
calculation formula of the obtained cuproptosis-related prognostic model is as follows: Risk Score = RBM15-AS1 × − 0.749717956 +
AC026202.2 × − 0.374835344 + AC023644.1 × 0.789732801 + AC011603.2 × − 0.281841658 + AP005205.2 × − 0.156860749 +
AC010336.5 × − 0.081330259 + AC015802.5 × − 0.248389447 + AC024909.1 × − 0.598428759 + AC108704.1 × − 0.327142843 +
AC093817.2 × − 0.079123083 + AC097532.3 × − 0.994617671. According to the risk score, patients were divided into high-risk 
group and low-risk group. In both training and validation groups, Kaplan-Meier curves showed that the survival of the high-risk 
group was worse than that of the low-risk group (Fig. 10C and D). It was shown in Fig. 10E, F that the prognostic model con
structed by 11 CuLncs can accurately predict the survival of OCa patients at 1, 3, and 5 years, both in the training group and in the 
validation group. We found that the 11 CuLncs included in the prognostic model had significantly different expressions between the 
high-risk group and the low-risk group, that is, CuLncs except AC023644.1 showed low expression level in the high-risk group. This 
expression signature was consistent in the training set and in the validation set (Fig. 11A and B). As can be seen from the risk dis
tribution plot, high-risk patients have shorter survival times in both the training and validation groups (Fig. 11C–F). The results of 
univariate and multivariate Cox regression analysis showed that both risk score and age were independent prognostic factors for 
patients with OCa (Fig. 11G–J). 

Fig. 9. Identification of relevant signaling pathways of cuproptosis-related genes by GSEA. (A) Heatmap of the top 50 features for each phenotype in 
two clusters. Top 4 KEGG pathways enrichment in Cluster1 (C) and Cluster2 (D) phenotype. 
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3.8. Clinicopathology analysis based on the risk model 

We grouped OCa patients based on various clinicopathological parameters, and compared the risk values between the groups 
(Fig. 12A). We found that the risk value of Cluster1 was significantly higher than that of Cluster2 (Fig. 12B), the risk value of the high- 
ImmuneScore group was higher than that of the low-ImmuneScore group (Fig. 12C), and the risk value of the early group (stage I-II) is 
lower than the advanced group (stage III-IV) (Fig. 12D). 

3.9. Differences in CRGs expression based on the risk model 

We explored the expression of CRGs in the high-risk group and low-risk group, as shown in Fig. 13A–P. Among them, the ex
pressions of GCSH, LIAS and LIPT1 were significantly different in the comparison between the two groups. 

3.10. Immune infiltration based on the risk model 

In order to further understand the relationship between immune cell infiltration and risk value in the tumor microenvironment, we 
conducted a correlation analysis, and the results showed that Macrophages M2 and Neutrophils were significantly positively correlated 
with riskScore (Fig. 14A and B), while Plasma cells and T cells follicular helper were significantly negatively correlated with riskScore 
(Fig. 14C and D). 

Knocking down AC023644.1 inhibits the viability of OCa cells, but it is not sensitive to cuproptosis inducer. 
Our findings indicate that AC023644.1 is a risk factor for poor prognosis in OCa patients. We hypothesize that AC023644.1 may 

play a role in inhibiting cuproptosis in OCa cells. To test this hypothesis, we first measured the expression levels of AC023644.1 in 
normal ovarian epithelial cells (T29) and ovarian cancer cells (A2780, HEYA8, SKOV3, OVCA433) using RT-qPCR. The results showed 
that, compared to T29 cells, the expression of AC023644.1 was significantly upregulated in A2780, HEYA8, and SKOV3 cells, while it 
was significantly downregulated in OVCA433 cells (Fig. 15A). Subsequently, we selected A2780 and SKOV3 cells, which showed 
notably higher AC023644.1 expression, for further studies. Next, we knocked down AC023644.1 in A2780 and SKOV3 cells using small 
interfering RNA (siRNA) (Fig. 15B). Finally, we constructed a cuproptosis gradient model in ovarian cancer cells using elesclomol, a 

Fig. 10. Construction of an OCa survival prognostic model based on cuproptosis-related lncRNAs. (A, B) Using LASSO regression to converge the 
model, construct a streamlined OV survival prognosis model. Randomly divide the patients in the TCGA-OV cohort into training set (C) and 
validation set (D). Using the constructed survival prognosis prediction model, perform risk scoring for OV patients in both groups, distinguish high- 
risk and low-risk groups by the median value, and conduct survival analysis for each group. The ROC curve presents the AUC values for the 1-year, 
3-year, and 5-year time points observed in both the training set (E) and validation set (F). 
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cuproptosis inducer, and assessed the viability of si-NC and si-AC023644.1 cells. The results demonstrated that elesclomol could 
induce cuproptosis in ovarian cancer cells in a concentration-dependent manner. Knocking down AC023644.1 significantly reduced 
the viability of ovarian cancer cells, but the cells were not sensitive to the cuproptosis inducer (Fig. 15C and D). These results suggest 

Fig. 11. Evaluation of the performance of riskScore in predicting the survival prognosis of patients with OCa. In the training set (A) and validation 
set (B), the lncRNA expression paradigms of the high-risk group and the low-risk group were explored respectively. The distribution of riskScore and 
survival status of OV patients in the training set (C, E) and validation set (D, F). In the training (G, I) and validation sets (H, J), univariate and 
multivariate cox analysis of Age, Stage, Grade, and riskScore. 
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that AC023644.1 may regulate cell viability; however, it remains uncertain whether this regulation involves the cuproptosis mech
anism. Further research is needed to determine the impact of AC023644.1 on cuproptosis in ovarian cancer cells. 

4. Discussion 

In this research, we conducted a comprehensive screening to identify CuLncs, which were utilized to construct a robust prognostic 
prediction model for OCa. Subsequently, this model was rigorously validated to ensure its reliability and accuracy. Additionally, we 
meticulously evaluated the differential expression of CuLncs between the high and low riskScore groups, shedding light on the po
tential molecular mechanisms underlying disease progression. Furthermore, an in-depth analysis of immune infiltration was per
formed, unraveling the intricate interplay between the immune microenvironment and OCa prognosis. These findings contribute 
towards our understanding of OCa pathogenesis and may offer valuable insights for developing personalized therapeutic approaches. 

The categorization of OCa patients into different clusters based on CuLncs revealed distinct risk values, indicating variations in 
clinical outcomes. Cluster 1 displayed significantly higher risk values compared to Cluster 2, suggesting a higher likelihood of disease 
progression and poorer prognosis in the former group. Additionally, the association between higher immune scores and increased risk 
values implies the involvement of immune response in disease severity, with OCa patients having a more robust immune response 
potentially experiencing worse clinical outcomes. The tumor-related immune response mechanisms are extremely complex. Our 
research findings indicate differences in the immune infiltration levels of NK cells resting and Neutrophils between two clusters, which 
may suggest that these two cell types play important roles in certain molecular mechanisms, regulating the OCa tumor microenvi
ronment, and ultimately leading to differences in the survival of OCa patients. According to literature reports, resting NK cells have 

Fig. 12. Comparative analysis of clinical pathological parameters, cuproptosis-related lncRNAs expression level between high-risk and low-risk 
groups. (A) Heatmap of cuproptosis-related lncRNAs in high-risk and low-risk groups. The difference of riskScore between Cluster1 and Cluster2 
groups (B), between high-ImmuneScore and low-ImmuneScore groups (C), and between Stage I-II and Stage III-IV groups (D). 
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been found to possess the capability of directly recognizing freshly isolated human tumor cells, specifically identifying ovarian car
cinoma as a potential target for adoptive immunotherapy based on NK cells [26]. The findings from Lee et al.’s research suggest a link 
between the formation of neutrophil extracellular traps (NETs) and the creation of a conducive omental niche for the implantation of 
OCa cells [27]. This raises the possibility that preventing NET formation could be a viable strategy to inhibit the metastasis of OCa to 
the omentum. A study presented demonstrates that the activation of neutrophil effector functions in the tumor microenvironment 
(TME) through complement-dependent pathways induces a distinct T-cell nonresponsiveness [28]. This nonresponsiveness is separate 
from the established checkpoint pathways typically targeted in immunotherapy. Importantly, the research also identifies specific 
targets that could be utilized for immunotherapy in OCa. These findings shed light on potential strategies to enhance T-cell responses 
and improve the effectiveness of immunotherapeutic approaches in OCa. 

We utilized LASSO regression analysis to converge the typing model constructed based on CuLncs, thereby avoiding overfitting. 
Ultimately, we obtained an OCa prognosis risk scoring model based on 11 key CuLncs. The model accurately predicts the survival rates 
of OCa patients at 1, 3, and 5 years by calculating the riskScore, which is beneficial for the survival assessment of OCa patients. 
However, the mechanisms and functions of these 11 CuLncs in cuproptosis and the occurrence and progression of OCa have not been 
reported or understood yet. In the present study, we preliminarily explored the effect of AC023644.1 on the viability of OCa cells and 
found that knocking down AC023644.1 led to a decrease in OCa cell viability. This indicates that AC023644.1 can regulate the 
proliferation of OCa cells. Survival analysis results suggest that AC023644.1 is a risk factor for the survival of OCa patients. The 
potential mechanism might be that high levels of AC023644.1 expression inhibit the death of OCa cells. However, it remains unclear 
whether part of this effect is achieved through the regulation of the cuproptosis process, which requires further in-depth investigation. 
Interestingly, in OCa cells with AC023644.1 knocked down, the concentration-dependent cuproptosis induced by elesclomol 

Fig. 13. Differential expression of cuproptosis-related genes between high-risk and low-risk groups.  
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disappeared. We speculate that knocking down AC023644.1 may affect the sensitivity of OCa cells to elesclomol. The specific 
mechanism requires further investigation. 

The examination of CRGs expression patterns in the high-risk and low-risk groups revealed significant differences in the expression 
levels of GCSH, LIAS, and LIPT1. A recent study found that the GCSH is overexpressed in breast cancer cells and tissue, while a shorter 
transcript variant (Tv*) is amplified in healthy breast cells but decreased in breast cancer samples. The balance between the two 
variants plays a crucial role in cancer cell viability, with Tv* overexpression leading to decreased metabolic activity and necrosis, while 
the protein-coding transcript variant 1 (Tv1) overexpression increases cellular vitality and mitochondrial glycine decarboxylation 
activity [29]. This indicates that GCSH regulation is important in determining cancer cell viability. The study by Cai et al. demon
strated that LIAS plays a crucial role in cancer progression [30]. They conducted comprehensive pan-cancer analyses using bioin
formatics platforms such as TIMER2.0, GEPIA2.0, and HPA to investigate the expression levels and prognostic values of LIAS. The 
findings showed that high LIAS expression is associated with a favorable prognosis in kidney renal clear cell carcinoma, rectum 
adenocarcinoma, breast cancer, and OCa patients, while high expression is linked to an unfavorable prognosis in lung cancer patients. 
Additionally, the study revealed that LIAS expression is implicated in hypoxia, angiogenesis, DNA repair, and can serve as a predictor 
of immunotherapy efficacy in cancer patients. Yan et al. discovered that suppressing the expression of the LIPT1 gene inhibited the 
proliferation and invasion of hepatoma cells [31]. The findings suggest that LIPT1 could be a promising target for therapeutic 
intervention in hepatocellular carcinoma. These genes might play crucial roles in OCa development and progression, making them 
potential prognostic markers and therapeutic targets. Further investigation is necessary to elucidate the specific mechanisms through 
which these genes contribute to disease pathogenesis and cuproptosis. Additionally, these prognostic markers need to be evaluated in 
independent cohorts to assess their reliability and potential clinical utility. 

The highly immunosuppressive TME and the low mutational burden of OCa present significant challenges to effective treatment 
[32]. Inhibitory cells within the TME, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages 
(TAMs), play a crucial role in promoting tumor growth through various suppressive mechanisms. In our study, the correlation analysis 
between immune cell infiltration and riskScore provided valuable insights into the immune landscape of OCa. Macrophages M2 and 

Fig. 14. Correlation analysis of immune cell infiltration degree and riskScore. Scatter plot of correlation analysis between Plasma cells (A), 
Macrophages M2 (B), T cells follicular helper (C), Neutrophils (D) and riskScore. 
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Neutrophils exhibited a significant positive correlation with riskScore, suggesting their association with tumor progression and im
mune evasion. Ovarian cancer’s resistance to existing immunotherapies is largely influenced by the TME and the presence of 
immunosuppressive cells, which prevent T cell infiltration and dampen anti-tumor responses [33]. As a result, strategies focused on 
depleting or reprogramming TAMs to boost T cell activity have become a critical area of research for improving the efficacy of cancer 
immunotherapy [34]. Conversely, Plasma cells and T cells follicular helper (Tfh) displayed a significant negative correlation with 
riskScore, indicating a potential protective role against OCa. Previous research indicates that higher levels of Tfh cells in solid organ 
tumors not derived from lymphocytes frequently correlate with improved prognosis [35–37]. Enhancing or increasing the proportion 
of Tfh cells in the TME may represent a promising therapeutic approach for treating OCa. These findings highlight the complexity of 
the tumor microenvironment and the crucial impact of immune cell subsets on disease progression. 

Our study has several limitations. For instance, we did not conduct cell experiments to validate the key immune cell subtypes within 
the TME. Additionally, while we acknowledge that CuLncs signatures have been investigated in prior studies, our research offers 
distinct contributions in several aspects. Firstly, we screened CuLncs based on 16 cuproptosis-related genes, resulting in a more 
comprehensive set of candidate genes compared to previous studies, such as the one conducted by Liu et al. [6]. This approach allowed 
us to identify a broader and potentially more significant array of CuLncs. Furthermore, we examined CuLncs-based cluster types, which 
provides an additional layer of analysis to our study. This exploration of cluster types could offer deeper insights into the functional 
roles and interactions of CuLncs in the context of cuproptosis. Further research is warranted to validate our findings in independent 
cohorts and gain a comprehensive understanding of the functional role of the identified CuLncs and immune cell subsets in OCa. 
Exploring novel immunotherapeutic approaches, particularly those aimed at modulating the TME or enhancing T cell responses, holds 
promise for overcoming current treatment limitations. These avenues of research are crucial for addressing gaps in knowledge and 
ultimately enhancing patient outcomes in OCa. Collectively, our results provide a foundation for future studies aiming to improve 
diagnosis, prognosis, and personalized treatment approaches for OCa patients. 
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Fig. 15. Knockdown of AC023644.1 inhibits ovarian cancer cell viability and confers insensitivity to cuproptosis inducer. (A) Expression levels of 
AC023644.1 in normal ovarian epithelial cells (T29) and ovarian cancer cells (A2780, HEYA8, SKOV3, OVCA433). (B) Knockdown efficiency of 
siRNA detected by RT-qPCR. Elesclomol induces cuproptosis in a concentration-dependent manner in A2780 cells (C) and SKOV3 cells (D), while 
knockdown of AC023644.1 renders these cells insensitive to cuproptosis inducer. 
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