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Simple Summary: Noncoding RNAs (ncRNAs) regulate a variety of fundamental life processes
such as development, physiology, metabolism and circadian rhythmicity. RNA-sequencing (RNA-
seq) technology has facilitated the sequencing of the whole transcriptome, thereby capturing and
quantifying the dynamism of transcriptome-wide RNA expression profiles. However, much remains
unrevealed in the huge noncoding RNA datasets that require further bioinformatic analysis. In
this study, we applied six bioinformatic tools to investigate coding potentials of approximately
21,000 lncRNAs. A total of 313 lncRNAs are predicted to be coded by all the six tools. Our findings
provide insights into the regulatory roles of lncRNAs and set the stage for the functional investigation
of these lncRNAs and their encoded micropeptides.

Abstract: Recent studies have demonstrated that numerous long noncoding RNAs (ncRNAs having
more than 200 nucleotide base pairs (lncRNAs)) actually encode functional micropeptides, which
likely represents the next regulatory biology frontier. Thus, identification of coding lncRNAs from
ever-increasing lncRNA databases would be a bioinformatic challenge. Here we employed the
Coding Potential Alignment Tool (CPAT), Coding Potential Calculator 2 (CPC2), LGC web server,
Coding-Non-Coding Identifying Tool (CNIT), RNAsamba, and MicroPeptide identification tool
(MiPepid) to analyze approximately 21,000 zebrafish lncRNAs and computationally to identify
2730–6676 zebrafish lncRNAs with high coding potentials, including 313 coding lncRNAs predicted
by all the six bioinformatic tools. We also compared the sensitivity and specificity of these six bioin-
formatic tools for identifying lncRNAs with coding potentials and summarized their strengths and
weaknesses. These predicted zebrafish coding lncRNAs set the stage for further experimental studies.

Keywords: lncRNAs; coding probabilities; bioinformatics; zebrafish

1. Introduction

The classical view of the central dogma of molecular biology suggests that DNA
makes RNA, and RNA makes proteins. The messenger RNAs (mRNAs) code for proteins
by conveying genetic information from the DNA. Subsequently, mRNAs are translated into
a polymer of amino acids, the building blocks of a protein. However, many exceptions to
this central dogma have been revealed in recent years [1,2]. Only approximately 1% of the
whole length of a transcriptome encodes for proteins, and much of its nonprotein-coding
region encodes various types of functional RNAs [3]. Among them, the noncoding RNAs
longer than 200 nucleotide base pairs are termed long-noncoding RNAs (lncRNAs) [4].
This somewhat arbitrary limit distinguishes lncRNAs from the small noncoding RNAs
(sRNAs) [5]. Although lncRNAs do not code for proteins, they play regulatory roles
in important biological processes, such as immune response [6,7], cellular growth and
development [8].

Intriguingly, technological advancements such as mass spectrometry and ribosome
profiling (Ribo-seq) have confirmed that an increasing number of noncoding RNAs (ncR-
NAs) actually encode functional micropeptides [9–12]. For example, a recent study [13]
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used ribosome profiling to identify several micropeptides outside of canonical coding
sequences (CDS). This study found hundreds of non-canonical CDSs involved in phe-
notypic responses and cellular growth. Specifically, many ncRNAs act like proteins to
regulate biochemical reactions, and some are suitable to act as scaffolds for molecular
interactions [14]. Numerous lncRNAs contain short open-reading frames (sORFs) [15],
which can encode micropeptides involved in biologically significant processes such as
cellular division and cell signaling [16]. Recent studies found a 90-residue polypeptide
encoded by a sORF containing lncRNA LINC00961 [17]. The lncRNA LINC00961-encoded
SPAR (Small regulatory polypeptide of amino acid response) is involved in regulating
mammalian target rapamycin complex 1 (mTORC1) and muscle regeneration [18], and in
regulating endothelial cell function [15]. In the latter case, LINC00961 and its encoded
SPAR, two molecules resulting from the same gene locus, appear to play opposing roles in
angiogenesis [15]. Another lncRNA, LINC00908, was confirmed to encode ASRPS (a small
regulatory peptide of STAT3), a 60–amino acid-long peptide, which inhibits angiogenesis
in triple-negative breast cancer (TNBC) cells [19,20]. Zebrafish Toddler (also known as
Apela/Elabela/Ende), a lncRNA-encoded micropeptide, promotes cell movement during
gastrulation by activating APJ/Apelin receptor signaling [21]. Thus, identification and
characterization of lncRNA-encoded micropeptides represents the next regulatory biology
frontier [14,20,22,23].

Further, genomic studies have indicated that lncRNAs are involved in regulating ge-
nomic transcription [22], human diseases [23], epigenetic and gene regulatory functions [24].
These observations have inspired the genomic researchers to explore the regulatory func-
tions of noncoding genes at the systems level. Rapid development of high-throughput
sequencing technology has led to the identification of a huge number of lncRNAs [25],
which has tremendously transformed our knowledge of genomic interactions involving
ncRNAs. While the wet-lab experiments consume a significant amount of time to obtain
solid research results, analyzing the huge amount of sequencing data also requires vast
computational resources. With the rapid growth of computing power, it is desirable to
integrate computational techniques with experimental observations to enhance the quality
of research outcomes.

Despite recent progress in predicting the functions of non-coding RNA genes, our
understanding of the computational identification of coding lncRNAs is rather far from
complete. In particular, distinguishing coding and noncoding RNAs remains a challenge
due to the lack of information for conserved regions, whole-genome sequences and under-
lying computational difficulties. Bioinformatic analysis driven by high computing power
provides a viable approach to classify noncoding RNA genes and expedite the functional
genomic research. For example, a recent study [26] reviewed several bioinformatics tools
(such as CPC2, PORTRAIT, CNCI, CPAT) and highlighted their strengths and weaknesses.
However, to date, none of the tools had been applied to predict the micropeptide encoding
probability of a large dataset of zebrafish lncRNAs. Here we employed six bioinformatic
tools—-Coding Potential Alignment Tool (CPAT), Coding Potential Calculator 2 (CPC2),
LGC web server, Coding-Non-Coding Identifying Tool (CNIT), RNAsamba, and MicroPep-
tide identification tool (MiPepid—-to analyze approximately 21,000 zebrafish lncRNAs
and computationally identify 2730–6676 with high encoding potential. Of these, 313 coding
lncRNAs were predicted by all six bioinformatic tools.

2. Materials and Methods

In this study, we employed an integrative approach that combined both computa-
tional and data-driven modelling approaches, which was a novel framework for investi-
gating noncoding genes. In particular, we applied six state-of-the-art bioinformatic suites:
CPAT [27], CPC2 [28,29], LGC web server [30], CNIT, RNAsamba [31], and MiPepid [32]
(Table 1) to classify more than 21,000 lncRNAs collected from the ZFLNC [33], Ensembl [34],
NONCODE [35], and zflncRNApedia [36] databases.
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Table 1. List of computational tools for noncoding RNA analysis (accessed on 4 February 2021).

Software Suite Journals
Publishing the Software Year Applied Species Input Output URLs

Coding Potential Alignment
Tool (CPAT) [27] Nucleic Acids Research 2013

Homo sapiens, Mus musculus,
Danio rerio, Drosophila

melanogaster
BED, FASTA

Coding Probability,
ORF size, Fickett Score, Hexamer

Score,
Coding Label

http://lilab.research.bcm.edu/

Coding Potential Calculator
2 (CPC2) [28,29] Nucleic Acids Research 2017

Homo sapiens, Mus musculus,
Xenopus laevis, Danio rerio

and Drosophila melanogaster
FASTA, BED or GTF

Peptide length,
Fickett score, Pi,
ORF integrity,

coding probability,
coding label

http://cpc2.gao-lab.org/
http:

//cpc2.gao-lab.org/batch.php

LGC web server [30] Bioinformatics 2019 Cross-species manner from
plants to mammals FASTA, BED, GTF,

ORF Length, Coding
Potential Score for the transcript,

Coding/Non-coding Label,
Probability

of ORF for coding sequence (pc),

https:
//bigd.big.ac.cn/lgc/calculator

Coding-Non-Coding
Identifying Tool (CNIT) [37] Nucleic Acids Research 2019 37 species (11 animal

species, 26 plant species) FASTA, GTF Gene classification
(coding or noncoding)

http:
//cnit.noncode.org/CNIT/

http://cnit.noncode.org/
CNIT/batch

RNAsamba [31] NAR Genomics and
Bioinformatics 2019

Mus musculus, Danio rerio,
Drosophila melanogaster,

Caenorhabditis elegans and
Arabidopsis thaliana

FASTA, FA and FNA Coding score and classification https://rnasamba.lge.ibi.
unicamp.br/

MicroPeptide identification
tool (MiPepid) [32]

BMC Bioinformatics
volume 2019

Mus musculus, Danio rerio,
Saccharomyces cerevisiae, E.

coli and Arabidopsis thaliana
FASTA https://github.com/MindAI/

MiPepid

http://lilab.research.bcm.edu/
http://cpc2.gao-lab.org/
http://cpc2.gao-lab.org/batch.php
http://cpc2.gao-lab.org/batch.php
https://bigd.big.ac.cn/lgc/calculator
https://bigd.big.ac.cn/lgc/calculator
http://cnit.noncode.org/CNIT/
http://cnit.noncode.org/CNIT/
http://cnit.noncode.org/CNIT/batch
http://cnit.noncode.org/CNIT/batch
https://rnasamba.lge.ibi.unicamp.br/
https://rnasamba.lge.ibi.unicamp.br/
https://github.com/MindAI/MiPepid
https://github.com/MindAI/MiPepid
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2.1. Rationale for Selection of the Six Bioinformatic Tools

We selected these six tools for the following reasons. CPAT is an alignment-free, robust,
logistic-regression model that can integrate prior knowledge of DNA sequences. The tool is
applicable to four species: humans, mice, zebrafish and fruit flies. Furthermore, it predicts
various useful genomic measures, such as RNA size, ORF size, and coding probability,
Fickett score and Hexamer score. CPC2 is a support vector machine (SVM)-based species-
neutral fast RNA classifying tool that provides genomic annotation information, such
as ORF length, ORF position, peptide length, Fickett score, and coding probability. The
LGC web server classifies lncRNAs by establishing feature relationships between guanine–
cytosine (GC) content and ORF length, so the server can classify genomic sequences in a
cross-species manner without depending on any prior knowledge. The prediction output
of the web server includes the GC content of the longest ORF, coding potential score,
coding label, probability of ORF in a coding sequence, probability of ORF in a non-coding
sequence, stop-codon probability for a coding sequence, and stop-codon probability in
a coding sequence. CNIT predicts coding probabilities by analyzing the composition of
adjoining nucleotide triplets (ANTs) in the sequences. The tool is effective for predicting the
coding labels of incomplete transcripts and sense-antisense transcript pairs. Further, CNIT
can assess the coding potential of lncRNAs from 37 species: 11 animal and 26 plant. The
output of CNIT includes both the coding label and coding score. RNAsamba analyzes novel
genomic sequences using a neural network-based model framework to predict coding
potential. The tool efficiently predicts small ORFs, which is otherwise often identified with
time-consuming biological experiments such as ribosome profiling. Moreover, RNAsamba
can predict the coding potentials of incomplete transcripts, such as partial-length ORFs
and UTR sequences. MiPepid is an alignment-free, machine-learning tool specifically
developed to identify micropeptides. The tool predicts coding potential using a logistic
regression with 4-mer features. For each lncRNA sequence, MiPepid can identify all the
sORFs 3–303 nucleotides long, and predict the coding potential for each identified sORF.
Further, except for MiPepid, the other five tools can be accessed on the web. Overall,
we believe that these six tools enable a very comprehensive analysis of lncRNAs.

2.2. Robustness of the Bioinformatic Tools

In order to statistically measure the validity of the predictions made by bioinformatic
tools to identify coding lncRNAs, we assessed the gold-standard sensitivity and specificity
measures [38] for the tools. The sensitivity measure assessed the ability of a tool to predict
lncRNA coding potentials correctly, whereas specificity measured the ability of a tool to
identify lncRNAs without a coding potential. Since the previous study [27], had already
assessed to CPAT have a sensitivity and specificity of 0.96, and 0.97, respectively (with very
limited scope for further improvement) we used it as a benchmark tool and assessed the
sensitivity and specificity of the rest of the five tools in this study. The statistical measures
were calculated as mentioned below:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)

where TP is the number of true positives, TN is the number of true negatives, FN is the
number of false negative, and FP is the number of false positives. Specifically, for each of
the 21,128 lncRNAs, TP represented the coding potentials when both the CPAT and the tool
being compared predicted a lncRNA as coding; FN when the CPAT predicted a lncRNA as
coding and the tool being compared predicted a lncRNA as noncoding; TN represented the
coding potentials when both the CPAT and the tool being compared predicted a lncRNA
as noncoding; and FP when the CPAT predicted a lncRNA as noncoding and the tool being
compared predicted a lncRNA as coding.
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3. Results

Identification of coding lncRNAs from a 21,000 zebrafish lncRNA database with
6 bioinformatic tools.

3.1. Coding Potential Alignment Tool (CPAT)

Predicting the coding probability of a genomic sequence is a binary decision-making
problem. An interesting tool to predict the coding probability is the alignment-free Coding
Potential Alignment Tool (CPAT) [27]. CPAT is suitable for assessing the coding probabili-
ties of unknown lncRNA sequences, the functions of which are still being investigated. As
long as the sequencing information of an lncRNA is available, the CPAT can be used to
examine its coding probability. The tool accepts standard FASTA-format input sequences,
analyzes them based on trained models, and outputs the coding probabilities. The software
also provides other statistical measures for sequences, such as RNA size, ORF size, Fick-
ett Score core and Hexamer Score. The combined feature set has a sensitivity and specificity
of 0.96 and 0.97, respectively. Such a high degree of prediction accuracy for the CPAT in
discriminating a coding from noncoding sequence was achieved using a logistic regression
model. The CPAT not only outperformed the CPC [28] (assessed in the following subsec-
tion), but it was four times faster. Moreover, due to very high sensitivity and specificity,
there was only a little room for further improvement. A recent study [39] found that the
CPAT distinguished between coding and noncoding mammalian transcripts in the most
accurate manner. We applied the CPAT to predict the coding probabilities for the zebrafish
lncRNAs from the ZFLNC lncRNAs database [33]. Out of 21,128 lncRNAs, 4386 sequences
were predicted to have a very high coding potential (Supplementary Tables S1 and S7).
However, the tool only accepted input files smaller than 10 MB. Hence, we divided the
21,128 lncRNA input sequences in multiple files. Overall, the CPAT took less than 3 min to
estimate the coding probabilities for all 21,128 lncRNAs. Supplementary Table S1 shows a
sample output of the CPAT for the ZFLNC input sequences. Taken together, the CPAT is a
robust, fast, and convenient tool for investigating the novel transcript sequences.

3.2. Coding Potential Calculator 2 (CPC2)

The Coding Potential Calculator 1 (CPC1) [28] tool was one of the earliest software
suites to distinguish between coding and noncoding RNAs. Essentially, the tool predicted
the protein-coding potential of a given cDNA/RNA transcript. It classified the FASTA
RNA sequences using the support-vector machine and six biological features (such as the
Open Reading Frame) of a given input transcript. Based on a tenfold cross-validation,
CPC1 was assessed to classify the RNAs with a very high level of accuracy and speed. Its
sensitivity and specificity were 0.99 and 0.74, respectively. However, classification of the
RNA sequences based on the ORF often met with several limitations. For example, the ORF
length requires assembly of the full-length transcript. Moreover, since a novel-assembled
RNA transcript may be still be incomplete, it could be challenging to use CPC1 for RNA
genes that have incomplete transcripts. Subsequently, CPC1 was thoroughly revised and
updated to become Coding Potential Calculator 2 (CPC2) [29]. Compared to CPC1, it
can distinguish between coding and noncoding sequences with an improved accuracy at
∼1000 × faster speed and can accept both individual and batch input sequences. Moreover,
the underlying model of CPC2 is species-neutral. Hence, it is suitable for assessing the
coding potential of the rapidly emerging demands of non-model organism sequences. We
used CPC2 to distinguish the coding probabilities of 21,128 zebrafish lncRNAs. Out of the
21,128 sequences, 2370 sequences were predicted to be “coding” sequences (Supplementary
Tables S2 and S8). It was also able to classify the 21,128 lncRNAs with a sensitivity of 0.5709
and a specificity of 0.9865. Further, CPC2 predicted other genomic measures such as the
putative peptide length, isoelectric point (pI), and Fickett test code score. For example,
CPC2 gave sequence ZFLNCT00001 a Fickett score of 0.44008 with a complete putative
ORF 101 AA, and a pI of 10.9258422852, which classified it as a coding sequence with
coding probability 0.5. However, for sequence ZFLNCT00002, CPC2 predicted a Fickett
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score of 0.32995 with a complete putative ORF 54 AA, and a pI of 4.20184326172, which
classified it as a noncoding sequence with a coding probability of 0.0513828. Although
CPC2 also required input files constrained to a maximum of 10,000 sequences and a file
size smaller than 50 Mb, all input files containing 21,128 lncRNAs were processed in less
than 2 min. Supplementary Table S2 shows a sample output of CPC2 for ZFLNC sequences.
Overall, the species-neutral model of CPC2 makes it useful for investigating the poorly
annotated novel sequences from a variety of organisms. The CPC2 web server provides
online visualization of the results and features of the sequences, such as Fickett score
and ORF length. Further, the improved accuracy and mobile-friendly version of CPC2
makes it suitable for investigating ever-growing sequences from the non-model organisms.
However, despite CPC2’s higher specificity (0.9865) for novel zebrafish lncRNAs, the lower
sensitivity (0.5709) of the tool suggests that it may require further calibration to improve
prediction sensitivity.

3.3. LGC Web Server

The LGC web server [30] was developed to distinguish the lncRNAs and protein
coding genes in a cross-species manner covering various species from plants to mammals
without any prior knowledge. The tool assesses the relationship between open reading
frame length and guanine–cytosine (GC) content to predict the coding potentials of the
given genomic sequences. The server accepts FASTA, BED and GTF format input sequences
and predicts multiple genomic features:

1. ORF Length (length of the longest ORF),
2. GC Content (GC content of the longest ORF),
3. Coding Potential Score for the transcript (protein-coding RNA if greater than 0 or

ncRNA if smaller than 0),
4. Coding Label (Coding and Non-coding),
5. The probability of ORF for coding sequence (pc),
6. The probability of ORF for non-coding sequence (pnc),
7. Stop-codon probability for coding sequence (fc), and
8. Stop-codon probability for non-coding sequence (fnc).

The proposed LGS algorithm outperformed existing methods for accuracy, sensitivity,
and specificity. Moreover, this is the first tool to accurately differentiate noncoding and
coding sequences based on a feature relationship between ORF length and GC content.
The main advantage of the LGC web server lies in its ability to process and classify
sequences from a diverse set of species without the need for any prior knowledge or
training data.

When we applied the LGC web server to ZFLNC sequences, 3156 lncRNA sequences
were predicted to have very high coding abilities (Supplementary Tables S3 and S9). The
server was able to classify the 21,128 lncRNAs with a sensitivity of 0.4591 and a specificity
of 0.9317. Further, the LGC web server was able to process the whole file, a feature better
than other tools that imposed file size restrictions. However, the server took nearly 10 min
to process the whole set of lncRNA sequences. Supplementary Table S3 shows the LGC
web server’s sample output of coding potential score calculation.

Despite the tool’s higher specificity in classifying lncRNAs without coding potential,
there remains a higher scope for improving its sensitivity for the novel zebrafish lncRNAs.
Compared to the CPAT sequence analysis (Supplementary Table S1), the LGC also accu-
rately predicted the ORF lengths for the zebrafish noncoding RNAs. However, there are
significant differences regarding coding potentials and coding labels. The main reason
behind these differences is that CPAT can specifically process zebrafish sequences. In fact,
LGC accepts species-specific sequence inputs. Moreover, despite achieving higher accuracy
(>90%), it is not yet established if the LGC web server could be applied to investigate the
small noncoding RNAs.
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3.4. Coding–Non-Coding Identifying Tool (CNIT)

Coding–Non-Coding Index (CNCI) software [40] was developed to classify incomplete
transcripts and sense-antisense pairs, obtained from whole-genome sequencing data, into
coding and noncoding transcripts. The inputs to CNCI are the transcripts derived from
the whole-transcriptome sequencing. Subsequently, CNCI analyzes adjoining nucleotide
triplets using sequence-specific information to make the sequence classification without
prior knowledge of a transcript annotation. Since the CNCI tool uses only sequence-
specific features, it can be used to classify novel genomic sequences from a variety of
species without the availability of whole-genome sequences. Although CNCI is good
for classifying incomplete transcripts (even in a cross-species manner) and performed
well with vertebrates, its performance with plants and invertebrates was relatively poor.
Moreover, CNCI only analyzes lncRNAs longer than 200 nt, so it is not yet applicable
to miRNAs.

To improve computational performance and include more species, CNCI was up-
graded with the sequence-intrinsic, features-based Coding–Non-Coding Identifying Tool
(CNIT) [37]. Essentially, the CNIT profiles adjoining nucleotide triplets (ANTs) to dif-
ferentiate between coding and noncoding sequences. The upgraded software is able to
functionally classify novel lncRNA sequences with improved accuracy. Moreover, the CNIT
runs approximately 200 times faster than the CNCI software and is applicable to sequences
from a higher number of species, including 27 plants. In particular, the mobile-friendly
web-sever version of the software makes it suitable for predicting the coding potential of a
small number of sequences from a variety of species that lack whole-genome sequences.

We applied the CNIT to classify the ZFLNC sequences. It predicted a total of 5651 se-
quences to be “coding” (Supplementary Tables S4 and S10), and classified the 21,128 lncR-
NAs with a relatively higher sensitivity of 0.7218 and an acceptable specificity of 0.8515.
Further, the CNIT could only process FASTA files smaller than 400 KB. This required the
division of the 21,128 lncRNAs into over 100 files, and the CNIT took over two hours to
complete the coding ability prediction for all of them. Apart from the slow processing
speed, the major issue with the CNIT is the overall lower sensitivity of the classification of
the zebrafish lncRNAs.

3.5. RNAsamba

RNAsamba [31] is a novel neural network-based framework for predicting the coding
potential of genomic sequences by assessing the ORF and other sequencing information.
The performance of RNAsamba was evaluated from the on-transcripts from a diverse
set of five organisms, including human, M. musculus, D. rerio, D. melanogaster and Saccha-
romyces cerevisiae. RNAsamba outperformed all the tools examined in the study, including
the CPAT and CPC2. Moreover, RNAsamba was able to predict coding potentials of in-
complete transcript sequences, such as partial-length ORFs and UTR sequences. In fact,
RNAsamba could computationally predict open reading frames (sORF) without depending
on time-consuming ribosome profiling experiments. Overall, RNAsamba is suitable for
classifying novel genomic sequences with enhanced accuracy while improving prediction
time. When we applied RNAsamba to the 21,128 lncRNAs, it took just about 2 min to
assign a coding score and label to all sequences. A total of 6676 sequences were classified
to coding lncRNAs (Supplementary Tables S5 and S11). RNAsamba outperformed the
other five state-of-the-art bioinformatic tools by classifying the 21,128 lncRNAs with an
acceptable sensitivity of 0.8780 and an acceptable specificity of 0.8321. However, despite
fast calculation and improved prediction efficiency, the tool only supports FASTA, FA and
FNA file extensions. Furthermore, the input files are restricted to 50 MB and can only
contain up to 50,000 sequences.

Since RNAsamba had the best sensitivity and specificity for classifying the zebrafish
lncRNAs, we applied it to an investigation of the zebrafish Toddler (NCBI RefSeq transcript
identifier NM_001297547.1). Toddler contains nucleotide sequence ORF that encodes a
58 amino acid-long conserved micropeptide (Supplementary Table S12) with a confirmed
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predicted signal sequence [21]. We wanted to validate if RNAsamba could accurately
classify the Toddler ORF. Interestingly, RNAsamba classified the ORF as “coding” with
a coding probability of 0.65645. This analysis further supported our assessment that
RNAsamba can reliably classify zebrafish lncRNAs.

3.6. MicroPeptide Identification Tool (MiPepid)

Micropeptides are the short open reading frames (sORF) that encode small proteins
containing approximately 100 amino acids. Due to technical challenges [41], sORF-encoded
micropeptides have been traditionally excluded from genomic studies [42]. Recent studies
have reported an increasing number of micropeptides involved in a diverse set of biolog-
ical functions. However, we still lack sophisticated tools to find micropeptide-encoding
potentials of the novel sequences. The MiPepid tool [32] was designed to assess mi-
cropeptides encoding potentials of DNA sequences by investigating the presence of short
open reading frames. The tool analyses DNA sequences, finds all the sORF, and predicts
micropeptide-encoding probability for each sORF. When we applied MiPepid to investigate
sORF-encoded micropeptides in ZFLNC sequences, the tool identified 186,504 micropep-
tides in 4676 lncRNAs (Supplementary Table S13). As many as 126,175 micropeptides were
reported to have coding potential. Some of these micropeptides were encoded by only
6 nucleotides, whereas others were encoded by as many as 303. We classified a particular
lncRNAs sequence as coding if it contained at least one 100-nucleotide-long sORF with
a “coding” label. Overall, out of 4676 lncRNAs, 3786 were classified as coding lncRNAs
(Supplementary Tables S6 and S14). MiPepid was able to classify the 21,128 lncRNAs with
the lowest sensitivity (0.1931) and an acceptable specificity (0.8244). Although it is suitable
for predicting sORF-encoded micropeptides, MiPepid can only predict coding potential for
sequences having a nucleotide length between 6 and 303. In fact, MiPepid cannot process
RNA sequences. Furthermore, letters such as N, R, Y, are not supported in the current
version of MiPepid, and as such it needs to be upgraded to investigate ORF sequences
longer than 303.

3.7. Robustness of the Prediction of Bioinformatic Tools

Table 2 shows the sensitivity and specificity for the 5 bioinformatic tools, in comparison
with the CPAT. The study revealed that all 5 demonstrated acceptable specificity; however,
only RNAsamba had very high sensitivity (0.8780) and specificity (0.8312). Hence, in
addition to the CPAT, RNAsamba is a better tool for identifying zebrafish coding lncRNAs
than other four.

Table 2. Sensitivity and specificity of the computational tools *.

Robustness CPC2 LGC CNIT RNAsamba MiPepid

Sensitivity 0.5709 0.4591 0.7218 0.8780 0.1931
Specificity 0.9865 0.9317 0.8515 0.8312 0.8244

* In the Table, CPC2, Coding Potential Calculator 2; LGC, LGC web server; CNIT, Coding-Non-Coding Identifying
Tool; RNAsamba; and MiPepid, MicroPeptide identification tool.

4. Discussion

Over the past few decades, the investigation and understanding of noncoding RNAs
have drawn unprecedented attention from the scientific research community for their roles
in gene regulation [8] and in a variety of human diseases such as cancers [19,20]. Differenti-
ating coding and noncoding RNA transcripts is often constrained by time-consuming
biological research and computational limitations. However, the emergence of high-
throughput sequencing has facilitated a deeper investigation into noncoding RNAs. Here,
we compared several recent software suites to analyze, classify, and annotate the noncod-
ing RNAs by combining sequencing data and computational mechanisms. We calculated
the coding potentials of over 21,000 zebrafish lncRNAs using the CPAT, CPC2, LGC web
server, the CNIT, RNAsamba, and MiPepid and revealed 4386, 2730, 3156, 5651, 6676 and
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3786 lncRNAs with very high coding potentials, respectively. In particular, we found
313 lncRNAs predicted to be “coding” according to all six bioinformatic tools (Figure 1,
and Supplementary Table S15).

Figure 1. Visualization of the number of coding lncRNAs, and box-plot statistics (Supplementary Table S17) of RNA size,
ORF size Fickett Score, and Hexamer score for 1, 929, 313, 93, and 21 sequences predicted to be coding by the corresponding
bioinformatic tools. Out of the 21,128 lncRNAs examined in this study, 313 (green) were predicted (Supplementary Table S16)
to be coding by all 6 tools (A). The box-plots depict the upper whisker (represented by the bubbles on the top), 3rd quartile,
median, 1st quartile, and lower whisker (represented by the bubbles at the bottom) for the given number of data points (B).

In fact, as many as 1121 lncRNAs were predicted to be coding by five tools (excluding
MiPepid) (Figure 1). The main reason behind the poor overlap with other five is MiPepid’s
restriction of ORF size between 6 and 303 nucleotides. However, the rest of the five
tools exploited the sequence-intrinsic features to provide a relatively higher number of
overlapping predictions. Of the six tools, the CPC2 was the fastest for predicting the coding
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abilities of the novel lncRNAs. The CNIT was the slowest for classifying the RNA sequence,
taking more than two hours to complete the computation. Although all tools accepted a
batch job submission, only the LGC web server was able to process the 21,128 lncRNAs in
a single job. The remaining five tools required input sequences split over multiple files.

Although the six tools were suitable for analyzing genomic sequences, they were far
from perfect. For example, apart from the LCG web server, all the others restricted the
size of input files, typically from 10 to 50 MB. Such limitations will impose challenges
to process sequencing files of larger size. The tools need to be upgraded to consider
species-specific information. Further, the LCG web server assesses coding potentials
without considering species-specific information. The CPAT supports only a limited
number of species, namely Human (hg19, GRCh37), Mouse (NCBI Build 37/mm9), Mouse
(GRCm38/mm10), Fly (dm3, BDGP Release 5), and Zebrafish (Zv9/danRer7). The CNIT is
able to support the maximum number of 37 species. In fact, only RNAsamba was able to
correctly classify the Toddler ORF as “coding”. As such, all these bioinformatics tools will
need to be upgraded as sequencing information for the new species become available.

Such functional classification can help annotate lncRNAs to reveal their unknown
functions, which should show how RNAs interact with other coding RNAs. Integrative
research approaches, which combines both computational and data-driven modelling,
represent a novel paradigm for investigating noncoding RNAs at the system level. These
computational analyses can help uncover novel coding RNAs that may play roles in gene
regulation or the pathogenesis of various human diseases. We believe, as more data and
computational tools become available, the integrative framework will be suitable to further
elucidate crucial lncRNA functions.

5. Conclusions

The regulatory roles of lncRNAs and particularly lncRNA-encoded micropeptides
have not yet fully explored. It is critically important to develop and implement bioinfor-
matic tools for identifying coding lncRNAs. Here, we evaluated six bioinformatic programs
for computing coding probabilities of noncoding RNAs, and discussed their strengths
and shortcomings as well as their possible improvements. We also employed these six
bioinformatic tools to identify several thousands of zebrafish coding lncRNAs, which
should set the stage for their functional characterization of them.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biology10050371/s1, Table S1. Sample output from the analysis of zebrafish lncRNAs with
CPAT; Table S2. Sample output from the analysis of zebrafish lncRNAs with CPC2; Table S3. Sample
output from the analysis of novel ZFLNC lncRNAs with LGC web server; Table S4. Sample output
from the analysis of zebrafish lncRNAs with CNIT; Table S5. Sample output from the analysis of
zebrafish lncRNAs with RNAsamba; Table S6. Sample output from the analysis of zebrafish lncRNAs
with MiPepid; Table S7. Coding probabilities of 21, 218 lncRNAs predicted by CPAT; Table S8.
Coding probabilities of 21, 218 lncRNAs predicted by CPC2; Table S9. Coding probabilities of 21, 218
lncRNAs predicted by LGC Web Server.; Table S10. Coding probabilities of 21, 218 lncRNAs predicted
by CNIT; Table S11. Coding probabilities of 21, 218 lncRNAs predicted by RNAsamba; Table S12.
Analysis of zebrafish Toddler sequence; Table S13. Coding probabilities of 21, 218 lncRNAs predicted
by MiPepid; Table S14. Coding probabilities of 21, 218 lncRNAs predicted by MiPepid; Table S15.
Comparisons of coding potentials of 21, 218 lncRNAs predicted by all the six tools; Table S16. 313
lncRNAs predicted to be coding by all the six tools; Table S17. Box plot statistics of the selected
groups of coding lncRNAs predicted by these bioinformatic tools.
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