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Abstract: The production and utilization of concrete and concrete-based products have drastically
increased with the surge of construction activities over the last decade, especially in countries such as
China and India. Consequently, this has resulted in a corresponding increase in the energy used for
the production of ready-mixed concrete. One approach to reduce the cost of concrete manufacturing
is to reduce the energy required for the manufacturing process. The main hypothesis of this study is
that the power required for mixing the concrete can be reduced through the use of mineral admixtures
in the mix design. Optimization of energy consumption during mixing using admixtures in concrete
manufacturing is the predominant focus of this article. To achieve this objective, power consumption
data were measured and analyzed throughout the concrete mixing process. The power consumption
curve is the only source to distinguish the behavior of the different materials used in the concrete in a
closed chamber. In the current research, fly ash and ground granulated blast-furnace slag (GGBS)
were used as mineral admixtures to produce ready-mixed concrete. The experimental study focused
on the influence of GGBS and fly ash on power consumption during concrete mixing. The results
indicated that the use of a higher content of GGBS is more beneficial in comparison to the use of fly
ash in the mix due to the lower mixing time required to achieve homogeneity in the mixing process.
It was found that the amount of energy required for mixing is directly related to the mixing time for
the mix to achieve homogeneity.

Keywords: ready-mixed concrete; energy consumption; mixing; ground granulated blast-furnace
slag (GGBS); fly ash; self-compacting concrete

1. Introduction

Energy consumption is a major issue that is faced globally in the current scenario.
In all manufacturing industries, identifying and controlling the processes that consume
more energy is a key element in optimizing energy consumption, which will save energy
and increase cost-efficiency. Before applying all cost-saving methods to a single factory, all
cost-saving methods should be carefully analyzed, because all manufacturing processes
require different potential energy, resulting in different energy consumption and material
savings [1–3]. Through the use of efficient materials and effective energy improvement
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technologies, the production cost of concrete can be reduced, thereby making the concrete
manufacturing industry more successful [4]. An excellent energy-saving plan will reduce
annual energy costs by 3 to 10% [1]. The use of energy-saving methods in the manufac-
turing industry can also reduce waste generated in the production process [3,5,6]. Energy
guidelines are provided to identify technical deficiencies that consume more energy. These
guidelines provide cost-effective practices that reduce the energy consumption of any prod-
uct in the manufacturing process [7]. In addition, the task of all concrete manufacturers is
to reduce energy costs without compromising product quality [8,9].

Cazacliu [10] explained the new method of concrete mixing and related energy con-
sumption. This method explains the changes in the concrete mixture during the successive
stages of concrete mixing. According to him, when concrete mixing is conducted in a closed
chamber, power consumption is the only tool to identify the transition phase of the concrete
mixture. The author has pointed out that the power consumption value has not been com-
pared with the flow characteristics. Three mixer measurement methods were developed:
mixing power, Orbiter (rotating microwave sensor), and Viscoprobe TM (the measurement
of resistance on a spherical probe passing through the mixture) [11]. The research was based
on on the relationship between the evolution of the microstructure of concrete components
and the mixing time. Juez et al. [12] applied image analysis technology to monitor the
mixing of concrete and observe the texture of the concrete. At the same time, the power
consumption during the concrete mixing process was also recorded and correlated with the
texture of the concrete with the captured images [13–16]. Chopin et al. [17] explained the
increase in the homogenization time of superplasticizer concrete and its impact on concrete
production. The mixing time for the SCC and HPC is increased due to the homogeneity
factor. This article discusses the ability to control uniformity through power consumption
measurements. Daumann et al. reported concrete mixing in single-shaft and double-shaft
mixers on a laboratory scale [18,19]. The author explains the energy required for the ho-
mogenization of concrete in the mixer that can be used for different applications, including
3D-printing [20,21]. Certain characteristics of concrete mixtures will change in relation
to one other, such as w/c ratio, mixing time, flow characteristics, aggregate particle size
distribution curve, and compressive strength [18]. The application of energy to achieve
the homogenization of different mixtures is variable. Only when all the mixtures are of
the same homogeneity can the energy required for different concretes be compared. The
author uses imaging measurements to determine the homogeneity of the concrete mixture.
It can be seen from the above references that the influence of admixtures on concrete mix-
ing and power consumption has not been explored. With this in mind, this article will
focus on the impact of admixtures on power consumption during concrete mixing, thereby
reducing energy consumption in concrete production in ready-mixed concrete plants. The
workability test is also conducted for comparison with the power consumption curve. The
power consumption during the mixing process also depends on the flow of the concrete;
that is, the rheology of the concrete [22]. Tattersall [23] stated that increasing the water
content is the final decision of workers to improve the workability of concrete. To date, the
relationship between the power consumption curve and the workability of the concrete
has not been concentrated on. From the above literature, it is observed that the power
consumption required for the mixing of the concrete has not been studied for the ready-mix
concrete. The impact of the admixtures, slump value, and water/powder ratio (w/p) on
power consumption during mixing has also not been explored.

1.1. Importance of Mixing

Mixing is the most important stage in concrete manufacturing and is one that con-
sumes the most energy. A ready-mixed concrete factory produces different types of concrete.
Mixing plays a vital role in distinguishing different types of concrete. Nowadays, the man-
ufacturing of SCC and HPC has increased due to emerging high-rise buildings and large
structures. The power consumption curve obtained during the mixing of concrete gives a
better understanding of the microstructural evolution in the concrete mixture [10]. Mixing
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consists of the evolution of a wet granular state to a granular microstructure suspension [11].
The mixing process is a key element in achieving good quality concrete [18,24,25]. In the
current scenario, adequate mixing is not carried out by the concrete manufacturer. There is
a lack of knowledge concerning the new materials used in concrete manufacturing. The
increase in HPC and SCC productivity provides an opportunity to use new materials in the
concrete production industry [12,26,27]. Concrete manufacturers should pay attention to
the characteristics and performance of new materials and use appropriate mixing times
to obtain high-quality concrete. A longer mixing time is applied in order to properly
homogenize the concrete mixture, which affects the mixing efficiency. The elimination of
inhomogeneity in the concrete mixture is a result of the mixing efficiency, and thus the
mixing of concrete is the important phase for obtaining a quality outcome. Improper mixing
leads to weak concrete and structural failure, and it has been common in the construction
industry since HPC and SCC came into existence [28,29]. The production of HPC and SCC
has given a higher priority to introducing new material into manufacturing concrete; hence,
increasing the mixing time should be avoided in order to ensure the quality of the concrete.
In the manufacturing of HPC and SCC, concrete manufactures are asked to respect the
mixing time of concrete [30,31].

1.2. Mixing Mechanism

Mixing is an important operation that eliminates the inhomogeneity in a mixture.
ASTM 305 is commonly used all around the world for mixing procedures [32]. Two impor-
tant factors that can occur during the mixing operation are intensive mixing and extensive
mixing [33]. Intensive mixing reduces agglomeration of the particles held by surface tension.
The agglomeration can be reduced when the strength of the inter-particle bond is subject to
higher hydrodynamic stresses [34]. During intensive mixing, fine powder is converted into
a viscous fluid. In extensive mixing, deformation of the fluid takes place, which increases
the interface area between the particles, and hence the inhomogeneity is reduced. Shear
history is important for all fresh concrete because the binder-rich SCC exhibits thixotropic
and structural breakdown characteristics. In the mixing of fresh concrete, the mixing energy
is closely related to the shear rate [35].

1.3. Production and Energy Consumption of Ready-Mixed Concrete

In high-speed construction, concrete production requires more attention because there
is no optimal time for concrete mixing [36]. In the past 20 years, ready-mixed concrete plants
have produced a large quantity of SCC and HPC. The problems encountered in concrete
mixing are mainly concentrated in ready-mixed concrete plants [37]. Measuring power
consumption during mixing is important because more than 200 m3 of concrete can be
manufactured per day in one ready-mixed concrete plant. In the future, this may increase
due to the development of urbanization. In the manufacture of ready-mixed concrete,
ingredients are added at specific intervals. Cement, fine aggregate, coarse aggregate, fly
ash, GGBS, and water are added one by one into the mixing chamber. As the ingredients are
loaded into the mixing chamber, power consumption will increase. The maximum power
consumption is obtained when all components are loaded. The first peak is obtained when
the mixture of dry ingredients reaches homogeneity in the dry state. After adding water,
when a homogeneous mixture is obtained in a wet state, the second peak is reached [10,11].
After the homogenization is obtained, the power consumption is gradually reduced, and
then the concrete is discharged.

1.4. The Relation between Power Consumption and the Mixing of Concrete

Power consumption is an important factor in determining the different stages of
concrete mixing in the mixing chamber [10]. The power consumption curve is the only tool
to determine whether homogeneity is achieved. The homogeneity of concrete varies from
one mixture to another [21]. This leads to differences in concrete energy consumption. The
power consumption during mixing is divided into different stages. The first stage starts
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from an empty condition and proceeds to the loading condition. The power consumption
will gradually increase during the subsequent loading. In the second stage, the ingredients
will mix thoroughly in a dry state, followed by the addition of water, where the moisture is
absorbed by the powder particles [10]. At first, the power consumption does not increase
because it does not form any liquid bridge. In the third stage, because a liquid bridge
is formed between the powder particles, the saturation rate increases, and the gradual
mixing will cause a sudden increase in power consumption. Further mixing disintegrates
the granular particles to form a paste. At this stage, power consumption will reach its
peak. In the fourth stage, homogeneity of the mixture can be achieved by continuously
mixing the ingredients, and the concrete can reach full saturation. The starting point of the
fourth stage will show higher power consumption, which will gradually decrease once a
homogenous mixture is obtained [21–24].

The gaps identified from the above literatures are as follows: The power consumption
required for the mixing of the concrete has not been studied for the ready-mix concrete.
The impact of the admixtures, workability, and density of concrete on power consumption
during mixing has not been explored.

2. Materials and Methods

In this experimental investigation, energy consumption was measured during the
mixing of concrete manufactured in a ready-mixed concrete plant. The mixing motor was
connected to the power meter, where the voltage and current consumed during mixing
were recorded. The power was calculated by the formula P = V × I. In the ready-mixed
concrete plant, 1 m3 of concrete was manufactured for each batch. The total quantity
of concrete required for one truck may vary from 6 to 8 m3, and it takes approximately
1 min to mix 1 m3 of concrete in the mixing unit. Three grades of concrete, M25, M30,
and M40 were studied. From each grade, four to five mixes were produced by replacing
fly ash and GGBS in different percentage, and its energy consumption during mixing
was measured and the energy curve plotted. The raw materials used were cement, fine
aggregate, coarse aggregate, fly ash, GGBS, and water. All raw materials were stored
in different storage locations in the RMC plant, as shown in Figures 1 and 2, and when
the mixing operation began, they were transported to the mixing chamber by a conveyor.
Two types of high-efficiency water-reducing agents were used: PCE-based (Polycarboxylic
ethers), a medium-range water-reducing agent, and SNF-based (Sulfonated naphthalene
formaldehyde), a high-range water-reducing agent [37–40].

Figure 1. Storage of coarse aggregate and fine aggregate in the RMC plant.

2.1. Composition of the Concrete Ingredients

Grade 53 ordinary Portland cement meeting IS 269-2015 (Indian Standard) was used to
produce concrete in the RMC plant. Fly ash, conforming to IS 3812-2003, was obtained from
the Ennore thermal power plant in India, and was used as a mineral admixture. Another
mineral admixture, GGBS, conforming to IS 16714:2018, was also used. Table 1 lists the
chemical composition of the binding material and Table 2 gives the physical properties of
the binding materials.
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Figure 2. Storage of cement, fly ash, and GGBS in silos.

Table 1. Chemical composition of the used materials (expressed in %).

Components SiO2 Al2O3 CaO MgO Fe2O3 SO3 S Cl Na2O K2O TiO2 Mn2O3

Cement 23.6 6.2 62.3 2.5 3.1 1.9 - 0.03 - - - -
Fly ash 51.5 18.8 5.7 1.9 17.1 2.5 0.5 - 0.4 0.6 0.75 0.12
GGBS 32.5 11.2 41.3 10.6 2.1 0.5 - - - 0.32 0.6 0.35

Table 2. Physical properties of the used materials.

Properties Cement GGBS Fly Ash

Initial setting time (min) 30 90 80
Specific gravity 3.15 2.9 2.7
Normal consistency (%) 29 - -
Final setting time (min) 510 550 580
Specific surface area, m2/kg 300 375 390

M-sand and C-sand were used as fine aggregate and coarse aggregate of size 12 mm
and 20 mm, respectively, both the aggregates conforming to IS 383-2016. They were
obtained from the locally available market. Both types satisfy the requirements of the
Indian standard that complies with grading zone II. Crushed granite stone was used as
coarse aggregate with sizes of 12 mm and 20 mm. This was obtained from the local dealers
of Chennai, and it satisfies the Indian standard requirement. Table 3 shows the physical
properties of the aggregates.

Table 3. Properties of aggregates.

Properties Sand #1
(Sand-C)

Sand #2
(Sand-M)

Gravel #1
(12 mm)

Gravel #2
(20 mm)

Specific gravity 2.6 2.7 2.6 2.6
Water absorption 0.9 1.7 1 1
Fineness modulus 3.3 3.4 5.2 6.5

The two chemical admixtures used were Polycarboxylate ether (PCE) and Sulphonate
naphthalene formaldehyde (SNF), obtained from CBS Chemicals, and these were used as
retarding Superplasticizers. Table 4 shows the chemical properties of the aggregates.

The mix design was calculated according to the Indian standard method by adopting
mix code IS 10262-2019. The batching and mixing of the concrete were carried out according
to the code IS 4925-2004. The entire manufacturing was carried out in a ready-mixed
concrete plant. The Mix compositions and specifications are shown in Tables 5 and 6.
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Table 4. Chemical admixture properties.

Parameter SNF PCE

Chemical name Sulphonated naphthalene formaldehyde Polycarboxylic Ether

Appearance Reddish-brown liquid Light-brown liquid

pH 6 6

Relative density 1.11 1.07

Chloride content 0.2% 0.1%

Type Retarding Superplasticizer Retarding Superplasticizer

Table 5. Concrete Mix Compositions.

Components Cement C-Sand M-Sand Fly Ash GGBS Water Superplasticizer

Mix Grade kg/m3 Quantity (kg) Type

A1 M25 330 432 322 70 0 167 2.6 PCE
A2 M25 200 400 400 0 150 168 2.1 PCE
A3 M25 200 458 305 0 150 165 2.8 SNF
A4 M25 200 438 292 50 150 165 2.4 PCE
B1 M30 240 360 360 0 140 167 2.28 PCE
B2 M30 200 444 290 50 170 165 2.52 PCE
B3 M30 260 382 382 0 140 165 2.6 PCE
B4 M30 260 382 382 0 140 165 2.8 PCE
B5 M30 260 382 382 0 140 165 2.8 SNF
C1 M40 250 350 350 0 200 164 2.25 PCE
C2 M40 250 350 350 0 200 164 2.25 SNF
C3 M40 250 350 350 0 200 164 2.25 PCE
C4 M40 410 363 363 80 0 165 2.45 PCE
C5 M40 360 349 349 100 0 168 2.76 PCE
C6 M40 280 350 350 0 200 165 2.88 PCE

Table 6. Concrete Mix specifications.

Mix Water/Powder Total Quantity (m3) Batch Quantity (m3) Duration of Mixing (Min)

A1 0.413 6 1 7.48
A2 0.48 6 1 8.15
A3 0.471 6 1 8.25
A4 0.413 6 1 5.25
B1 0.439 4 1 8.55
B2 0.393 6 1 8.4
B3 0.413 6 1 9.23
B4 0.413 6 1 10.4
B5 0.413 6 1 8.15
C1 0.364 5 1 6.34
C2 0.364 7 1 9.53
C3 0.364 4 1 5.15
C4 0.337 6 1 7.42
C5 0.365 5 1 6.08
C6 0.344 6 1 8.27

2.2. Power Meter Reading

The entire power meter readings during the mixing process were recorded, as shown
in Figures 3 and 4. A 100 amp watt-meter was connected to the mixer machine. Power
consumption was noted down for every second to plot the power curve for the con-
crete manufactured.
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Figure 3. Power meter shows the reading of voltage and current during the mixing operation.

Figure 4. Recording the power meter reading during the mixing operation.

The curve was plotted against time versus power consumption. Each peak represents
the mixing of 1 m3 of concrete, i.e., one batch. The total number of peaks represents the total
quantity of the concrete manufactured. It can be seen from the curve that the initial reading
starts at zero, and as the material is loaded, the power consumption will increase [41].
Energy consumption is calculated by the average method based on the readings obtained
during concrete mixing. Figures 5–7 show the power consumption curves of M25, M30,
and M40.

2.3. Measurement of Slump Value

The slump test is used to measure the workability of concrete. Workability tests are
usually performed on all batches of concrete in the ready-mixed concrete plant to check
the uniformity of the different batches of concrete manufactured. The slump test will show
different values for the same concrete manufactured in the morning and afternoon. The
amount of a chemical admixture depends on the slump value of the first batch of concrete
produced. After the concrete is discharged from the mixer, the freshly cast concrete is
directly composed from the outlet of the truck mixer to perform a slump test. The entire
test is carried out in the ready-mixed concrete plant. Furthermore, this research has been
extended to correlate power consumption with a slump value, which has not been carried
out previously for ready-mixed concrete. The measurement of the slump value is shown in
Figure 8.
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Figure 5. Energy consumption curve for M25 grade concrete for Mix A1, A2, A3, and A4. C—Cement,
F—Fly ash, G—GGBS, SP—Superplasticizer, (expressed in %).

Figure 6. Cont.
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Figure 6. Energy consumption curve for M30 grade concrete for Mix B1, B2, B3, B4, and B5. C—
Cement, F—Fly ash, G—GGBS, SP—Superplasticizer (expressed in %).

Figure 7. Energy consumption curve for M40 grade concrete for Mix C1, C2, C3, C4, C5, and C6.
C—Cement, F—Fly ash, G—GGBS, SP—Superplasticizer (expressed in %).
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Figure 8. Measuring the slump value.

3. Results and Discussion

The power consumption for the various grades of concrete and the slump value for
the corresponding mixes are shown in Table 7. The reason for the increase or decrease in
the power consumption for the various mixes is explained in Figures 9–12. The slump
value obtained for the various mixes is compared to the power consumption to find the
workability of the concrete and its impact on power consumption.

Table 7. The power consumption and slump value measured for different mixes.

Mix Power Consumption (kW) Slump (mm)

A1 3.547 200
A2 3.595 160
A3 3.568 190
A4 3.436 160
B1 3.042 170
B2 3.659 150
B3 3.638 160
B4 3.675 170
B5 3.568 170
C1 3.744 180
C2 3.477 180
C3 3.536 170
C4 3.685 190
C5 4.086 160
C6 3.426 180

Figure 9. Power consumption versus density of concrete.
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It can be seen from Figure 9 that the power consumed by the high-density concrete
A1 is almost the same as that of the lower density mixtures A2 and A3. The lower density
mixture A4 consumes the least power. In M30 concrete, the density of the mixture of B2,
B3, and B4 does not increase or decrease much, even though the density of B2 is very high.
In B1, for the minimum density concrete, power consumption is significantly reduced.
In the M40 low-density concrete, C1 and C5 indicate higher energy consumption, while
higher-density concrete C6 indicates the minimum energy consumption.

From the above observation, we can clearly understand that density is an important
factor in power consumption, but it is not the only factor that controls power consumption.
The M25- and M30-grade concrete shows similar characteristics in power consumption, i.e.,
lower density mix consumes minimum power and higher mix consumes maximum power.
In higher-grade concrete (M40), the results show the opposite characteristics, namely,
high-density concrete consumes the least power, while low-density concrete consumes
the most power [42,43], though this does depends on the material used for the concrete
mix [44–46]. In high-grade concrete, the powder content is usually higher than that of
low-grade concrete, as shown in Figure 11. The dosage of the chemical mixture and water
content is another important factor in increasing or reducing power consumption. The
powder (cement + fly ash + GGBS) in the concrete and the water and chemical admixtures
used are important factors that can increase or decrease power consumption during the
concrete mixing process, as shown in Figures 10–12.

Figure 10. Power consumption versus slump value for (a) M25 grade concrete, (b) M30 grade
concrete, (c) M40 grade concrete.

In Figure 10a, it can be seen that the power consumption decreases with the increase of
the slump value, which is obvious in A1, A3, and A4. Mix A2 has a lower slump value and
consumes more power during mixing, while A1, A3, and A4 have a higher slump value
and consume the least power.
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In Figure 10b, similar to the previous one, the mix B2 obtains the lower slump value
and consumes the maximum power. In contrast, the slump of the mixtures B1, B3, B4, and
B5 is higher, and the power consumed during the mixing process is minimal. Similarly, in
Figure 10c, C5 reduces slump and consumes maximum power during mixing. The other
mixes, C1, C2, C3, and C6, have a higher slump and consume the least power.

Figure 11. Power consumption versus total powder content (GGBS + fly ash + cement), GGBS, cement
content, and fly ash.

The mixtures C1 and C2 have similar compositions and slump values, but the power
consumption of C2 is abridged. This reduction may be due to the use of SNF superplas-
ticizer. The composition of the mixtures B4, B5, A2, and A3 are similar, but the purpose
of the water-reducing agent is different. SNF is used as a chemical mixture in A3 and B5,
which is further explained in Figure 12 below. Certain mixtures (such as A4, B1, and C6)
are unique and show very low power consumption. This may be due to the availability
of the powder content in the mixture, and therefore requires further inspection, which is
explained in the comparison between the w/p ratio and the power consumption.

Figure 11 explains the effect of powder content on power consumption. In M25
concrete, the power consumed by A2 is very high, and it consists of the powder content
in the combination of cement and GGBS. Mixture A4 consumes the least power and
contains a higher content of cement, fly ash, and GGBS. In M30 concrete, the minimum
power is consumed by B1, which is composed of cement and GGBS. Mixture B2, which
is a combination of cement, fly ash, and GGBS, consumes the maximum power. In M40
concrete, the minimum power is consumed by mixture C6, which includes cement and
GGBS. Mixture C5 consumes the maximum power, and is composed of the powder content
of cement and fly ash.

The amalgamation of powder content for each concrete has a different effect on power
consumption. In most cases, the combination of cement and fly ash consumes more power
during the mixing process, while the combination of cement and GGBS consumes the
least power [21,26,47,48]. When observing these three grades of concrete, it can be seen
that the combination of powder content is another factor that affects power consumption.
The molecular structure of the powder enhances the smooth mixing of the concrete in
the fresh state [49]. Smooth mixing and rough mixing will cause differences in power
consumption [50]. The powder is mixed with water and superplasticizer to form granules.
These pastes will bind fine and coarse aggregates, causing wear on the surface of the mixing
drum. The molecular structure of the paste is the main factor in reducing the inter-particle
wear between the components and the wear on the sidewall of the mixing drum [51].
Therefore, Figure 12A–C further explains the behavior of powder and water in order to
provide a clear understanding of the energy consumption of concrete during mixing.
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Figure 12. Power consumption versus w/p ratio for (A) M25 grade concrete, (B) M30 grade,
(C) M40 grade concrete. C—Cement, F—Fly ash, G—GGBS, SP—Superplasticizer. A3, B5, and

C5, —SNF is used and for other mixes, —PCE is used.

In Figure 12A, A1 and A4 show the minimum power consumption as the w/p ratio
decreases. The power consumption increases as the w/p ratio increases. When comparing
these two mixtures, A1 and A4, with similar w/p ratios, it can be seen that the combination
of powders is an important criterion for increasing or reducing power consumption. In
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A1, the combination of cement and fly ash consumes more power than A4 (composed
of a combination of cement and GGBS). The composition of the mixtures A2 and A3 is
similar, but the dosage and type of the water-reducing agents are different. In A4, SNF
superplasticizer is used, which has the lowest power consumption. In Figure 12B, when
cement and GGBS are combined, B1 consumes the lowest power and has a very high
w/p ratio. The mixture B2 consumes more power for low w/p ratio with a combination
of cement, fly ash, and GGBS. In a similar mix of B4 and B5, B5 has a smaller power
consumption than B4.

Among C1, C2, and C3, which have similar compositions but differ in the type
and dosage of superplasticizer, C2, which contains SNF as a superplasticizer, consumes
minimum power during mixing. With the combination of fly ash and cement, the w/p
ratio increases and mixture C5 consumes the maximum power. Of the mixtures C4 and
C6, mixture C4, consisting of cement and fly ash, consumes the maximum power, while
mixture C6, composed of cement and GGBS, consumes the minimum power.

The enlargement of the particle size is called granulation, and it depends on the powder
used in the mixing process [49,51,52]. Spherical particles and well-compacted particles
reduce the duration of the mixing operation. In the shear mixture, the formation of granules
is a very sensitive phenomenon that controls the mixing operation. In high-shear mixtures,
the characteristics of the powder content and the formation of granules both have an impact
on the power consumption during the mixing operation. The amount of binder also controls
the mixing operation and reduces power consumption. The cohesive force involved in
the agglomeration also causes an impact on power consumption [53,54]. Cohesive force is
caused by the liquid bridge between the solid particles and relies on the surface tension of
the granulation liquid. The force required to separate the agglomerates, which are achieved
by the coalescence of many primary particles, will always be higher than the force required
for the nucleation of the primary particles. The addition of viscous material can reduce the
separating force of the liquid bridge [54–57]. In this study, granules consisting of fly ash
and GGBS are responsible for the increase or decrease in power consumption, respectively.
The well-defined spherical shape of GGBS forms granules, which can decrease friction
during the mixing operation and therefore decrease power consumption.

4. Conclusions

The change in power consumption is primarily a result of the different materials
included to the concrete mixture. The mineral admixtures used in concrete have different
chemical and physical properties. As a result, all materials act differently. Identifying the
materials that can minimize energy consumption and using them in concrete production
can reduce the energy required for the manufacturing process.

Energy optimization in all areas is the ultimate goal in the protection of our natural
resources. It can be seen from the above results that the maximum use of powder content
has an impact on the energy consumption, thereby achieving the homogeneity of the
concrete during the mixing process. However, the following conclusions were drawn based
on the major findings of this study:

– A maximum fly ash content of 22% increases the power consumption by 19.27–20.28%.
Inversely, a minimum fly ash content of 16–18% decreases the power consumption by
1.3–9.83%. A GGBS content of 35–44% increases the power consumption by 3.8–20.8%.

– For the slump value, 16–18% of fly ash increases the value by 12.5–25%, and hence
there is a decrease in the power consumption. A fly ash content of 22% decreases
the slump by 11.8 to 15.8%, and there is a corresponding increase in the power
consumption by 19.27 to 20.28%. There is an increase in the slump value of 6.7–16.8%
for 35–44% GGBS content.

– It is obvious from the findings that the maximum use of fly ash will consume more
energy to achieve homogeneity and increase the energy required for concrete production.
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– For concrete containing fly ash, its curve profile, which is visible in the energy con-
sumption curve, rises and falls unevenly due to the formation of granules when fly
ash and GGBS are mixed with water.

– The quality of the mixing depends upon the degree of homogeneity attained at the
end. The homogeneity obtained depends on several factors, such as the properties of
single particles, the properties of bulk particles, operating conditions, and mix design.

– It was found that an increase or decrease in water content may also lead to an increase
or decrease in power consumption. The texture of the aggregate and the mineral
admixtures added to the concrete can cause internal abrasion on the surface of the
mixing drum.

– Aggregate and mineral admixture wear and particle collisions are other factors leading
to increased power consumption. The mixer drum has difficulty blending certain
materials because hard particles prevent blending and overcome the torque, so the
drum consumes excess power in order to rotate. This could be one of the key reasons
for the difference in power depletion when using different mineral admixtures.
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