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Abstract

We sequenced maxicircles from T. cruzi strains representative of the species evolutionary

diversity by using long-read sequencing, which allowed us to uncollapse their repetitive regions,

finding that their real lengths range from 35 to 50 kb. T. cruzi maxicircles have a common archi-

tecture composed of four regions: coding region (CR), AT-rich region, short (SR) and long

repeats (LR). Distribution of genes, both in order and in strand orientation are conserved, being

the main differences the presence of deletions affecting genes coding for NADH dehydroge-

nase subunits, reinforcing biochemical findings that indicate that complex I is not functional in

T. cruzi. Moreover, the presence of complete minicircles into maxicircles of some strains lead

us to think about the origin of minicircles. Finally, a careful phylogenetic analysis was conducted

using coding regions of maxicircles from up to 29 strains, and 1108 single copy nuclear genes

from all of the DTUs, clearly establishing that taxonomically T. cruzi is a complex of species

composed by group 1 that contains clades A (TcI), B (TcIII) and D (TcIV), and group 2 (1 and 2

do not coincide with groups I and II described decades ago) containing clade C (TcII), being all

hybrid strains of the BC type. Three variants of maxicircles exist in T. cruzi: a, b and c, in corre-

spondence with clades A, B, and C from mitochondrial phylogenies. While A and C carry maxi-

circles a and c respectively, both clades B and D carry b maxicircle variant; hybrid strains also

carry the b- variant. We then propose a new nomenclature that is self-descriptive and makes

use of both the phylogenetic relationships and the maxicircle variants present in T. cruzi.

Introduction

As their name states, kinetoplastids are characterized by harboring the kinetoplast, a single

branched mitochondria with an intricate organization of its own DNA, called kinetoplast

DNA (kDNA). kDNA is a complex network of thousands of catenated circular DNAs of two
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Dı́az-Viraqué F, Souza RDCMD, et al. (2021)

Maxicircle architecture and evolutionary insights

into Trypanosoma cruzi complex. PLoS Negl Trop

Dis 15(8): e0009719. https://doi.org/10.1371/

journal.pntd.0009719

Editor: Andrew Paul Jackson, University of

Liverpool, UNITED KINGDOM

Received: May 25, 2021

Accepted: August 10, 2021

Published: August 26, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pntd.0009719

Copyright: © 2021 Berná et al. This is an open
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types, the minicircles and the maxicircles [1,2]. Maxicircles are equivalent to the mitochondrial

genome of other eukaryotes, whereas minicircles are much shorter (seldom longer than 2 kb)

and encode the guide RNAs (gRNAs) needed for editing most of the maxicircle transcripts

[1,2]. During the editing, insertions and deletions of uridine residues at specific sites occur on

target ARNs post-transcriptionally in order to obtain mature transcripts [3–5]. The complete

genome of Trypanosoma cruzi maxicircles was first published in 2006 [6], in a comparative

analyses of CLBrener and Esmeraldo strains, whose maxicircle sizes were estimated to be of

22Kb and 28Kb respectively, but a collapsed zone of repetitive sequences prevented their com-

plete assembly. Recently, on a deep analysis of maxicircle divergent regions, Gerasimov et al.

were able to "decompress" repetitive regions in trypanosomatids by using long reads [7].

Although similar at the taxonomic and structural level, trypanosomatids have very different

lifestyles. In vertebrates, while Leishmania spp. infects cells belonging to the mononuclear

phagocytic system, T. brucei remains extracellular, and T. cruzi is able to invade almost any

kind of nucleated cells [8]. Their transmission vectors (phlebotomes, Tsetse flies and triato-

mines respectively) are evolutionarily very distant, so even intuitively one can anticipate that

these parasites will use very different biological strategies to survive. In that context, species

and genus are clearly defined in Leishmania spp., for which a good correlation between species

and clinical manifestations exists [9], and similarly, T. brucei taxonomy is well defined in those

causing sleeping sickness in humans (T. b. gambiense and T. b. rhodesiense) [9]. However, the

case of T. cruzi speciation remains still unclear. A few decades ago, two main clades of T. cruzi
were described (I and II) based on biological and biochemical criteria, as well as molecular

biology methods [10,11]. Subsequently, the use of sequences from genes and intergenic regions

allowed the construction of gene phylogenies clearly showing that T. cruzi is composed of

three major lineages which were called A, B and C, and that the distances between them were

as large as that between L. major and L. mexicana [12]. This analysis introduced the concept of

T. cruzi as a “species complex”instead of a single species. The three main clades were later con-

firmed by Machado and Ayala [13] that also described a fourth clade (D), and the presence of

hybrid B/C strains. Afterwards, several analyses reinforced the view that the evolutionary rela-

tionships among T. cruzi “strains” cannot be reduced to a two groups scenario, proposing

more complex relationships. This was accompanied by a change in the nomenclature, between

letters and Roman numerals: the initial groups I and II were reclassified as I and IIa to IIe [14],

and later on the six groups were numbered TcI to TcVI, and called “discrete typing uni-

ts”(DTUs, [15,16]), where TcV and TcVI correspond to the hybrid lineages derived from hap-

lotypes TcII (C) and TcIII (B). In addition it was postulated that bat-derived T. cruzi
constitutes a seventh DTU [17]. Although in the last decade the “ABCD”denomination fell

into oblivion, probably due to the high number of descriptive papers attempting to correlate

DTUs to infected hosts, geographical areas, clinical manifestations, among others, the presence

of three main evolutionary lineages was recently "rediscovered" in the form of a third muske-

teer [18], showing very similar results to those described ten years before [12,13].

In this work we obtained high quality assemblies of maxicircle genomes from the six DTUs

of T. cruzi, including the resolution of repetitive regions, which allowed us in the first place to

determine the precise architecture of maxicircles and its variations, and ensure a better knowl-

edge and understanding of the evolution of T. cruzi.

Results

Complete maxicircle genomes of the six DTUs

For maxicircle genome analysis six strains were selected, one from each DTU: Dm28c (TcI), Y

(TcII), MT3663 (TcIII), JoseJulio (TcIV), BolFc10A (TcV) and TCC (TcVI). The DTU
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assignments of each of these strains were confirmed by multilocus PCR targeting the inter-

genic region of spliced leader genes (SL-IR), the 24Sα subunit ribosomal DNA (rDNA 24Sα)

and the A10 fragments, as described by Burgos et al.[19] (S1 Fig). Using long reads from Pac-

Bio and Nanopore and post-corrected with Illumina reads, each maxicircle was assembled into

a single circular contig, their sizes ranging from ~35Kb to ~50Kb (Table 1). Long read

sequencing allowed us to determine that the maxicircles sequences of the six strains analyzed

shared organization and compositional structure. We could identify four clearly defined

regions conserved among them: the coding region (CR), two repetitive regions -the short (SR)

and the long (LR) repeats- and an AT-rich region (<1kb) located between the coding region

and the short repeat cluster (Figs 1 and 2A).

Architecture of maxicircle genome

Maxicircle comparison clearly indicates that the four regions previously mentioned are con-

served in the different lineages of T. cruzi (S2 Fig); however, whereas lengths of coding regions

are relatively similar, significant differences were found among DTUs in the short (from

~2.1Kb to ~6.8Kb) and long (from ~14.3Kb to ~30.3Kb) repeats, as well as in the AT-rich

region (from ~0,1Kb to ~1Kb), as summarized in Table 1. Nucleotide composition and skews

clearly separate the four regions, and each one has a peculiar base composition (Figs 2A and

S2). In the coding regions, nucleotide composition always correlates with gene orientation (+ or

—strand) and the editing pattern (Figs 2A and S3); for example GC-skew (and conversely AT-

skew) is lower in absolute number for the non-edited genes nd2, nd1, coI, nd4 and nd5, chang-

ing from negative to positive depending on its orientation (nd2, nd1, coI in the negative strand;

nd4, nd5 in the positive strand; S3 Fig). Repetitive nature and different structure and composi-

tion of the SR and LR can be clearly visualized in the dotplots (Figs 3 and S4). On the one hand,

despite the fact that the unit of repetition of the short repeat is not apparent, we found a consen-

sus sequence of 67bp as a part of a longer repeat, with high AT content (77%) that is found in all

but Y strain, with different levels of identity ranging from 75% to 100% (S1 Table). On the other

hand, the long repeat also presents low identity among its monomers but notably, each one is

delimited by a highly conserved element of 39 bp, which is present in all maxicircles in ~1–3 kb

intervals depending on the strain, which is palindromic and consequently has the possibility to

form cruciform structures (Fig 2C). By using maxicircles coding regions from T. brucei, L. dono-
vani, T. vivax and T. congolense a similar pattern was found (S5 Fig).

Insertions, deletions and gene truncations

Insertions and deletions were found in the maxicircle coding regions of BolFc10A and Y

strains, respectively (Fig 2B and 2D). These variations are not due to artifacts in the assem-

bly since many reads completely pass through insertions and deletions, with high cover-

age, ranging from 30x to 110x (S6A Fig). The Y strain (TcII) presents two deletions of 452

Table 1. Statistics of assembled maxicircles. Length of coding region, AT rich region, short and long repeat region are reported for each strain. (�) base pairs.

Strain (DTU) Length� (%GC) Coding region� (%GC/%length) Short repeat� (%GC/%length) Long repeat� (%GC/%length) AT rich region� (%GC)

Dm28c (TcI) 50478 (24,1) 15359 (25,4/30,4) 4163 (21,1/8,2) 30321 (23,9/60) 635 (17,3)

Y (TcII) 38789 (22,5) 13852 (24,9/35,7) 4913 (20,1/12,7) 19887 (21,3/51.2) 137 (23,9)

MT3663 (TcIII) 44186 (25,7) 15293 (26,2/34,6) 5067(20,6/11,5) 22830 (27,0/51.7) 996 (17,1)

JoseJulio (TcIV) 44279 (25,8) 15263 (26,1/34,5) 5196 (20,7/11,7) 22878 (27,0/41.2) 942 (17,4)

BolFc10A (TcV) 34804 (26,8) 17536 (27,7/50,4) 2135 (21,2/6,1) 14324 (27,1/41.2) 809 (17,5)

TCC (TcVI) 42479 (25,6) 15339 (26,1/36,1) 6797 (20,2/16) 19343 (27,3/45) 1000 (25,3)

https://doi.org/10.1371/journal.pntd.0009719.t001
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and 1071 bp, the first disrupting the nd7 gene, and the second provoques the 5’ deletion of

nd2 (110 bp), the complete elimination of cr3, and 3’ deletion of nd1 (780 bp), from which

only remain the first 5’ 167 nucleotides (Fig 2B). This insertion was not present in the TcII

strains Berenice and Esmeraldo, however the same previously reported 236 bp deletion in

Esmeraldo that disrupts nd4 [6] is present in Berenice but not in Y (S7 Fig). On the other

hand, BolFc10A strain (TcV) has two insertions of 1408 bp and 1017 bp length, separated

by 893 bp (Fig 2B and 2D). Sequence analysis of both insertions shows that they belong to

minicircle sequences, the first one of 1408 bp corresponds to an entire minicircle includ-

ing the four conserved characteristic regions (Fig 2D), and the 1017 bp corresponds to a

partial minicircle sequence, maintaining homology only at the conserved regions (Fig

2D). Although the insertions correspond to two different minicircles, in both cases they

carry the same gRNA for nd3 gene (S8 Fig). The minicircle conserved regions can be also

visualized in the dotplots as a third repetitive region in TcV (Fig 3), and exhibit very high

coverage of mapped reads, indicating that these sequences are probably present in the

minicircle repertoire (S6B Fig) too. The first insertion disrupts the nd4 gene (position

632), the second is located in the intergenic region between nd4 and nd3, and a third one

interrupts nd2 (Fig 2B).

Fig 1. Architecture of T. cruzi maxicircle. Schematic representation of TcDm28c maxicircle. Repetitive regions are

denoted by internal blast hits inside the circle (blue and light blue). The GC-skew (windows size 100 bp) are

represented in violet (positive) and pink (negative). The GC content (window size 100 bp) is represented in magenta.

The localization of all annotated genes are shown in the outer circle indicating their coding direction (outer + strand,

inner—strand).

https://doi.org/10.1371/journal.pntd.0009719.g001
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Phylogenetic analysis of T. cruzi maxicircles

The phylogenetic analysis of the six DTUs by using the complete coding regions of maxicircles

identifies three clearly delimited clades—A, B and C -, with an identical structure to that previ-

ously described [12], where A corresponds to TcI, B to TcIII-VI-V-VI, and C to TcII (Fig 4); B

forms a compact group, whereas A and C present greater distances between them and to

TcIII-TcVI with values of ~7 and ~10 respectively (Fig 4). In agreement with these data, simi-

lar results were recently observed [20,21]. We then sequenced (Illumina) more strains (S2

Table) with low coverage, but sufficient to obtain the entire maxicircle coding regions, and an

identical clusterization structure was found (S9A Fig). In this last experiment three TcBat

strains were included and it is clearly determined that they belong to clade A. From another

perspective we can establish that in T. cruzi exist three maxicircles variants: a, b and c, and

their differences not only depend on their coding regions: in the dotplots it can be visualized

that they have differences in their patterns in the LR regions (Figs 3 and S4). It is worth

Fig 2. Structure conservation among T. cruzi maxicircles. A. Schematic representation of TcDm28c maxicircle including: coding region, AT-rich, short repeat region

and long repeat region. AT-skew and GC-skew are represented in violet and pink respectively. B. Representation of coding region from the six DTU assemblies. Genes

are indicated in blue (positive strand), orange (negative strand) or gray (ribosomal genes). Deletions are indicated with red lines, and insertions with green lines. C.

Zoom of insertion in TcBolFc10A (see text). D. Conservation of structure of long repeat regions among DTU’s showing the 39 bp palindromic sequence.

https://doi.org/10.1371/journal.pntd.0009719.g002
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Fig 3. Dotplot of maxicircles assemblies. Dotplot visualizations by Yass [67] of self-self maxicircle of the six DTUs.

Three main classes of maxicircle could be observed (green, blue and orange squares).

https://doi.org/10.1371/journal.pntd.0009719.g003

Fig 4. Maxicircle phylogeny. A. Matrix of all-against-all uncorrected p-distance. B. Phylogenetic maximum likelihood tree, unrooted visualization (Clades A, B

and C are indicated by circles).

https://doi.org/10.1371/journal.pntd.0009719.g004
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mentioning that the recently PacBio sequenced TcV strain Bug2148 [22], falls into clade A,

closely related to Sylvio strain (S9B Fig). This unexpected phylogenetic location is also sup-

ported by a nuclear single-copy genes phylogeny (see S10 Fig and below) indicating that the

strain named Bug2148 corresponds to TcI (probably Sylvio X10Cl1). This conclusion is rein-

forced by the fact that it carries the type "a" maxicircle, only present in TcI; that is why

Bug2418 was not included in our analyzes. Recent phylogenetic analyses are in line with this

observation [20,21].

Mitochondrial vs. nuclear phylogenies

To get a whole picture of the evolutionary history and phylogenetic relationships of T. cruzi,
a robust phylogeny was performed by identifying those nuclear genes having a unique copy

in all of the DTUs. In addition to the strains used along this work, we included the available

genomes from Sylvio (TcI) [23] CLBrener (TcVI/haplotypes TcII and TcIII) [24,25], 231

(TcIII) [26], AM64 (TcIV) [27], plus T. cruzi marinkellei as an outgroup, obtaining a list of

85 single-copy genes (S1 Data). It should be noted that although there are many unique

genes, the different completeness of the genomes used results in the recovery of only a set of

85 unique conserved genes. The ML tree shown in Fig 5 (left), allows to identify two main

clades, one early branching clade (Group 1) composed by C strains (TcII), and another

(Group 2) composed by A, B and D strains (TcI, TcIII and TcIV respectively), being A, B, C

and D all monophyletic. Every branching event is well supported by bootstrap values > 0.9.

Moreover, when we excluded hybrid strains (TCC and TcBolFc10A), then 1108 (instead of

85) single-copy nuclear genes were identified (S2 Data), and the new phylogenetic ML tree

obtained shows exactly the same topology with the four clades (S10 Fig). To compare

nuclear and kDNA phylogenies, we used the same strains on the analyses with the addition

of the already published Tc Esmeraldo strain kDNA sequence [6], to compare it with

CLBrener-Esmeraldo like nuclear haplotype. The ML tree generated using all coding genes

from the maxicircles is presented in Fig 5. Clades A and C show a clear correspondence

between mitochondrial and nuclear clades, whereas the both B and D nuclear clades corre-

spond with the mitochondrial clade B; every branching event is well supported by bootstrap

values higher than 0.9.

Fig 5. Mitochondrial vs Nuclear phylogenies. A. Nuclear phylogenetic maximum likelihood tree using 85 single-copy genes of 11 strains and T. cruzi marinkellei as

outgroup. B. Mitochondrial (coding region) phylogenetic maximum likelihood tree corresponding to the same 12 strains. Nodes with bootstrap value higher than 0.9

are depicted with a black dot on the node.

https://doi.org/10.1371/journal.pntd.0009719.g005
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Discussion

The kinetoplast has been widely studied in trypanosomatids due to their distinctive properties,

making it an attractive target for therapies for Chagas disease, leishmaniasis and sleeping sick-

ness. It also constitutes a valuable phylogenetic marker for the reconstruction of trypanosoma-

tids evolutionary history (reviewed by Kaufer et al [28]). In this work, by using a combination

of short (Illumina) and long (PacBio and Nanopore) read DNA sequencing, a total of six T.

cruzi maxicircles were sequenced and assembled. This strategy allowed us to determine their

real length and structure. We found that in all cases their lengths were previously under-esti-

mated, mainly due to the presence of two repetitive regions SR and LR (Table 1 and Fig 1),

that collapsed during the assembly using first and second generation sequencing methods. The

length of T. cruzi maxicircles ranges from 34,804 bp to 50,478 bp, which coincides with the

variability described recently in other trypanosomatids, where also the main source of size dif-

ferences is at expenses of repeats [7]. It is very important to highlight that these dimensions are

compatible with reports from 3–4 decades ago. In an elegant work, Leon et al. [29] extracted

kDNA from the Y strain, obtaining high degrees of purity from Nal gradients, and studied

them by restriction patterns and electron microscopy, concluding that the approximate molec-

ular weight was around 26x106 Da. If we consider that the molecular weight average of a single

base pair is 650 Da, the deduced length from that publication is 40 kbp, and our results on Y

strain agree with that pioneer work.

We found that the overall structure of T. cruzi maxicircles is conserved among DTUs, and

consists in four regions: a) coding region (CR); b) AT-rich region (ATr); c) short repeat (SR);

d) long repeat (LR), each one with a particular nucleotide composition (Table 1 and Figs 1 and

2). Regarding the AT-rich region (AT content 83%), its irruption indicates the end of the cod-

ing region, and its length ranges from 137 to 1000 bp. The changes in composition, as well as

the AT-rich regions were associated with the mitochondrial replication origin [29,30]; in try-

panosomatids, the origin of replication has been identified at different positions flanking the

coding region either upstream (T. brucei) or downstream (C. fasciculata), but in both cases

related to repetitive regions [31,32]. Concerning the short and long repeats, they exhibit vesti-

gial monomers with low identity among them. Previously, similar structures have been

described for T. cruzi as P5 and P12 elements, according to their proximity to the ND5 and

12Sgenes [7]. Our analysis revealed that the short repeats show similar composition among

DTUs, and cover between 6.1% to 16% of maxicircle length (Table 1). A conserved region of

65 bp was identified in these repeats (S1 Table). Indeed, it was not possible to identify it on Y

strain, although it is present in Esmeraldo and Berenice TcII strains. The long repeat covers,

depending on the strain, between 41.2% to 60% of the total maxicircle length (Table 1). It does

not show high sequence conservation among the different groups, but presents an inverted

repeat composed by a conserved palindromic sequence of 39 bp (Fig 2C). This palindrome has

been previously found in the first maxicircle genome reported, although only two copies were

identified at that time [6]. Here we determined that it constitutes a hallmark of T. cruzi maxi-

circles, since it is present in all of them in at least eight copies defining the repetition unit of

long repeats (Fig 2C). Palindromic structures were found in most mtDNAs studied [33] in

chloroplasts and proteobacteria genomes [34,35], but their function is not known. In eukary-

otes they have been associated with a diversity of functions like replication origins, and as tar-

gets for many architectural and regulatory proteins, such as histones H1 and H5,

topoisomerase IIβ, HMG proteins, p53, among others [36]. Although the function of the 39 bp

palindrome remains to be elucidated, its high degree of conservation and periodicity can be

related to the ability of maxicircles to self-associate, even after elimination of RNA and pro-

teins [37], and could be critical in kDNA structure. Taken together these observations lead us
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to propose this new nomenclature (CR, ATr, SR and LR) to describe maxicircles architecture,

instead of the current denomination of conserved and divergent regions (CR and DR). We

recently found in Trypanosoma vivax the same short and long repeat structure, is present in

both in American and African strains [38]. In addition, the dotplots obtained in this work for

T. brucei, L. donovani, T. vivax and T. congolense (S5 Fig) strongly suggest this is a common

pattern and hence, their functional roles deserve to be investigated.

The coding regions, reported to conserve the gene order among trypanosomatids, include

genes encoding for members of the respiratory chain nd (subunits 1–5; 7–9), co (subunits

I-III), cyt b, and ATPase, and the open reading frames of unknown function murf and cr. The

T. cruzi complex not only conserves the order of genes among DTUs but also the strand loca-

tion (Fig 2B). As was previously observed [6] GC or AT skews are good predictors of location

of protein coding genes: positive GC-skew and AT-skew values represent genes in the plus and

minus strand respectively, with the exception of cr genes (in agreement with their base compo-

sition:“c-rich genes”): cr3 is surrounded by nd2 and nd3, and no changes in AT skew are

observed, and cr4 exhibits the same pattern as coI, located in the opposite strand (Figs 2A and

S3). Despite the high degree of conservation in the coding region, insertions and deletions

were detected (Fig 2B). These variations may represent events that occurred exclusively in the

particular sequenced strain or can they be common to a given lineage. Either way, this illus-

trates the degree of variability of T. cruzi maxicircles. Two deletions were found in Y (TcII), a

1071 bp deletion located in the intergenic region between nd1 and nd2, with the consequent

elimination of cr3, and a 452 bp deletion disrupting nd7 (Fig 2B). It is worth noting that the

same nd7 truncation was already found in T. cruzi strains isolated from asymptomatic patients

[39], where the authors analyze by PCR the nd7 truncation, showing that it is not a feature of

TcII. Although this deletion is not present neither in Esmeraldo nor in Berenice, we found that

both strains exhibit a similar deletion affecting nd4 gene. In addition, Berenice strain presents

two further deletions affecting this gene (S7 Fig) similar to that described by Westenberger

et al. [6]. In the case of TcV, BolFc10A presents an insertion that interrupts the nd4 gene,

whereas a second one falls on an intergenic region (Fig 2B). The finding of deletions always

affecting mitochondrial genes encoding NADH dehydrogenase subunits, raises the question

about the existence of a functional complex I in T. cruzi [40] in which, as with most eukaryotes,

respiration occurs via the electron transport chain (ETC) coupled to ATP synthesis [41].

Decades ago it was clearly demonstrated that the main source of electrons in T. cruzi ETC is

succinate instead of NADH: no inhibition of respiration was found after the addition of inhibi-

tors of complex I, whereas both motility and respiration of epimastigotes were inhibited by

malonate, a competitive inhibitor of the mitochondrial succinate dehydrogenase [42]. In view

of our findings, it would be relevant to reevaluate cellular respiration in different strains with

and without deletions of nd genes, to draw conclusions about the presence of a functional

complex I in T. cruzi. In fact, a possibility is that the integrity and functionality of complex I

would depend on the strain.

The two major insertions of TcV correspond either to a complete minicircle (1408 bp) or to

an incomplete one (1017 bp), the former containing the four CSBs (Figs 2D and S8). It is

remarkable that the presence of a complete -and even an incomplete- minicircle inserted in a

maxicircle has not been reported before, and its presence could be a consequence of a horizon-

tal transfer, from mini to maxicircles, since it has been documented the relatively high inter-

minicircle recombination rate [43]. The presence of gRNA genes in maxicircles was reported

in different trypanosomatids. In fact, initially it was postulated that gRNAs were encoded in

maxicircles due to their presence in maxicircles of L. tarentolae [44], C. fasciculata [45], and T.

brucei, where gMURFII-2 was found to be transcribed as an individual transcription unit from

maxicircle [46], similar to what happens in minicircles. In the case reported here, also the
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conserved regions are present, giving their gRNAs a genomic context for transcription;

remarkably both sequences carry different gRNAs but directed to the same nd3 gene (S8 Fig).

The biological significance of these insertions is not clear, and at this point we are tempted to

speculate with the possibility of the inverse flux: maxicircles can constitute seeds of minicircles,

and what we "captured" was a snapshot of a dynamic process, which will probably end with the

functional elimination of the "inserted" minicircles. In fact a “free” version of the larger mini-

circle is also present, as indicated by the fact that sequencing depth is massively higher in the

segment of the maxicicircle containing the insertion, shown in S6B Fig. In any case, there is

still much to know about the origin and evolution of this fascinating process.

Three variants of maxicircles were detected: a, b and c, that correspond to the clades A, B,

and C (Figs 4 and S9A). The non-hybrid TcI, TcII and TcIII-IV bear the maxicircles a, c and b

respectively, whereas both the hybrid strains TcV and TcVI carry the b-maxicircle (lowercases

are used to distinguish variants from clades). These three main clades exactly match with those

previously proposed by us more than 20 years ago [12] and, since in that work nuclear

sequences were used, the ABC clustering pattern would not be due to a bias for using maxicir-

cle sequences. To evaluate this hypothesis a careful phylogenetic analysis was performed, using

more than a thousand single-copy nuclear genes, confirming a correspondence between

nuclear and mitochondrial trees (Fig 5), with the addition of a fourth D clade (Tc IV). This

new clade is closely related to A and B clades, and carries the b-maxicircle. Clade D was ini-

tially described by Ayala and Machado (2001) who, using the mitochondrial CYb, and the

nuclear rRNA promoter genes, obtained three (A-C) or four (A-D) clades respectively, clade D

corresponding to TcIV. It is worth wondering: what is the origin of clade D? Until now it has

been a headache to place this clade (TcIV) in T. cruzi phylogenies. It is clear that A, B and D

share a more recent common ancestor (compared to C), but why does D carry b-maxicircles?

The explanation that B and D diverged from an ancestor already containing the b-maxicircle is

highly unlikely, considering the results revealed by nuclear trees (Fig 5), where A, B and D are

monophyletic, and two kind of maxicircles are present (a and b). A second hypothesis to

account for this discrepancy is that mitochondrial transfer (introgression) occurred between B

and D [13,47–50]. The proponents of this interpretation suggest that D lineage would have

acted as the donor [48,49]. There are two points of concern about this introgression hypothe-

sis. First, it appears unlikely the occurrence of an event involving exclusively mitochondrial

“passage” without nuclear mixture and subsequent recombination. Although previous results

are compatible with this view (reviewed in [49]), they are based on very limited datasets of

nuclear genetic material. To tackle this contradictory situation only a deep comparative

genome analysis between B and D genomes is necessary; if hybridization occurred between B

and D lineages, vestigial mosaic genomes should be found. The second aspect where the results

presented herein are at odds with previous proposals, involves the direction of the genetic

transfer. In effect, the phylogenetic analysis presented here suggests that in the case of intro-

gression, the direction was from B to D and not the other way around as suggested before. In

our view, if D (TcIV, JoseJulio and AM64) was the donor, then its placement in the tree should

be as the earliest branching group in the B clade of the mitochondrial tree (Figs 5 and S9).

At this point, it is necessary to revisit the classification and nomenclature of DTUs.

Although it constitutes a very useful tool to genetically differentiate the members of the T.

cruzi complex, we visualize two main concerns. First, revisiting the origin of nomenclature it

can be observed that the initial classification into groups I and II does not correspond to the

phylogeny of T. cruzi (B and D are separated from A). This can best be seen after the subdivi-

sion into I and IIa-e, (which is at the basis of the current classification in DTUs I to VI respec-

tively): A (Tc I) became separated from B and D. Second, in this classification both hybrids

and non-hybrids clones are located at the same hierarchical level and hence, this nomenclature
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lacks information in this regard. Additionally, no information about the maxicircle variant is

given. Based on the drawbacks just mentioned, we propose to adopt the nomenclature shown

in Fig 6: T. cruzi constitutes a complex composed of two main groups, 1 and 2, to differentiate

them from I and II (since the latter lack correspondence with phylogenetic distances among

clades), and four main lineages (clades): three belonging to group 1 (Aa, Bb, Db), and the

fourth belonging to Group 2 (Cc); in addition, there are hybrid strains named BCb. Uppercase

letters stand for nuclear genomes and lowercase letters indicate the maxicircle variant. This

understanding and nomenclature can contribute to “put an order in the house”, and focus the

analysis of each clade to delve into their biological features. For example, in clade A we found:

I) that at least two subgroups exist, one of them represented by Dm28c and Sylvio (Figs 5 and

S9 and S10) and the second one by the so-called TcBat strains. Indeed TcBat strains used here

clearly belong to clade A and carry the a-maxicircle (S9 Fig), therefore they all can be unambig-

uously classified as Aa. It is worth stressing that in this sense this new nomenclature avoids the

temptation to propose more and more DTUs as new relatively non-divergent variants are dis-

covered. Finally, to shed light on the origin of the close relationship between B and D, includ-

ing the fact that they share the same maxicircle, whole genome analysis will help determine

how hybridization and/or introgression events have occurred.

Material and methods

T. cruzi strains and DNA extraction

DNA was isolated by phenol extraction as described [51], and the integrity was checked by 1%

agarose gel electrophoresis. The following strains were sequenced by Illumina technology:

AP3-1, Colombiana, SC16, Sylvio X10 cl1 and Ort8-1 (TcI); ChaQ8-1, Cha_Q11-2 and

ChaQ8-2 (TcI Bat); Y, PNM, Berenice, Esmeraldo cl3 and IVV cl4 (TcII); MT3663, Merejo do

Anjico and 231 (TcIII); JoseJulio and AM64 (TcIV); BolFc10A (TcV); CLBrener (TcVI). The

following strains were also sequenced by Nanopore: Y, MT3663, JoseJulio and BolFc10A.

Finally, sequences from Dm28c, TCC, Bug21448, CLBrener Esmeraldo-like, CLBrener Non

Esmeraldo-Like and Tc. marinkellei were retrieved from TriTrypDB and NCBI databases.

Fig 6. Evolutionary relationships in the Trypanosoma cruzi complex. T. cruzi is composed by two main groups 1

and 2, which does not correspond to the original I and II groups. Group 1 is divided in clades A, B and D, and group 2

contains clade C. Lower cases indicate the maxicircle variant (a, b, and c), and BC refers to hybrid strains.

https://doi.org/10.1371/journal.pntd.0009719.g006
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Discrete Typing Unit (DTU) determination

For DTU typing the following PCR products were amplified and sequenced as described in

[19]: the intergenic region of spliced leader genes (SL-IR), the 24Sα subunit ribosomal DNA

(rDNA 24Sα) and the A10 fragment. Size determination of PCR products was done onto 5%

MetaPhor agarose gels.

Library construction and sequencing

PacBio Sequencing was performed in the sequencing service of City of Hope (USA) using

10 μg of T. cruzi Y strain. Nanopore Sequencing was performed in our laboratory. Briefly,

genomic DNA was fragmented to 20 kb using g-Tubes (Covaris, USA), according to manufac-

turer instructions and libraries were prepared with the kitEXP-NBD103/SQK-LSK108 (Nano-

pore, England) according to [52], starting from 1 μg of total fragmented genomic DNA.

Libraries were run for 20 hours in R9.4 FlowCells (FLO-MIN106, Nanopore, England).

Whole-genome Illumina sequencing libraries were performed as previously described in Pita

el at. [53] using Nextera XT (Illumina). Paired-end reads were sequenced on the MiSeq plat-

form (2 x 150 cycles).

Assembly and annotation of maxicircle genomes

Long reads: FAST5 reads containing raw Nanopore signal were basecalled in real time using

MinKNOW Nanopore software, and locally using Guppy toolkit (Oxford Nanopore Technolo-

gies). Porechop (https://github.com/rrwick/) was used to demultiplexing reads.

PacBio reads were assembled with HGAP v3 as described in [54] and Nanopore reads were

assembled with Canu v1.8 [55]. Afterwards, backmapping Illumina reads with bwa [56], and

using samtools for sam manipulation [57] and Pilon [58] were employed to polish the assem-

bly. Contigs containing maxicircle sequences were recovered from the assembly using Blast

[59] with previous T. cruzi maxicircle assemblies [6] used as subject.

Illumina reads: Reads belonging to kDNA were identified aligning all reads to already avail-

able kDNAs using BWA mem [56] with default parameters, and extracted with samtool [31]

and bedtools [60]. Extracted maxicircle’s reads were assembled using SPAdes version 3.8.0

[61] with default parameters. Scaffolds containing maxicircle sequences corresponding to the

coding region were recovered from assembly using Blast [59] and controlled by base

composition.

Annotation and Data handling: Maxicircles annotation was performed manually using

Blast [59]. Coverage analyses were performed mapping illumina and long reads with BWA

[56] and Minimap2 [62], respectively, and obtaining the amount of mapped reads using mpi-

leup samtools [57]. R version 4.0.2 [63] with seqinr package, were used to obtain GC, GC and

AT skews, and coverage plots. IGV [64] was used for alignment visualizations. Comparative

analyses and visualization of coding regions were performed using ACT [65]. Circos [66] was

used to create circular plots. Dotplots were performed using YASS web server [67].

kDNA genes phylogenetic analysis

kDNAs obtained by illumina sequencing were analyzed in order to present at least 14 coding

genes. A total of 17 strains fulfilled this requirement and were further processed. The entire

coding region of the kDNAs were aligned using MAFFT v7.471 [68] with the linsi method and

visualized with JalView [69]. The alignment was trimmed using trimAl [70] with option -gt

0.8. ML tree was generated by IQ-TREE [71] using GTR+F+G4 including 1000 bootstrap pseu-

doreplicates and visualized with FigTree (http://tree.bio.ed.ac.uk/software/figtree/).
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Nuclear vs maxicircle genes phylogenetic analysis

Single copy genes were retrieved using a pipeline from Pita et al (in preparation). Briefly, a

clustarization using MCL software [72] is performed on all annotated genes in the Dm28c

strain genome [54] to get rid of all highly abundant gene families. Then each survivor is used

as a blastN query on several strains genomes assemblies -T. cruzi Dm28c, Sylvio, Berenice, Y,

231, MT3663, Jose Julio, AM64, TcBolFc10A, TCC, CL Brener Esmeraldo and Non-Esmer-

aldo-like haplotypes and T. c. marinkellei B7. The search was restricted to those genes which

present only one HSP with 90% of query coverage (-qcovhsp) in all genomes. A gap penalty

was setted to avoid genes with deletions (-gapopen 3 -gapextend 2). Each dataset was aligned

separately using MAFFT v7.310 [68], and then concatenated using bash scripts. Same strains

were used to perform a ML phylogenetic tree using kDNA, with the addition of the Esmeraldo

strain, to compare with the CLBrener Esmeraldo-like haplotype. For both datasets Maximum

Likelihood (ML) tree was generated using RAxML [73], with a partition scheme taking each

gene independently. Since the substitution model test for each gene runed separately indicated

that HKY plus gamma distribution was the best fitted most times, two RAxML runs were per-

formed, one using GTRGAMMA and other using GTRGAMMA—HKY85. ModelGenerator

v0.85 [74] software was employed to determine the best fitted model. The starting tree was

found as the best-scoring ML tree using 20 randomized stepwise addition parsimony search

(-p command). One hundred bootstrap pseudoreplicates were made (-b command) and then

mapped onto the single most likely held tree topology (-f b command). In addition, to com-

pare several approaches, ML trees were performed on both concatenated datasets with

IQ-TREE [71] and PhyML [75] softwares. The phylogenetic trees were visualized and edited

using the R package ggtree [76].

Supporting information

S1 Fig. DTU determination by multilocus PCR.

(TIFF)

S2 Fig. Base composition of maxicircles.

(TIF)

S3 Fig. Base composition analysis of maxicircle coding regions.

(TIF)

S4 Fig. Dot plot comparisons of all maxicircle genomes.

(TIF)

S5 Fig. Dot plot maxicircle visualization in other trypanosomatids.

(TIF)

S6 Fig. Sequencing coverage plots.

(TIF)

S7 Fig. Deletions in coding regions of C strains.

(TIF)

S8 Fig. Minicircle insertion in T. cruzi TcBolFc10A.

(TIF)

S9 Fig. Phylogenetic tree of maxicircle coding regions.

(TIFF)

PLOS NEGLECTED TROPICAL DISEASES Maxicircles and evolutionary insights into Trypanosoma cruzi complex

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009719 August 26, 2021 13 / 18

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s003
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s005
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s006
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s007
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s008
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009719.s009
https://doi.org/10.1371/journal.pntd.0009719


S10 Fig. T. cruzi nuclear phylogeny.

(TIFF)

S1 Table. Short repeat conserved region.

(XLSX)

S2 Table. T. cruzi strains sequenced.

(DOCX)

S1 Data. List of 85 unique genes used to perform the nuclear phylogenetic maximum likeli-

hood tree.

(DOCX)

S2 Data. List of 1023 unique genes used to perform the nuclear phylogenetic maximum

likelihood tree without hybrid strains.

(XLSX)

Acknowledgments

We thank Dr Miriam Postan (Instituto Nacional de Parasitologı́a “Dr. Mario Fatala Chabén”,

Buenos Aires, Argentina) for kindly giving us the TcBolFc10A strain.

Author Contributions
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35. Brázda V, Lýsek J, Bartas M, Fojta M. Complex Analyses of Short Inverted Repeats in All Sequenced

Chloroplast DNAs [Internet]. Vol. 2018, BioMed Research International. Hindawi; 2018 [cited 2020

Dec 8]. p. e1097018. Available from: https://www.hindawi.com/journals/bmri/2018/1097018/
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