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Artificial intelligence‑based education assists 
medical students’ interpretation of hip fracture
Chi‑Tung Cheng1,2,3†, Chih‑Chi Chen4†, Chih‑Yuan Fu1, Chung‑Hsien Chaou5,6, Yu‑Tung Wu1, Chih‑Po Hsu1, 
Chih‑Chen Chang7, I‑Fang Chung3, Chi‑Hsun Hsieh1, Ming‑Ju Hsieh8 and Chien‑Hung Liao1,2*

Abstract 

Background:  With recent transformations in medical education, the integration of technology to improve medical 
students’ abilities has become feasible. Artificial intelligence (AI) has impacted several aspects of healthcare. However, 
few studies have focused on medical education. We performed an AI-assisted education study and confirmed that AI 
can accelerate trainees’ medical image learning.

Materials:  We developed an AI-based medical image learning system to highlight hip fracture on a plain pelvic 
film. Thirty medical students were divided into a conventional (CL) group and an AI-assisted learning (AIL) group. In 
the CL group, the participants received a prelearning test and a postlearning test. In the AIL group, the participants 
received another test with AI-assisted education before the postlearning test. Then, we analyzed changes in diagnos‑
tic accuracy.

Results:  The prelearning performance was comparable in both groups. In the CL group, postlearning accuracy 
(78.66 ± 14.53) was higher than prelearning accuracy (75.86 ± 11.36) with no significant difference (p = .264). The AIL 
group showed remarkable improvement. The WithAI score (88.87 ± 5.51) was significantly higher than the prelearning 
score (75.73 ± 10.58, p < 0.01). Moreover, the postlearning score (84.93 ± 14.53) was better than the prelearning score 
(p < 0.01). The increase in accuracy was significantly higher in the AIL group than in the CL group.

Conclusion:  The study demonstrated the viability of AI for augmenting medical education. Integrating AI into medi‑
cal education requires dynamic collaboration from research, clinical, and educational perspectives.
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Key points

•	 A heatmap-producing radiography reading system 
can be utilized in medical education.

•	 Artificial intelligence (AI) can offer low-level supervi-
sion for medical students to read hip fracture images.

•	 AI proved viable for augmenting and being integrated 
into medical education.

Introduction
The history of medical education reform amply dem-
onstrates that curricular change has been incremental, 
reactive, and mostly marginalized [1, 2]. With recent 
transformations in medical education, many efforts have 
been made to integrate technology and ethical aspects to 
efficiently improve the professionalism and clinical abil-
ity of medical students and trainees [3, 4]. Medical image 
learning is experience dependent, and trainees need to 
learn several kinds of images to achieve an expert level. 
This training requires acquiring skills to analyze and 
extract imaging features to identify patterns, generate a 
differential diagnosis that matches the patterns, and cor-
relate the imaging features and differential with clinical 
findings to select the most likely diagnosis [5]. However, 
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owing to time constraints, training opportunities might 
be compressed, and trainees may not be able to access as 
many images as their tutors or teachers. Individual vari-
ability is thought to substantially affect learning styles 
[6, 7]. Moreover, learning is dictated by the number and 
diversity of cases encountered, with varying practices 
and patient mixes. An artificial intelligence (AI)-assisted 
teaching platform can deliver personalized education and 
24-h supervised tutoring that benefits both trainees and 
trainers. AI generated from deep neural network learning 
has been developed to help deliver precision medicine 
and health services [3, 8]. Researchers are increasingly 
embracing this modality to develop tools for diagno-
sis and prediction as well as to improve the effective-
ness of healthcare. However, AI applications to medical 
education have been relatively underexplored. Although 
a tremendous amount of research has focused on AI in 
decision support [9–13], very little has focused on per-
sonalized medical education. Additionally, several AI 
methods use e-learning modules to identify the learning 
styles of individual students [6, 14, 15].

In this study, we developed a prospective blind image 
education system and confirmed that AI can support 
medical students and help them learn with confidence.

Materials and methods
Study population
This research involved the participation of students from 
the Medical School at Chang Gung University, Taiwan. 
We recruited undergraduate students in their fifth year 
of medical school training who had finished their basic 
medicine classes and entered the clinical rotation. All the 
participants volunteered to join this project. The study 
was designed as a single-center randomized controlled 
trial (RCT) conducted in the medical faculty of Chang 
Gung Memorial Hospital, Taiwan, between January 2020 
and July 2020. At the beginning of the study, we intro-
duced the study design, the method of image collection, 
the reading method of pelvis anteroposterior (AP) view 
radiographs (PXRs), and the characteristic features of 
hip fractures. The participants were enrolled in the study 
after an informed consent process.

The AI education system—HipGuide
We collected 3605 PXRs, which are commonly used to 
diagnose hip fractures, from the patients recorded in 
the trauma registry of January 2008 to December 2016 
to train a hip fracture detection AI system, “HipGuide,” 
using a deep learning algorithm of DenseNet-121. All the 
images were reviewed by a trauma specialist with clini-
cal information including injury mechanism, advanced 
images, surgical reports, and final diagnosis in the medi-
cal record. The development dataset contains 1975 

(54.8%) images with hip fracture (including femoral neck 
fracture and trochanteric fracture) and 1630 (45.2%) 
images without hip fracture. The technical part of the 
system development is detailed in our previous work 
[16]. After the model trained, we collected an independ-
ent test set using 50 hip fracture and 50 normal PXR from 
2017 for validation. When tested on new test images, the 
algorithm generates a probability of hip fracture, and an 
overlay heatmap representing the area contributes to this 
decision using a grad-CAM algorithm. The AI system 
achieved 91% accuracy and 98% sensitivity in the inde-
pendent test set, and the heatmap identified 95.9% of the 
fracture sites. The model and parameters were adjusted 
to point out the fracture area more precisely to make the 
algorithm proper for education. The algorithm deter-
mined negative images will not present any heatmap to 
prevent confusion. The predicted fracture sites will be 
highlighted in positive images to guide the participants.

Experimental protocol and randomization
The participants received a test composed of 100 rand-
omized images from the 2017 PXR dataset, and the accu-
racy of the results was defined by the prelearning score. 
Furthermore, we randomized the students with the sim-
ple method of flipping a coin. They were divided into 
two groups: the AI-assisted learning (AIL) group and the 
conventional (CL) group. In the CL group, the students 
received a postlearning test composed of another 100 
PXR images 2  weeks after the first test, and the perfor-
mance was defined as the postlearning test score. In the 
AIL group, the students took one additional test com-
posed of 100 AI-augmented PXRs with AI-introduced 
heatmap images (as shown in Fig.  1) 1  week after the 
prelearning test, and the performance was defined as 
the WithAI score. One week later, the AIL students took 
another test composed of 100 more PXR images without 
AI augmentation, and the performance was defined as 
the postlearning score. The study flow is shown in Fig. 2. 
To evaluate the improvement in this learning process, we 
defined the gained score as the postlearning score minus 
the prelearning score.

Main outcome measures
The primary outcome of the study was the difference 
between the study groups in overall gained score. In 
addition, the gained score for the AIL group was calcu-
lated and analyzed to determine which group of stu-
dents achieved the most improvement after AI-assisted 
training.

Statistical analysis and software
The Shapiro–Wilk test was used to test whether the 
distribution was normal. Student’s t-test was used to 
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compare the quantitative variables. Subsequently, the 
paired t-test was used to compare the accuracy scores to 
the corresponding baseline scores in each group. One-
way analysis of variance (ANOVA) was used to compare 
the differences in improvement between the pre- and 
postlearning scores in the two groups. The Pearson cor-
relation was used to compare the correlation between 
gained accuracy and prelearning accuracy. Statistical 
analyses were performed with SPSS v 20.0 for Macintosh 
(SPSS, Inc., Chicago, IL, USA). A p value < 0.05 was con-
sidered statistically significant.

Results
This study enrolled 34 medical students within the range 
of 22–32 years old who were randomly divided into the 
AIL and CL groups. Three of the students dropped out 
because they could not adhere to the evaluation schedule, 
and one could not complete the course. Therefore, a total 
of 30 students completed this study. The participants’ 
age, gender distribution, prelearning accuracy, sensitiv-
ity, and specificity were comparable in the two groups, as 
shown in Table 1. In the CL group, the postlearning score 
(78.66 ± 14.53) was higher than the prelearning score 
(75.86 ± 11.36), but there was no significant difference 
(p = 0.264). In the AIL group, all the participating stu-
dents showed remarkable improvement with AI support. 
The WithAI score (88.87 ± 5.51) was significantly higher 
than the prelearning score (75.73 ± 10.58, p < 0.01). 
Moreover, the postlearning score (84.93 ± 14.53) was also 
better than the prelearning score (p < 0.01), as shown in 
Table 2 and Fig. 3. Figure 4 demonstrates the shift of the 
scores of both groups. In the AIL group, the prelearning/

postlearning plot shows considerable improvement after 
AIL, as shown in Fig. 4a; however, the learning effect in 
the CL group was less significant, as shown in Fig. 4b.

In comparing the AIL and CL groups, we identified 
a significantly higher gained accuracy in the AIL group 
(9.2 ± 6.9) than in the CL group (2.8 ± 9.3), p = 0.042, as 
shown in Table  3. As shown in Fig.  5, most of the AIL 
students obtained better scores and were located above 
the line of improvement. Just one participant’s score was 
below the line. However, in the CL group, five students 
(33%) did not improve and even had worse results after 
the learning.

In the AIL group, the gained accuracy improvement 
was greater in the participants who had lower prelearn-
ing accuracy than in those who had higher prelearning 
accuracy. The strong inverse correlation is statistically 
significant, and the Pearson correlation coefficient (Pear-
son’s r) is − 0.83 (p < 0.01). However, in the CL group, the 
gained accuracy showed no correlation with prelearning 
accuracy (Pearson’s r: − 0.02, p = 0.94), as presented in 
Table 4.

Discussion
In this study, we presented AI-augmented medical edu-
cation that can help medical students efficiently learn 
to detect fracture of the hip; the gained accuracy score 
improved with a significant difference between the two 
groups. This is the first study to integrate AI into medi-
cal image education. In the AIL group, the WithAI score 
was significantly higher than the prelearning score. The 
AIL students who had been coached by the HipGuide 
system, even without AI-augmented image support, 

Fig. 1  The demonstration of AI-augmented PXR with AI-introduced heatmap images. The augmented image includes the original plain pelvic film 
and one highlighted image that indicates the possible fracture area
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understood the key features of fracture and had learned 
how to identify the correct diagnosis. The postlearning 
score in the AIL group was significantly better than the 
prelearning score. Thus, the AI-based education system 
demonstrated its utility in improving trainee perfor-
mance through quality measures that should be integral 

to the improvement in medical education, especially with 
the utilization of AI [7, 17, 18]. Furthermore, we found 
that the HipGuide system particularly helped novice 
students who had lower prelearning scores. The gained 
scores showed a strongly inverse correlation with the 
prelearning scores, which indicates that HipGuide helped 

Fig. 2  Diagram describing the randomized method of our study
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novice students more than it helped their experienced 
classmates.

In the past, medical image training has relied on the 
traditional apprenticeship model. Because this model 
depends on trainee relationships, and because there is 
limited time available to review preliminary reports with 
a staff radiologist, gains in knowledge and skills can vary 
among trainees [19–21]. Hence, this apprenticeship edu-
cation model is characterized by ever-increasing work-
load demands on both attending physicians and trainees 
and can be improved by a better understanding of rela-
tions between humans and tools. [8, 22, 23]. In conven-
tional image teaching, students are expected to first learn 
diagnostic characteristics from educators and practice 
afterward. AI in medical education is still in the devel-
opment stage [2, 7, 24–26]. AI can empower flipped 
classroom-like teaching [27, 28] and complete the exist-
ing bottom-up platforms used to teach radiology [29]. 
It has been argued that case-based learning should be 
implemented because it is more effective than traditional 
top-down approaches and is preferred by radiology edu-
cators and students [30, 31]. In the hip fracture detection 
task, the medical students had fundamental knowledge 
of anatomy, pathology, and the principle of imaging. The 
heatmap generated by AI provided an opportunity for the 
students to connect this domain knowledge and generate 
a new understanding of radiographic interpretation skills. 
Thus, they could improve their diagnostic accuracy with 
limited learning cases. Visualization techniques such as 
grad-CAM provide a rationale for humans to understand 
the black box mechanism [32]. Students can utilize AI to 
supplement unsupervised learning during personal time. 
AI can be used for low-level supervision, while attending 
and staff physicians can continue to provide high-level 
supervision [14, 33]. This change would allow human 
educators to tailor training methods and lesson content 
to their students’ strengths and weaknesses, promoting 
bidirectional information exchange and saving training 
time. Thus, AI supports unique education platforms that 
balance a standardized curriculum with inherently indi-
vidualized learning.

A well-designed self-learning platform with AI aug-
mentation will be an adequate model for medical edu-
cation in the next generation. Kolachalama and Garg 
proposed the integration of machine learning-related 
content in medical education. They recommended inte-
grating real-world clinical examples into machine learn-
ing courses and applying practical guidelines to choose 
the best tools [34, 35]. Because of a current lack of tutors’ 
direct access to appropriate AI education, AI-assisted 
teaching methods are rarely embedded in undergradu-
ate and graduate medical education training. Creating a 
user-friendly automated platform to help both trainers 

Table 1  Comparison between  AI-assisted learning 
and conventional groups

AI-assisted 
learning 
group

Conventional group p value

Case number 15 15

Age (mean + SD) 24.00 ± 1.60 24.67 ± 3.13 0.471

Gender

 Male 9 10 0.740

 Female 6 5

Pre-learning accuracy 75.73 ± 10.58 75.86 ± 11.36 0.974

Pre-learning sensitivity 77.33 ± 18.15 72.53 ± 15.37 0.441

Pre-learning specificity 74.13 ± 17.42 79.20 ± 15.47 0.407

With AI accuracy 88.87 ± 5.51 –

With AI sensitivity 94.93 ± 5.23 –

With AI specificity 82.80 ± 10.50 –

Post-learning accuracy 84.93 ± 14.53 78.66 ± 14.53 0.141

Post-learning sensitivity 86.40 ± 6.42 75.47 ± 22.10 0.084

Post-learning specific‑
ity

83.47 ± 14.03 81.87 ± 14.27 0.759

Table 2  Comparison of  the  gain scores of  diagnostic 
performances between  AI-assisted learning 
and conventional groups

Bold indicates p < 0.05 which was considered statistical significance

AI-assisted 
learning group

Conventional 
group

p value

Gained accuracy 9.2 ± 6.9 2.8 ± 9.3 0.042
Gained sensitivity 9.1 ± 1.7 2.9 ± 1.4 0.299

Gained specificity 9.3 ± 1.8 2.6 ± 1.1 0.237

Fig. 3  The box-plot graph of the diagnostic accuracy of the two 
groups
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and trainees is essential for developing an AI educational 
system [36]. In this study, we presented a straightfor-
ward pathway to support AI-based technology that can 
also help medical students or novice doctors learn and 
obtain experience quickly. This study offered a method 
to improve medical students’ learning of medical images 
with instinctive AI diagnostic support.

Limitations
There have been significant breakthroughs in AI in 
medical diagnostics in recent years. Our study pro-
vides evidence supporting the proposal that AI can help 
medical education. There are still some limitations. 
There have been few, if any, direct comparisons between 

conventional and AI-augmented medical image educa-
tion. To determine and verify the utility of AI in preci-
sion education, trainee performance must be assessed 
through reliable and valid measures [7]. Second, the sam-
ple size was relatively small (N = 30), which might affect 
the power of the study, although an analysis of 560 stud-
ies indicated that this number is within the normal range 
of experimental groups [37]. Third, because the educator 

Fig. 4  The prelearning/postlearning accuracy plot of the AI-assisted learning group and the conventional group

Table 3  The learning efficiency and  post-learning 
performance of AIL and CL groups

Bold indicates p < 0.05 which was considered statistical significance

Pre-learning With AI Post-learning

AIL group

 Accuracy 75.73 ± 10.58 88.87 ± 5.51* 84.93 ± 14.53⍏

*Pre-learning versus 
with AI: p < 0.01

⍏Pre-learning 
versus post-
learning: 
p < 0.01

CL group

 Accuracy 75.86 ± 11.36 78.66 ± 14.53⍏

⍏Pre-learning 
versus post-
learning: 
p = 0.264

Fig. 5  The comparison of gained accuracy with prelearning accuracy 
in the two groups
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curates and collects the data for AI algorithm develop-
ment, selection bias might exist due to the data distribu-
tion. Fourth, given our training capacity, we decided to 
recruit thirty-six participants for this study and opened 
it to residents on a first-come, first-served basis. There 
might be selection bias because we assume that those 
who chose to participate had high motivation and inter-
est in learning novel technology. Further, when we pro-
ceeded with this study, all the medical students also had 
access to other approaches for learning medical image 
diagnosis. Because all the medical students may not have 
had equal learning opportunities, there may have been 
unpreventable bias. Finally, owing to the limitations of 
the technology, we can offer only the heatmap rather than 
using an arrowhead to point directly to a lesion, which is 
less user-friendly. However, despite the limitations of this 
study, we demonstrated that AI can shorten the learning 
curve in learning to read PXRs.

Conclusion
In this study, we demonstrate that AI is viable for aug-
menting medical education and can shorten the learn-
ing curve in learning to read PXRs. With AI assistance, 
students can learn to efficiently read medical images. In 
addition, AI-based training can elevate diagnostic accu-
racy even further for students whose performance is 
initially poor. The next generation of students may learn 
how AI technologies are used in practice, and similar 
tools will also be used to enrich their education.
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