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Abstract: Macroalgae polysaccharides are phytochemicals that are beneficial to human health. In this
study, response surface methodology was applied to optimize the extraction procedure of Pyropia
yezoensis porphyran (PYP). The optimum extraction parameters were: 100 ◦C (temperature), 120 min
(time), and 29.32 mL/g (liquid–solid ratio), and the maximum yield of PYP was 22.15 ± 0.55%. The
physicochemical characteristics of PPYP, purified from PYP, were analyzed, along with its lipid-
lowering effect, using HepG2 cells and Drosophila melanogaster larvae. PPYP was a β-type sulfated
hetero-rhamno-galactan-pyranose with a molecular weight of 151.6 kDa and a rhamnose-to-galactose
molar ratio of 1:5.3. The results demonstrated that PPYP significantly reduced the triglyceride content
in palmitic acid (PA)-induced HepG2 cells and high-sucrose-fed D. melanogaster larvae by regulating
the expression of lipid metabolism-related genes, reducing lipogenesis and increasing fatty acid
β-oxidation. To summarize, PPYP can lower lipid levels in HepG2 cells and larval fat body (the
functional homolog tissue of the human liver), suggesting that PPYP may be administered as a
potential marine lipid-lowering drug.

Keywords: Pyropia yezoensis; porphyran; response surface methodology; lipid-lowering effect

1. Introduction

The ocean contains various resources, comprising functional algae, such as brown
algae, red algae, green algae, and coralline algae, which are favorable candidates for the
development of high value-added products [1,2]. Marine algae are abundant sources of
medicinal phytonutrients that demonstrate beneficial effects on human health. Among
them, brown and red algae contain polysaccharides with antioxidation, anti-inflammatory,
antitumor, and immunomodulatory activities such as fucoidan, carrageenan, and alginate,
which are used as functional foods [3–5]. Healthy foods are the basis for a healthy life and
help to prevent the occurrence of noncommunicable diseases including diabetes, cardio-
vascular diseases, certain types of cancer, and nonalcoholic fatty liver disease (NAFLD) [6].
The official data of the World Health Organization state that an estimated 2 billion people
lack access to safe, nutritious, and sufficient amounts of food worldwide. A surge in the
production and consumption of highly processed food, rapid unplanned urbanization, and
changing lifestyles have also contributed to increased consumption of an unhealthy diet,
whose components are energy-dense (with high-fat and free sugar contents). As is known,
the liver plays a major role in the regulation of fat and carbohydrate metabolism. However,
a high-fat or high-sugar diet alters the normal metabolic process, commonly leading to the
accumulation of triglycerides (TGs) within hepatocytes and to a clinical condition known
as NAFLD [7–9]. NAFLD is a chronic liver disorder with increasing prevalence owing to
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the global epidemic of obesity not only among the middle-aged and older adults [10], but
also among the youth and children [11,12].

The “two-hit” theory of NAFLD is based on the two steps of liver injury: intrahepatic
lipid accumulation, and inflammatory progression to nonalcoholic steatohepatitis [13–16].
Therefore, reducing lipid accumulation is an effective means to block the progression of
NAFLD at an early stage. Of note, palmitic acid (PA), a saturated fatty acid, is usually found
in animal fats and vegetable oils. Owing to its abundance, it is easy to consume more than
the recommended intake, which can induce lipotoxicity in hepatocytes [17,18]. In addition,
high-sugar diets such as processed foods and beverages promote de novo lipogenesis in
the liver, leading to TG accumulation, which in turn exacerbates NAFLD [19–21]. There is
considerable evidence that PA-induced HepG2 cells and high-sucrose-fed D. melanogaster
can be used to mimic the model of lipid accumulation-related disease for screening potential
therapeutic lead compounds [22–26].

Pyropia yezoensis, rich in porphyran, is a kind of marine vegetable that is widely
distributed and popular in China, Korea, and Japan. Studies have shown that porphyran
derived from P. yezoensis demonstrates some pharmacological properties such as anti-
inflammatory [27], antitumor [28], antioxidation, immunomodulation, anticardiovascular,
and anticerebrovascular functions [29]; however, the lipid-lowering effect of P. yezoensis
porphyran remains unclear. In this study, the yield of porphyran isolated from P. yezoensis
via hot water extraction was optimized using response surface methodology (RSM) with a
powerful statistical and mathematical model. In addition, the lipid-lowering effects of PPYP,
purified from porphyrin (PYP), and the underlying mechanism were investigated using
two distinct high calorie-induced models in vitro and in vivo. The present study examining
on the extraction process and its bioactivity laid the foundation for the development and
application of a potential marine drug or functional foods.

2. Results
2.1. Single-Factor Experiment Analysis

The effects of the time, temperature, and liquid–solid ratio on the yield of PYP were
investigated via the single-factor experiments (Figure 1). The yield of PYP was affected
by the liquid–solid ratio (10:1, 20:1, 30:1, 40:1, and 50:1 mL/g), and the yield increased
as the liquid–solid ratio increased from 10:1 to 30:1 mg/L, reaching a maximum rate at
a liquid–solid ratio of 30:1 (Figure 1A). As shown in Figure 1B, the PYP yield increased
rapidly as temperature increased from 60 to 100 ◦C, and reached a maximum of 18% at
100 ◦C. In accordance with the present result, 90 ◦C was determined as the center-spot for
optimum temperature. In addition, the PYP yield gradually increased from 30 to 120 min
and reached a maximum of 17.7% at 120 min, without noticeable change from 120 to
240 min (Figure 1C). However, the PYP yield reached 17.1% at 60 min, almost equivalent
to that observed at 120 min. Therefore, the time center point should be between 30 and
120 min. Therefore, the duration ranging from 30 to 120 min was selected as the time factor
for the RSM experiment.
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(<0.0001), indicating that the model could be applied to predict the yield of PYP. R-
squared (0.9970), adj R-squared (0.9930), pred R-squared (0.9811), and coefficient of vari-
ation (1.90%) also proved that the experimental model was accurate.  
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2.2. Response Surface Analysis

Three individual extraction parameters were optimized by analyzing the response
values for the 17 trials via a Box–Behnken design (BBD). As shown in Table 1, the PYP yield
obtained after the trials ranged from 9.96 to 20.28%; these data were analyzed using the
Design-Expert software. The second-order polynomial equation was then used to establish
the relationship between the PYP yield and the three variables as follows:

Y = 14.34 + 1.48A + 1.20B + 3.41C + 1.53AB − 0.065AC − 0.052BC − 1.58A2 − 0.88B2 + 2.68C2

where Y: PYP yield (%); A: liquid–solid ratio; B: temperature; C: time.

Table 1. The response values of PYP yield and three variables.

Run
A: Liquid–Solid

Ratio (mL/g) B: Time (min)
C:

Temperature
(◦C)

PYP Yield (%)

Actual Value Predicted Value

1 20 (0) 30 (−1) 100 (1) 18.26 18.40
2 10 (−1) 120 (1) 90 (0) 9.96 10.07
3 20 (0) 75 (0) 90 (0) 14.10 14.34
4 20 (0) 75 (0) 90 (0) 14.27 14.34
5 20 (0) 120 (1) 80 (−1) 14.12 13.98
6 20 (0) 30 (−1) 80 (−1) 11.57 11.48
7 20 (0) 75 (0) 90 (0) 14.48 14.34
8 10 (−1) 30 (−1) 90 (0) 10.67 10.73
9 20 (0) 75 (0) 90 (0) 14.78 14.34

10 30 (1) 75 (0) 100 (1) 20.28 20.25
11 10 (−1) 75 (0) 80 (−1) 10.46 10.49
12 10 (−1) 75 (0) 100 (1) 17.63 17.43
13 30 (1) 30 (−1) 90 (0) 10.74 10.63
14 20 (0) 120 (1) 100 (1) 20.60 20.69
15 20 (0) 75 (0) 90 (0) 14.05 14.34
16 30 (1) 120 (1) 90 (0) 16.15 16.09
17 30 (1) 75 (0) 80 (−1) 13.37 13.57

As shown in Table 2, the model F-value was 254.25 with a significant p-value (<0.0001),
indicating that the model could be applied to predict the yield of PYP. R-squared (0.9970),
adj R-squared (0.9930), pred R-squared (0.9811), and coefficient of variation (1.90%) also
proved that the experimental model was accurate.

Table 2. ANOVA of the response surface model for PYP yield.

Source Sum of Squares Df Mean Square F-Value p-Value

Model 172.93 9 19.21 254.25 ***
A-Liquid–solid 17.46 1 17.46 231.10 ***

B-Time 11.50 1 11.50 152.12 ***
C-Temperature 92.82 1 92.82 1228.26 ***

AB 9.36 1 9.36 123.91 ***
AC 0.017 1 0.017 0.22 0.6507
BC 0.011 1 0.011 0.15 0.7138
A2 10.50 1 10.50 138.96 ***
B2 3.24 1 3.24 42.83 ***
C2 30.20 1 30.20 399.65 ***

Residual 0.53 7 0.076
Lack of fit 0.17 3 0.056 0.63 0.6344
Pure error 0.36 4 0.090

Correlation total 173.46 16
R2 0.9970 R2adj 0.9930

C.V.% 1.90 Pred R-Squared 0.9811
*** p < 0.001.

As shown in Figure 2 and Figure S1, the relationship between independent and
dependent variables was analyzed using the Design-Expert software. The 3-D response
surface and 2-D contour plots show the interaction between the two variables, as well as the
relationship between the response of each variable and the experimental level. Figure 2A
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and Figure S1A show the joint influence of the liquid–solid ratio and time on the PYP
yield at a temperature level of 0. The shapes of the contour plots shown in Figure S1A are
nearly elliptical, indicating that the interactions of time and temperature were significant
to the PYP yield, which is consistent with the regression coefficient significance obtained
from the equation. Although the response surfaces shown in Figure S1B,C were steep,
Figure 2B,C were not elliptical, suggesting that the temperature and liquid–solid ratio did
not exhibit significant mutual interactions (Figure 2B and Figure S1B). The results for the
interaction of time and temperature showed a similar trend (Figure 2C and Figure S1C).
The aforementioned analysis of the response surface demonstrated that the liquid–solid
ratio and time had a significant effect on the PYP yield.
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The optimal conditions for the extraction of PYP obtained using the model equation
are listed as follows: temperature, 100 ◦C; time, 120 min; liquid–solid ratio, 29.32 mL/g;
the maximum predicted yield of PYP was 22.05 ± 0.37%. Validation experiments were
performed to verify the predicted yield of PYP for the optimal conditions, and the actual
experimental yield of PYP was 22.15 ± 0.55%, which was not significantly different from
the predicted yield. This result indicates that the analytical model of this study can be
applied to predict the extraction conditions of PYP.

2.3. Purification of PYP and Its Physicochemical Properties

PYP was deproteinated by the Sevag method, and the final product was named PPYP.
The physicochemical properties of PPYP are shown in Table 3. The total sugar content of
PPYP was determined to be 93.2 ± 1.5%, composed mainly of galactose and rhamnose,
with a molar ratio of 5.3:1 (Figure S2.). PPYP contained a sulfate group, indicating that
PPYP was a negatively charged hetero-rhamno-galactan. HPGPC profile of PPYP showed a
sharp peak (Figure S3) with an average molecular weight of 151.6 kDa, which is consistent
with a previous report [30]. The results demonstrated that PPYP was a sulfated hetero-
rhamno-galactan.
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Table 3. Physicochemical properties of PPYP.

Name Sugar (%) Sulfate
(mmol/mL)

3,6-anhydro-α-
L-galactose

(%)

Molecular
Weight
(kDa)

Monosaccharide Molar
Ratio Gal Rha

PPYP 93.2 ± 1.5 1.2 ± 0.03 20.8 ± 1.1 151.6 5.3 1.0
Note: Gal: galactose; Rha: rhamnose. Data are presented as the means ± SD.

2.4. FT-IR Spectroscopy Characteristics of PPYP

The characteristics of PPYP were examined by Fourier transform infrared (FT-IR)
spectrometer (Figure 3). The peaks at 3448, 2935, and 1637 cm−1 presented the stretching
vibrations of hydroxyl, alkyl, and carboxyl groups [31], respectively. The stretching vibra-
tion of S=O exhibited a peak near 1240 cm−1 which was characterized by the presence of
sulfate groups [32]. The characteristic absorption peak of the ether bond (-C-O-C-) was
observed at 931 cm−1, indicating that PPYP contains 3,6-anhydro-α-l-galactose [33], which
is consistent with the physicochemical property of PPYP. The peak at 1000–1200 cm−1,
500–800 cm−1, and 891 cm−1 confirmed that PPYP existed in the pyran structure with a
β-type glycosidic bond. PPYP also showed a peak of Gal at 1074 cm−1 [34–37]. The FT-IR
spectra illustrated that PYPP might be a β-type sulfated galactan-pyranose.
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2.5. Effect of PPYP on Lipid Accumulation in Palmitic Acid (PA)-Induced HepG2 Cells
2.5.1. Cytotoxicity of PPYP and PA on HepG2 Cells

HepG2 cells were treated in different concentrations of PPYP or PA for 48 h. When the
cells were treated with PA at the concentrations ranging from 25 to 200 µM, no cytotoxicity
toward HepG2 cells was observed compared with that in the normal control (NC) group
(Figure 4A). As shown in Figure 4B, PPYP had no effect on cell viability in the concentration
range 12.5–200 µg/mL. Therefore, the concentrations of PA up to 200 µM and PPYP at
200 µg/mL were chosen for the following experiments.
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2.5.2. PPYP Alleviates PA-Induced TG Accumulation in HepG2 Cells

PA was used to induce TG accumulation in HepG2 cells. As shown in Figure 5A,
compared with the NC group, the TG content increased in a PA concentration-dependent
manner. Treatment with 200 µM PA demonstrated the highest TG content in HepG2 cells.
Therefore, 200 µM was selected as the appropriate concentration of PA to develop a cellular
model of TG accumulation in vitro. PPYP supplementation significantly decreased the TG
accumulation in HepG2 cells compared to that in the PA group (200 µM, Figure 5A). Oil
red O staining also revealed that PPYP significantly decreased the hepatic intracellular
TG accumulation (Figure 5B). Based on these results, the lipid metabolism-related gene
was analyzed via qPCR. As shown in Figure 5C, the levels of sterol regulatory element
binding transcription factor 1 (SREBP1), acetyl-CoA carboxylase (ACC), and fatty acid
synthase (FAS) were decreased in the PPYP + PA group compared to that in the PA group.
In addition, we found that the expression of carnitine palmitoyltransferase 1 (CPT1) and
peroxisome proliferator activated receptor alpha (PPARβ) increased upon treatment with
PPYP, suggesting that PPYP could trigger fatty acid β-oxidation and inhibit lipogenesis.

2.6. Effect of PPYP on Lipid Accumulation in High-Sucrose-Fed D. melanogaster Larvae

D. melanogaster larvae were cultured in normal medium containing PPYP. The data
depicting body weights are shown in Figure 6A. PPYP did not cause a significant difference
in the body weight, as well as TG content, in third instar larvae compared to that observed in
the NC group, suggesting that PPYP did not affect physiological lipid content in the larvae
fed with a normal diet. However, a high-sucrose-diet (HSD) significantly promoted TG
accumulation in third instar larvae. Compared to the HSD group, the PPYP + HSD group
demonstrated a significant reduction in the TG content (Figure 6B). The aforementioned
results indicate that PPYP exhibited a potential lipid-lowering ability.

To determine the potential mechanisms by which PPYP alleviated the elevated TG
in HSD-fed larvae, the expression of several lipid synthesis-related genes in the fat body
of third instar larvae were examined using qPCR. FAS is a lipogenic factor activated by
the transcription factor SREBP. Compared to the HSD group, FAS expression decreased
(0.8-fold) in the PPYP + HSD group; SREBP expression also decreased significantly (0.6-
fold), indicating that PPYP prevented an increase in lipogenesis after the administration of
a high-calorie diet (Figure 6C). We further determined the expression of genes involved
in lipid catabolism, the expression of acyl-Coenzyme A oxidase at 57D distal (Acox57D-
d), fatty acid-binding protein (FABP), and phosphocholine cytidylyltransferase 1 (CCT1)
tended to decrease in the HSD group. PPYP supplementation significantly upregulated the
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expression of Acox57D-d and FABP compared to that observed with HSD alone (Figure 6C).
These results suggest that PPYP reduced lipid accumulation by regulating the expression
of genes associated with lipid metabolism.
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3. Discussion

The extraction process plays a crucial role in the study of porphyran, as the process
parameters influence the polysaccharide yield, structure, and bioactivity [38]. Different
extraction technologies, including hot water extraction, microwave-assisted extraction,
ultrasonic-assisted extraction, and enzyme-assisted extraction, have been used to obtain
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polysaccharides from macroalgae [39,40]. Among them, hot water extraction is consid-
ered the conventional method owing to its simplicity and safety. The main influencing
factors include extraction temperature, extraction time, and liquid–solid ratio. Limited
information is available on the optimal conditions for the hot water extraction of PYP.
Using RSM, the present study showed that the maximum yield of PYP was 22.15 ± 0.55%,
obtained using hot water extraction. PPYP derived from PYP was analyzed; it was a β-type
sulfated hetero-rhamnogalactan-pyranose with medium molecular weight. Accumulating
evidence demonstrates that bioactive polysaccharides inhibit diet-induced metabolic dis-
ease by inhibiting lipid accumulation, including NAFLD [41] and obesity [42]. We noted
that high-caloric diets easily promoted lipid accumulation, and subsequently led to the
development of metabolic diseases. Hence, we investigated whether PPYP also inhibited
lipid accumulation.

High-fat or high-sugar diets exert adverse effects on liver lipid metabolism, which is
characterized by the deposition of TG as lipid droplets in the cytoplasm of hepatocytes [43].
HepG2 cells display many genotypic features of normal human hepatocytes [44] and are
widely used to evaluate hepatic function in vitro [45]. According to a previous study,
the PA-induced HepG2 cell hepatosteatosis model is commonly used that identify bio-
active compounds to inhibit lipid accumulation. For example, Zhong et al. demonstrated
that the Ganoderma lucidum polysaccharide peptide (GLPP) reduced the accumulation of
lipid droplets and the content of TG in the hepatosteatosis model of HepG2 cells [46].
Huang et al. reported the preventive and therapeutic effects of resveratrol on PA-induced
hepatocyte steatosis in HepG2 cells [47]. Therefore, in this study, the PA-induced HepG2
cells hepatosteatosis model was utilized for evaluating the lipid-lowering ability of PPYP.
Consistent with previous studies [48], our study showed that PA could significantly increase
lipid accumulation in a dose-dependent manner in HepG2 cells. PPYP significantly reduced
TG content, indicating the inhibition of the PA-induced steatosis in HepG2 cells. SREBP1,
ACC, and FAS play an important role in regulating the synthesis of TG [49]. PPYP could
downregulate the gene expression of SREBP1, ACC, and FAS, consistent with the decrease
in TG content. Additionally, the expression levels of CPT1 and PPARα, regulators of fatty
acid β-oxidation, were significantly increased upon PPYP supplementation [50]. The
result demonstrated that PPYP might reduce lipid accumulation by increasing fatty acid
β-oxidation. Therefore, PPYP contributes to the enhancement of fatty acid β-oxidation
and inhibition of lipogenesis in hepatocytes. Lipid accumulation in hepatocytes leads to
hepatic steatosis, which is an early feature of NAFLD [51]. Therefore, we speculated that
PPYP might prevent the progression of NAFLD by reducing lipid accumulation.

Recent evidence suggests that sugar also promotes fat accumulation and further
increases the risk of NAFLD [52]. Sucrose is commonly used as a sweetener worldwide.
Intake of sucrose-sweetened beverages (SSBs) enhances the levels of circulating TGs and
enhanced de novo lipogenesis in the liver or conversion of surplus carbohydrates to
TGs [53]. Many studies have shown that D. melanogaster is an appropriate model for
mimicking human disease because it exhibits many similarities with mammals, such as
conservative metabolic and signal transduction pathways [54]. In D. melanogaster larvae,
excess dietary sucrose is stored as TGs. When excess fat exceeds the storage capacity of the
fat body, it leads to ectopic deposition of free fatty acids into other tissues. This, in turn
leads to the development of a metabolic disorder [55,56]. An in vivo experiment revealed
that PPYP supplementation significantly reduced the TG content in high-sucrose-fed larvae.
Meanwhile, the expression of SREBP1 and FAS was downregulated in the fat body of
third instar larvae, and the expression of fatty acid β-oxidation-related genes, including
Acox57D-d, FABP, and CCT1 was upregulated [57,58]. Our results demonstrated that PPYP
supplementation led to a decrease in TG content, which was linked to the reduction in
lipogenesis and increase in lipid oxidation in the larval fat body. To summarize, PPYP
showed significant lipid-lowering bioactivity under in vitro and in vivo conditions.
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4. Materials and Methods
4.1. Materials and Chemicals

Pyropia yezoensis was obtained from Seaweed Research Center, National Institute of
Fisheries Science (Mokpo, South Korea). The triglycerides (TG) assay kit and total pro-
tein (TP) assay kit were provided by Shenzhen Icubio Biomedical Technology Co., Ltd.
(Shenzhen, China). TRIzol reagent was purchased from Invitrogen (Carlsbad, CA, USA).
TransScript All-in-One First-Strand cDNA Synthesis Supermix for qPCR, and TransStart
Top Green qPCR SuperMix were purchased from TransGen Biotech (Beijing, China). Man-
nose, rhamnose, glucuronic acid, galacturonic acid, glucose, galactose, xylose, arabinose,
and fucose were obtained from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).
Thiazolyl blue tetrazolium bromide (MTT) and dimethyl sulfoxide were purchased from
BBI Life Sciences (Shanghai, China). Minimum essential medium (MEM) and fetal bovine
serum (FBS) were purchased from Gibco (Grand Island, NE, USA). Penicillin-streptomycin
solution (100×) was obtained from Biosharp Life Sciences (Anhui, China). Dextran stan-
dards were purchased from China Pharmaceutical Biological Products Analysis Institute
(Beijing, China). Palmitic acid (PA) was provided by Kunchuang Biotechnology (Xi’an,
China). All other chemical reagents used were of analytical grade.

4.2. Single-Factor Design for Pyropia Yezoensis Polysaccharide

The obtained P. yezoensis was air-dried, ground into powder, and passed through a
40-mesh sieve. Subsequently, 500 g powder was refluxed thrice with 2.5 L of 95% ethanol
at 60 ◦C for 2 h to eliminate the alcohol-soluble components. The pretreated powder was
then used for the extraction of polysaccharides via the hot water extraction method. Three
independent variables, extraction time (from 30 to 240 min), liquid–solid ratio (10:1, 20:1,
30:1, 40:1, 50:1 mL/g), and extraction temperature (from 60 to 100 ◦C), at three levels were
selected for the study, and the yield of polysaccharide extracted (Y) was determined as the
response. After the extraction, the filtrate was collected via centrifugation. The filtrate was
then precipitated by adding a certain amount of ethanol (95%, v/v) until the ethanol content
dropped to 80% (v/v). The solution was then stored at 4 ◦C for 24 h. The solid products
(designated as PYP) were then collected via centrifugation, washed thrice with ethanol,
and dried at 70 ◦C overnight. PYP content was determined using the phenol-sulfuric acid
method, in which galactose served as the standard [34]. The PYP yield was calculated
using Equation (1).

PYP yield (%) = [PYP weight (g)/P. yezoensis pretreated powder(g)] × 100% (1)

4.3. Experimental Design

PYP yield was optimized by a Box–Behnken design (BBD) and using the results of
the single-factor experiment with three factors: liquid–solid ratio, time, and temperature.
These three factors were designated A, B, and C and categorized into three levels, coded
(−1, 0, +1) for low, middle, and high (Table 4). The design enabled us to determine 17
randomly executed experimental points using Design-Expert software (Version 8.0.6).

Table 4. Level and coded values of different variables in the Box–Behnken design (BBD).

Symbols Independent Variable
Level

−1 0 1

A Liquid–solid ratio (mL/g) 10:1 20:1 30:1
B Time (min) 30 75 120
C Temperature (◦C) 80 90 100

4.4. Purification of PYP

PYP extraction was performed with optimal extraction parameters (temperature:
100 ◦C, time: 120 min; liquid–solid ratio: 29.32 mL/g) and extraction process of PYP. The
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dried PYP was dissolved in distilled water (20 g/L), and the protein was removed using
the Sevag method [59]. Then, the aqueous phase was collected, dialyzed, and lyophilized
to powder, termed PPYP. The procedure for the extraction and optimization of purified
porphyran is illustrated in Figure 7.
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4.5. Characteristics of PPYP Analysis

The Bradford method was used to determine the protein content [60]. PPYP was
analyzed using FT-IR spectroscopy [61]. The sulfate content was determined via the turbidi-
metric method [62]. Molecular weights and monosaccharide composition were analyzed
by high-performance gel permeation chromatography (HPGPC) and high-performance
liquid chromatography, respectively, as described previously [28].

4.6. Protocol for Obtaining the Palmitic Acid (PA)-Induced HepG2 Cells
4.6.1. Cell Culture and Treatment

HepG2 cells (a human hepatic carcinoma cell line) were purchased from the Cell Bank
of the Shanghai Institute of Biochemistry and Cell Biology. The HepG2 cells were cultured
in MEM supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin
and incubated in a 5% CO2 incubator at 37 ◦C. The cytotoxicity of PA and PPYP was
analyzed via the MTT assay. The HepG2 cells were seeded at a density of 5 × 103 per
well with 100 µL of the medium in 96-well plates. PA at a concentration ranging from 25
to 200 µM was used to treat the HepG2 cells for 48 h. PPYP at a concentration ranging
from 12.5 to 200 µg/mL was used to treat the HepG2 cells for 48 h. The MTT assay was
performed to analyze cell viability. Cell vitality was calculated using Equation (2).

Cell vitality = A treatment/A nontreatment (2)
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4.6.2. Triglyceride Content Analysis

The HepG2 cells were seeded in 12-well plates for 48 h; the plates were divided into
the control group and those treated with PA (25 to 200 µM) and PA + PPYP (200 µM +
200 µg/mL). These samples were collected using 200 µL of 0.1% Tween-PBS buffer, and
centrifuged at 10,000× g for 10 min at 4 ◦C, with three replicates/group. The supernatant
was evaluated using an automatic biochemical analyzer purchased from Shenzhen icubio
Biomedical Technology Co., Ltd. (Shenzhen, China) equipped with the total protein (TP)
assay kit. These samples were heated for 5 min at 70 ◦C to inactivate endogenous enzymes
and then centrifuged to remove debris. Next, the samples were analyzed using the TG
assay kit. The assays were repeated thrice for each sample.

4.6.3. Oil Red O Staining

The HepG2 cells were seeded in 24-well plates overnight and then treated with PA
(200 µM) or PA + PPYP (200 µM + 200 µg/mL) for 48 h. The HepG2 cells were stained using
an oil red O stain kit (for cultured cells) (Solarbio, G1262) according to the manufacturer’s
instructions. Images of the stained cells in the normal control group, PA group, and PPYP +
PA group were obtained using an inverted microscope (LEICA DMi8, Wetzlar, Germany).

4.7. Experimental Protocol for Obtaining High-Sucrose-Fed D. melanogaster Larvae
4.7.1. D. melanogaster Larvae and Treatment

D. melanogaster w118 was purchased from Qidong Fungene Biotechnology (Jiangsu,
China). It was cultured on standard medium (comprising 20 g corn, 8 g sucrose, 8 g yeast,
0.18 g calcium chloride, 1.75 g agar, and 2 mL propionic acid mixed with hot water to make
a 250 mL diet) at a constant temperature (25 ◦C) in a humidity incubator (relative humidity,
70%) with a 12 h light/dark cycle. Next, D. melanogaster was kept on standard medium, and
embryos were collected on yeasted grape juice agar plates. These embryos were cultured
and randomly separated into the normal chow group (NC group), high-sucrose-diet group
(HSD group, 1 M sucrose), and high-sucrose-diet group containing 25 mg/mL of PPYP
(HSD + PPYP group).

4.7.2. Triglyceride Content Analysis

The NC, HSD, and HSD + PPYP D. melanogaster 3rd instar larvae were collected,
ground in 0.1% Tween-PBS buffer (pH 7.4, weight (g): volume (mL) = 1:80), and centrifuged
at 10,000× g for 10 min at 4 ◦C, with three replicates/group. The supernatant was evaluated
using an automatic biochemical analyzer purchased from Shenzhen Icubio Biomedical
Technology Co., Ltd. (Shenzhen, China) equipped with the total protein (TP) assay kit.
The samples were heated for 5 min at 70 ◦C to inactivate endogenous enzymes and then
centrifuged to remove debris. Next, the samples were analyzed using a TG assay kit. The
assays were repeated three times for each sample.

4.8. qPCR Analysis

TRIzol reagent was used to extract total RNA from HepG2 cells or D. melanogaster
3rd instar larval fat body (20 larvae/tube). The first-strand cDNA of the HepG2 cells and
3rd instar larvae fat body was synthesized from 1µg of RNA using the TransScript All-in-
One First-Strand cDNA Synthesis Supermix according to the manufacturer’s instructions.
The cDNA was analyzed via qPCR using a gene-specific primer (Table S1). qPCR was
performed using LightCycler 96 (Roche, Basel, Switzerland). The initial cycle of the PCR
program was completed in 30 s at 95 ◦C. This was followed by 40 cycles (denaturation at
95 ◦C for 30 s, annealing at 60 ◦C for 30 s, and extension at 72 ◦C for 20 s). The relative
quantification of mRNA was performed using the 2−∆∆Ct method.

4.9. Statistical Analysis

Data were calculated as the mean of three replicate determinations with significance
at p < 0.05, after analyzing the variance (ANOVA) and processing with GraphPad Prism
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version 8.00 (GraphPad, San Diego, CA, USA). The experimental results of the response
surface design were analyzed using the Design-Expert software (version 8.0.6, State-Ease
Inc., Minneapolis, MN, USA).

5. Conclusions

In this study, the extraction parameters of porphyran from P. yezoensis were optimized
using the RSM. The optimum extraction conditions were determined as follows: tempera-
ture, 100 ◦C; time, 120 min; liquid–solid ratio, 30 mL/g. PPYP was then obtained using the
Sevag method; it was determined to be a β-type sulfated hetero-rhamnogalactan-pyranose.
PPYP had a significant inhibitory effect on lipid accumulation in vitro and in vivo, suggest-
ing that PPYP possesses the potential as a dietary supplement for lowering lipid levels in
patients with high-sucrose or -fat diet-induced metabolic diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-339
7/19/2/53/s1, Figure S1: 2-D contour plots of the effects of the various parameters on the PYP yield.
Figure S2: Monosaccharide composition of PPYP. Figure S3: The molecular weight determination of
PPYP. Table S1: Primer sequences for qPCR.
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