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Abstract: Many proteins function by interacting with other small molecules (ligands). Identification
of ligand-binding sites (LBS) in proteins can therefore help to infer their molecular functions. A

comprehensive comparison among local structures of LBSs was previously performed, in order

to understand their relationships and to classify their structural motifs. However, similar exhaus-
tive comparison among local surfaces of LBSs (patches) has never been performed, due to com-

putational complexity. To enhance our understanding of LBSs, it is worth performing such

comparisons among patches and classifying them based on similarities of their surface configu-
rations and electrostatic potentials. In this study, we first developed a rapid method to compare

two patches. We then clustered patches corresponding to the same PDB chemical component

identifier for a ligand, and selected a representative patch from each cluster. We subsequently
exhaustively as compared the representative patches and clustered them using similarity score,

PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures

of the LBSs and those of the ligand-binding protein sequences and functions. Consequently, we
classified the patches into ~2000 well-characterized clusters. We found that about 63% of these

clusters are used in identical protein folds, although about 25% of the clusters are conserved in

distantly related proteins and even in proteins with cross-fold similarity. Furthermore, we showed
that patches with higher PatSim score have potential to be involved in similar biological

processes.

Keywords: protein-ligand interactions; ligand-binding site; exhaustive comparison; molecular surfa-

ces; electrostatics potentials

Introduction

Despite the rapid growth of genetic information and

the number of protein structures deposited in the

Protein Data Bank (PDB),1 functions of many pro-

teins are not clearly understood. The functions of

such proteins have often been assigned based on the

analogy to their homologs with known functions,

because proteins with highly similar sequences and

structures tend to be evolutionarily related and have

similar functions.2–7 However, homologs proteins are

not always available, and some proteins with similar

sequences but dissimilar structures exist due to
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protein conformational plasticity, ligand-binding, sol-

vent effects, or mutations, such as EF-hand calcium-

binding proteins.8,9 Thus, identifications of the func-

tions for those proteins based on their homologs are

not always accurate.

To compensate for these weak points of

homology-based function identification, various

methods to identify binding sites of small chemical

compounds (ligands) in proteins have been devel-

oped.10–13 Since many proteins accomplish their

characteristic biochemical functions by interacting

with ligands, such as substrates, cofactors and inhib-

itors, identification of ligand-binding sites (LBSs) in

proteins can help to infer their functions. One of the

most successful methods is based on a similarity

search in databases for proteins in which local struc-

tures or surfaces of LBSs are similar to those of a

query protein with unknown functions.14–27 Among

these methods, the surface-based methods, such as

eF-seek23 and Pocket-Surfer,25 are reportedly able to

detect similar LBSs independent of sequence and

fold similarity.14,22,23,25,28 In addition, a heterogene-

ous method more targeted to druggable LBSs has

been recently developed.26

Local atomic structures and physicochemical

characteristics of LBSs of many proteins have been

compared, in order to understand their relationships

and to classify structural motifs that are useful for

inference of LBSs and functions in proteins. These

comparisons have revealed LBSs shared by proteins

bearing different folds.16,21,22,29–33 Kinjo and Naka-

mura recently conducted an all-against-all compari-

son of 186,485 LBSs, a much larger number of LBSs

as compared to previous analyses,16,21,22,29–32 using

a relational database search method and alignment

refinement.33 They analyzed the similarity networks

of LBSs and discovered a large number of similar

structural motifs of LBSs with cross-fold similarity.

Exhaustive comparisons of LBSs at atomic struc-

ture level have been performed. However, to our

knowledge, such comparisons at molecular surface

level have never been attempted, due to huge compu-

tational complexity required for comparisons among

many local surfaces of LBSs (hereafter, referred to as

a “patch”). This is because the number of vertices

representing a patch is much larger than that of

atoms in LBS. For example, the average number of

atoms involved in LBS of adenosine-50-triphosphate

(ATP) is 74, while its average patch is constructed of

821 vertices (these numbers were obtained from the

patch data used in eF-seek23. Despite this daunting

task, it is worthwhile to perform an exhaustive com-

parison among patches and then to classify them

based on similarities of their surface configurations

and electrostatic potentials (EPot), for a better under-

standing of LBSs at surface level.

In this study, we developed a rapid similarity

search method for comparing a huge number of

patches, by applying a hash table. Patches, except

for DNA, RNA, monoatomic ions, and unknown

ligands, were extracted from molecular surface data

stored at the eF-site.34 We prepared representative

patches by performing hierarchical clustering for

patches with the same three letter code of the PDB

chemical component identifier (Ligand ID), using

patch similarity based on their surface configura-

tions and their EPots (hereafter, the score for patch

similarity is referred as “PatSim”). Subsequently, to

obtain the canonical surface patterns of patches, we

classified them into clusters based on PatSim scores

through an exhaustive comparison of the representa-

tive patches. Furthermore, we compared PatSim

scores with similarities of atomic structures of LBSs,

and with similarities of sequences and functions of

proteins to which ligands bind, in order to under-

stand the characteristics of LBSs from various

viewpoints.

Results

Hierarchical clustering of patches in each

chemical identifier

The atomic coordinates of 148,199 ligands for 8283

ligand IDs (4794 out of these had more than two

atomic coordinates) were obtained from 33,053 PDB

entries (PDB ID) with molecular surfaces available

at eF-site.34 The patches for these ligands were

extracted from surfaces of their binding proteins,

according to the patch definition (see Materials and

Methods section). Consequently, 141,194 patches,

each constructed of >20 vertices, for 7851 ligand IDs

were obtained from 31,950 PDB IDs (4538 out of

these had more than two patches) (Supporting Infor-

mation Table SII).

To select representative patches, we performed

an all-against-all comparison among patches with

identical ligand IDs, using our similarity search

method (see Materials and Methods section), and

performed a hierarchical clustering of patches in

each ligand ID. (In total, 477,712,729 patch pairs

were compared). The clustering threshold was deter-

mined as a threshold that can make the largest

number of clusters (see more details in Supporting

Information Table SIII). The computation of the

comparisons took 64 days on a cluster machine con-

sisting of 5 nodes, each with an 8-core processor

(Intel Xeon X5460 3.2 GHz). If the similarity search

for a patch pair took 10–30 seconds as a previously

reported surface-based method takes,35 the total

computation would take 1382–4149 days on the

same system. In this sense, our method is consid-

ered to be faster than the reported method. Conse-

quently, 26,059 representative patches made for

7851 ligand IDs were selected from 17,135 PDB

entries. The number of representative patches for
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the 20 most abundant ligand IDs is shown in Sup-

porting Information Table SIV.

Exhaustive comparison of the representative

patches
An exhaustive comparison among the 26,059 patches

was performed. Namely, a total of 339,522,711 patch

pairs were compared, and then hierarchically clus-

tered using PatSim scores. The entire computation

was performed in 29 days on a cluster machine con-

sisting of 3 nodes, each with an 8-core processor

(Intel Xeon X5460 3.2 GHz).

To understand the relationship between PatSim

score and structural similarity of proteins from

which patches are extracted, protein fold similarities

in each cluster were investigated at different clus-

tering thresholds. We assigned SCOP codes (SCOP

concise classification strings; SCCS)36 to each patch,

and then quantitatively analyzed SCOP hierarchical

classification (family, superfamily, fold and class) to

find the level where all of patches in each cluster

share common SCCS. In fact, only about half of the

representatives, 13,431 patches, had SCCS assigned;

however, we assigned SCCS to 4428 unassigned

patches based on sequence similarity to proteins of

the assigned patches (see more details in Fig. S2);

that is in total, 17,804 patches (68% of the represen-

tative patches) for 6835 ligand IDs. The number of

clusters (�2 patches) classified in different SCOP

classifications at different clustering thresholds is

shown in Supporting Information Table SV. Two

patch area sizes (psize) >0 Å2 and �200 Å2 were

considered, because smaller patches are likely to

have greater chances of matching other patches, and

so they might generate background noise in this

analysis. Consequently, we found that the essential

features with psize >0 Å2 are the same as those

with �200 Å2, and so we only mention hereafter for

the cases with �200 Å2. Note that although some

unassigned patches in a cluster were simply ignored,

this limitation would not seriously affect a tendency

in this analysis. In addition, clusters of which

patches did not share any common SCCS even in

class level were classified them into “others” level.

At the threshold of 0.1, which could make the

largest number of clusters of which patches shared

common folds at family or superfamily level (see

more details in Supporting Information Table SV),

and for patches with psize �200 Å2, there were 264

different SCCSs in SCOP fold level shared in 1852

clusters, with an average of 7 clusters per fold [Fig.

1A)]. These clusters may be regarded as well-

characterized patterns of patches. Among them,

there were 57-folds shared in �10 clusters, and 27-

folds shared in �20 clusters. The 20 most abundant

SCOP folds are shown in Figure 1(B,C). Protein

kinase-like (d.144) and TIM beta/alpha-barrel (c.1)

were most often shared in 148 and 136 clusters,

respectively. Both protein folds are quite common in

living cells. Proteins with protein kinase-like folds

regulate most biological processes, such as signaling

and regulatory processes, in a living organism by

chemically adding phosphate groups to other pro-

teins.37 Fifteen distinct enzyme families use TIM

beta/alpha-barrel fold to catalyze different

reactions.38 The diversity of these folds and other

folds, such as phosphorylase/hydrolase-like (c.56),

alpha/beta-hydrolases (c.69), Rossmann-fold (c.2),

and immunoglobulin-like (b.1), was previously

reported.33,39–41 In addition, immunoglobulin-like

fold (b.1) is remarkably used in 141 clusters of the

others level, indicating that this fold has structural

diversity and tends to make heterogenetic patches

resulting in diversity of patch.

Figure 1. Diversity of patch clusters at the ligand-binding site in terms of protein folds at a clustering threshold of 0.1 (psize of

�200 Å2): (A) The number of patch clusters to which the given SCOP levels are assigned for total 2949 clusters. The patch clus-

ters indicated by dark bars are within SCOP fold. (B) The 20 most abundant SCOP folds used in 1852 patch clusters within

SCOP fold, and (C) those used in 748 patch clusters within others levels.
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The number of clusters containing patches for

an identical ligand ID was investigated, and the top

20 most abundant ligand IDs are shown in Table I.

In 2949 clusters, patches for an adenosine-50-

diphosphate (ADP) binding site were classified into

the largest number of different clusters, 91 clusters,

where 32 different folds (2.8 clusters per fold) were

shared. Furthermore, other patches for a protopor-

phyrin IX containing FE (HEM) and a flavin-

adenine dinucleotide (FAD) were classified into 62

and 21 clusters, respectively, where 16 (3.9 clusters

per fold) and 11 (1.9 clusters per a fold) different

folds, respectively, were shared. The diversity of

structural characteristics in HEM binding sites has

been demonstrated.42 In addition, 13% of ligand IDs

(658/5228) shared a single fold with more than two

clusters. This observation indicated that these

ligands, in which their proteins share a limited

number of folds, have diverse patches with distinct

surface configurations and different EPots, and sug-

gested that the diversity of these patches enables

their proteins to perform a variety of functions.

Relationship between similarities of protein

sequences and patches
Investigating the relationship between PatSim score

and sequence similarity of proteins (SeqSim) is valu-

able for understanding the possibility of inference of

ligand species and their LBSs in a protein from

their homologs proteins with known LBSs. The

high-correlation between them would ensure such

inference with high accuracy. Therefore, an exhaus-

tive comparison among the protein sequences for

the representative patches was performed using

BLAST,43,44 and the correlation between PatSim and

SeqSim scores was investigated. Note that some

Figure 2. The counter plots of PatSim score with or without EPot against: (I) SeqSim score and (II) GIRAF score, for patches

with psizes of �200 Å2.

Murakami et al. PROTEIN SCIENCE VOL 22:1379—1391 1383



LBSs are composed of more than two protein chains.

To deal with such LBSs, we selected only one

sequence in which the protein has the largest inter-

face with a ligand. In addition, to investigate the

effect of EPot on the protein-ligand interactions,

PatSim score based on only surface configurations;

that is PatSim without EPot, was also compared

with SeqSim score.

A large number of sequence pairs, 895,354,

lacked BLAST search hits, even though some patch

pairs of such sequence pairs had PatSim scores

larger than 0.9. Most of the pairs were for small

patches with flat surface configurations, such as

that for SO4 (sulfate ion) GOL (glycerol), EDO (1,2-

ethanediol), PO4 (phosphate ion), and ACT (acetate

ion), which are often used as additives to stabilize

protein structures. About 73% of all the sequence

pairs had SeqSim between 20% and 40% in both

PatSim with and without EPot. The contour plot

between PatSim and SeqSim scores is shown in Fig-

ure 2-I. The range of SeqSim between 20% and 35%

is considered as a problematic twilight zone for

sequence alignments, where the alignment method

often fails to correctly align protein pairs.45 The

Pearson’s correlation coefficients (PCCs) were com-

puted for different SeqSim scores and psizes, and

they are shown in Table II-A.

Weak and modest positive correlations were

observed for SeqSim score �0% and �40%, respec-

tively. However, at SeqSim of �80%, PCCs largely

decreased. The main reason is that there were a

number of proteins accommodating different ligands

on their protein surfaces, and the patches for bind-

ing different ligands to the same protein generally

have distinct configurations and different EPots.

Furthermore, as shown in Table II-A, PCCs for Pat-

Sim with EPot were slightly better than those for

PatSim without EPot by, on average, 0.041%,

0.049%, and 0.042%, for psizes of >0 Å2, �200 Å2,

and �500 Å2, respectively. As a result, PatSim and

SeqSim scores were weakly correlated, suggesting

that patches at LBSs can be conserved among dis-

tantly related protein sequences. On the contrary,

the poor correlation also suggests that patches have

unique characteristics independent of sequence

homology.

Relationship between similarities of atomic
structures in LBSs and patches

The next issue to address is whether any relation-

ship exists between similarities of local atomic struc-

tures in LBSs and those of patches. To investigate

this, we performed an exhaustive comparison among

atomic structures in the LBSs for the representative

patches using GIRAF,24 and then PCC between local

structural similarity in GIRAF and PatSim score

was investigated.

GIRAF scores were obtained for only 2.84% of

LBS pairs (9,758,557 out of 339,522,711 pairs of

26,059 LBSs), and the other pairs were regarded as

unlikely matches. In GIRAF, no matching reference

sets for such pairs were retrieved by a relation alge-

braic procedure, in order to facilitate the computa-

tion. There was modest positive PCC between

PatSim and GIRAF scores. PCCs were about 0.4

(GIRAF score >0) for both PatSim scores with and

without EPot (Table II-B), but PCC for PatSim with-

out EPot was slightly higher than that with EPot.

This is because GIRAF does not consider EPot, and

only considers atomic structures in LBSs. The con-

tour plots of PatSim scores versus GIRAF scores

(psize �200 Å2) are shown in Figure 2-II.

An ambiguous zone was found below GIRAF

score of 0.2, where GIRAF sometimes failed to

Table II. The Correlations of PatSim Scores With or Without EPot Against (I) BLAST % SeqSim Scores and (II)
GIRAF Scores, for Patches With psize � 200 Å2

Psize (Å2)

BLAST % SeqSim

PatSim score with EPot PatSim score without EPot

�0% �40% �80% �0% �40% �80%

(A) The correlations between PatSim scores and BLAST % SeqSim scores
> 0Å2 0.204 0.335 0.230 0.165 0.286 0.200
� 200Å2 0.255 0.392 0.263 0.217 0.347 0.217
� 500Å2 0.392 0.501 0.120 0.346 0.469 0.070

GIRAF score

PatSim score with EPot PatSim score without EPot

Psize (Å2) �0 �0.2 �0 �0.2

(B) The correlations between PatSim scores and GIRAF scores
>0 Å2 0.387 0.437 0.405 0.442
�200 Å2 0.390 0.437 0.402 0.444
�500 Å2 0.361 0.492 0.363 0.503
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correctly detect pairwise similarity between LBSs

(Fig. 2-II). This may be due to strict constraints for

matching reference sets or the heuristic alignment

method used in GIRAF. In the ambiguous zone, we

found many patch pairs with high PatSim scores, as

shown in Figure 3-I. This is because the differences

in protein folds did not affect the surface-based

search and PatSim score, but it was likely to affect

the atom position-based search and its score. Above

the ambiguous zone, PCCs increased to 0.437 (psize

�200 Å2) and 0.492 (psize �500 Å2).

As a consequence, even though modest and

meaningful correlation existed between PatSim

score and similarity of atomic structures in LBSs,

Figure 3. Examples of similar patches shared by protein with low atomic structural similarities: (I) (A) NAD (nicotinamide ade-

nine dinucleotide) binding patch of shikimate 5-dehydrogenase 2 (PDB ID: 1VI2). (B) NAP (NADP nicotinamide adenine dinucleo-

tide phosphate) binding patch of ketopantoate reductase (PDB ID: 2OFP). GIRAF score 5 0.078, PatSim score 5 0.945,

SeqSim score 5 56% (5/9; e-value 5 0.96, minimum coverage 5 2.9%) (II). (C) ADP-binding (adenosine-50-diphosphate) patch

of PDB ID: 1NNE. (D) ADP-binding patch of PDB ID: 3CF1. PatSim score 5 0.877, No GIRAF hit, SeqSim score 5 63% (7/18;

e-value 5 3.2). (III) (E) DA (20-deoxyadenosine-50-monophosphate) binding patch for the ribosome-inactivating protein alpha tri-

chosanthin (PDB ID: 1GIS). (F) ADP binding patch for the kinesin-like protein KAR3 (PDB ID: 1F9V). Superposition of DA (cyan)

and ADP (yellow) binding patches is also shown. PatSim score 5 0.958, No GIRAF hit.
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there were many similar patch pairs with Pat-

Sim scores �0.8 detected in the ambiguous zone.

This suggested that the current surface-based

method has potential to detect similar LBSs,

independent of atomic structure of LBS and fold

similarity.

Figure 4. The ratio in percent of patch pairs with at least one identical UFK. In each UFK category, the number of patch pairs

in which the proteins have at least one identical UFK is counted in each range of 0.05% PatSim change, and then it is divided

by the total number of all patch pairs contained in the same range.
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Relationship between the similarities of

functional keywords for proteins and patches
To understand the relationship between PatSim

score and similarity of protein function, we assigned

UniProt functional keywords (UFK)46 to each of the

representative patches and then investigated func-

tional relationships among them (see Materials and

Methods section). A total of 5,947 unique UniProt

accession numbers (UniProt AC) were obtained and

assigned to 18,471 proteins with 22,851 patches. In

addition, we assigned UniProt AC to 668 unassigned

proteins with 816 patches in the same procedure of

the SCCS assignment (Fig. S2); that is, in total,

19,139 proteins with 23,677 patches. The number of

keywords in each category is shown in Supporting

Information Table SVI. The ratio of the percent of

patch pairs that possess at least one identical UFK

in each range of 0.05% PatSim change was investi-

gated in each category. Note that patches did not

always have UFK in each of the categories, and so

such patches were simply ignored.

As a result, the ratios for PatSim with EPot

were always slightly higher than those for PatSim

without EPot, in the range from 0.9 to 1.0 (Fig. 4) In

particular, in the category of Biological process,

which is a series of chemical reactions or other

events regulated by interactions of proteins with

other proteins or ligands, the ratio for PatSim with

EPot was largely increased from 21.3% to 49.6%, in

that range. On the contrary, the ratio for PatSim

without EPot was increased from 10.9% to 29.2% in

the same range. Thus, these observations indicated

that there is better correlation with protein func-

tions, especially with Biological process, when

PatSim with EPot is used for similarity search of

LBSs, as compared to PatSim without EPot.

Discussion

We prepared 26,059 representative patches by

selecting a patch from each cluster in the hierarchi-

cal clustering, based on local surface similarity of

surface configuration and EPot. It may be possible

to select representatives based on local structural

similarity, as previously conducted to define struc-

tural motifs of LBSs.33 However, even if local struc-

tures of two LBSs are similar, their PatSim score is

sometimes very low due to their different EPots. For

example, the structural similarity between ADP-

binding site of human inositol (1,4,5)-triphosphate 3-

kinase (PDB ID: 1W2D) and that of Archaeoglobus

fulgidus Rio2 kinase (PDB ID: 1ZAR) was detected

with a p-value of 8.1 3 10217 (40 aligned atoms;

RMSD 5 0.75 Å)33 (Fig. 5). However, their surface

similarity detected with PatSim with EPot is 0.118,

but that detected with PatSim without Epot is

0.896. These patches had completely different EPots.

The ADP-binding patch of 1W2D has a positive aver-

age EPot of 0.114 V, because its LBS is close to an

inositol(1,3,4,5)-tetrakisphophate (4IP) binding site

maintained by positively charged residues and with

a higher positive EPot. Thus, we concluded that the

atom position-based selection is not suitable for the

selection of representative patches, because it

ignored significant differences in EPots between

such LBSs. The representative patches are available

at eF-seek28 by selecting “rep_26059” from a drop-

down list of the search database on the submission

page.

Figure 5. An example of similar ADP-binding patches with different EPots: (A) Human inositol (1,4,5)-triphosphate 3-kinase

(PDB ID: 1W2D), which accommodates ADP (cyan), 4IP (inositol-(1,3,4,5)-tetrakisphosphate; purple) and MN (manganese (II)

ion; green), (B) Archaeoglobus fulgidus Rio2 kinase (PDBID: 1ZAR) which accommodates ADP (yellow) and MN (green), (C)

Superposition of these ADPs with the local molecular surface of 1W2D (left) and that of 1ZAR (right); PatSim score with EPot 5

0.118 and that without EPot 5 0.896.
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To examine the search performance for surface

similarity by eF-seek with rep_26059, functions of 53

apo-proteins taken from LigASiste47 were predicted,

comparing with that using the original large patch

dataset with 255,647 patches including small

matches, and the results are shown in Supporting

Information Table SIX. Consequently, eF-seek with

rep_26059 has a performance similar to, but slightly

lower than that with the original dataset. Thus,

rep_26059 has an advantage of fast similarity search,

without losing its search ability largely. The reason

for the slightly lower prediction performance is prob-

ably because the large dataset, which contain a huge

number of heterogenetic patches, could provide a lot

of flexibility in the similarity search of eF-seek (see

more detailed in the Supporting Information 3).

Previously, after comparing the shapes of pro-

tein binding pocket to the shapes of their ligands,

Kahraman et al.48 concluded that shape complemen-

tarity in general is not sufficient to drive molecular

recognition alone and requires additional physico-

chemical properties. As indicated in the Supporting

Information 3, the larger patch dataset, which con-

tains a huge number of heterogenetic patches for a

specific ligand, achieved slightly higher overall accu-

racy for function prediction than the representative

patches, which contains a relatively small number of

canonical patches for a specific ligand. Namely, as

the more variable structures of ligand binding sites

are used, the more accurate predictions for the

bound ligands can be possible. In addition, the posi-

tive effect of electrostatic potential distribution on

molecular recognition was also confirmed. In fact,

current PatSim score with EPot is more powerful

than that without EPot for search of the similar

molecular surfaces of the ligand binding sites.

More than 99% of the clusters (motifs), each with

at least 10 atomic coordinates of LBSs, reportedly

shared the same domains at family or superfamily

level at an atomic level.33 In comparison with this pre-

vious report, the ratio of the clusters classified in the

same SCOP levels was smaller at surface level; that

is, about 63% (1,846/2,949 clusters; psize �200 Å2) of

the clusters were classified into these levels. This

could be the reason why the surface-based method is

sensitive to differences in EPot and insensitive to dif-

ferences in protein folds. As shown in Figure 5, it can

recognize such differences in the EPots in LBSs. Fur-

thermore, the similarity between patches for proteins

with low SeqSim scores was detected, and such

patches were included in the same cluster. For exam-

ple, the similarity between two ADP-binding patches

of two distantly related proteins with different folds

and low SeqSim scores (PDB IDs: 1NNE and 3CF1)

was detected with PatSim of 0.877 (a lower BLAST e-

value or an e-value closer to zero implies a more sig-

nificant SeqSim); however, the local structural simi-

larities of these LBSs were not detected (Fig. 3-II).

Another example is similarity between the 20-

deoxyadenosine-50-monophosphate (DA) binding patch

of the ribosome-inactivating protein alpha trichosan-

thin (PDB ID; 1GIS) and the ADP binding patch of

the kinesin-like protein KAR3 (PDB ID: 1F9V) (Fig. 3-

III). Although they have different SCOP folds, their

PatSim score was 0.958, but structural similarity

between their LBSs was never found by GIRAF.33

These examples suggested that the surface-based

method has better potential to detect common patches

shared by distantly related proteins and by proteins

with cross-fold similarity. Thus, sensitivity of patches

to EPot and insensitivity of them to protein folds lead

to differences in the ratios of the clusters classified in

family or superfamily levels.

The same analysis of patch clustering was car-

ried out with CATH,49 which semiautomatically clas-

sifies protein domains to hierarchical groups.

Consequently, overall results were not largely differ-

ent from those with SCOP. In Table I, analysis with

CATH topologies is also shown (see detailed analysis

in the Supporting Information 4).

A comparison of PatSim score with similarity of

protein functions revealed that patches with similar

EPots tend to have more similar functions, especially

in Biological process category of UFK, as shown in

Figure 4. Since protein interactions with ligands, such

as inhibitors, cofactors and substrates, underlie

almost all biological processes that are series of chemi-

cal reactions or other molecular events, patches of

LBSs in proteins need to be precisely conserved and

correctly recognized by ligands to regulate the biologi-

cal processes. In addition, EPot is fundamentally

important in the chemical reaction and molecular rec-

ognition procedures in almost all living cells. This

may be reflected by finding that PatSim score with

EPot correlated strongly with similarity of protein

functions, particularly for their biological processes.

It is interesting to examine how the current

search method for similar molecular surfaces can be

applied to function prediction for proteins of

unknown functions. There are many hypothetical

proteins, whose structures were determined during

the structural genomics programs in the world. Pre-

viously, such an application was once made for the

function prediction of TT1542 from Thermus thermo-

pilus (PDBID: 1UAN), where we made prediction of

its LBS and the sugar-like ligand,50 both of which

were further confirmed by the distant homolog

structure of MshB (deacetylase) from Mycobacterium

tuberculosis (PDBID: 1q7t) and its function.51

In the same manner, we tried another function

prediction for a hypothetical protein, pag5_736 from

Pyrobaculum aerophilum (PDBID: 1RKI-B), whose

structure was determined but function unknown, by

the current search method for similar molecular

surfaces of LBSs. Then, P6G (hexaethylene glycol)

patch of the hypothetical protein was classified into
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the cluster, where all other patches accommodating dif-

ferent ligands had similar shape and similar EPot, and

also their binding proteins all were hydrolases (Sup-

porting Information Fig. S3 and Supporting Informa-

tion Table SVII). Furthermore, we found that the triad

of amino acid (His, Lys, and Phe) in the P6G-binding

site was also used in other LBSs of proteins in the

same cluster (Supporting Information Fig. S4). From

these observations, 1RKI was strongly inferred as

hydrolase. In addition, eF-seek23,28 could search similar

patches of hydrolases to the P6G-binding patch of 1RKI

with a similarity score >0.62, although similar struc-

tural motifs to it could not be found by GIRAF.24 More

details are described in Supporting Information 2.

In addition, function prediction for 53 apo-

proteins revealed that EPot contributes to narrow

down candidate ligand that binds to target proteins

as described above (see more details in the Support-

ing Information 3). These examples indicate that

patches with EPot are useful and complementary

tools to make novel function prediction for proteins

of unknown functions.

We found that LBSs of specific ligands have

diverse patches with different surface configurations

and EPots, and that distantly related proteins or

proteins with cross-fold similarity share common

patches in many cases. This indicated that patches

have unique characteristics that are independent of

their sequences and local atomic positions. The

results presented in this study will help to clarify

various types of protein-ligand interactions at sur-

face level and to predict protein functions, as a com-

plement to conventional similarity searches based

on SeqSim scores and local atomic positions.

Materials and Methods

Atomic coordinates of ligands

All of the atomic coordinates of ligands (nonpolymer

molecules), except atoms of DNA, RNA, and unknown

ligands, were obtained from PDBML data files52 in

PDB.1 The atomic coordinates of monoatomic ions

and single atom molecules were also excluded,

because their patches are too tiny, flat, and indistin-

guishable (Supporting Information Table SI).

Molecular surfaces of proteins

The molecular surfaces of many proteins were

obtained from eF-site (electrostatic surface of func-

tional-site).34 At eF-site, they are generated using the

molecular surface package (MSP)53 and represented

by a set of vertices with their surface normals. In

addition, for each vertex, EPot is calculated by solving

the Poisson–Boltzmann equations numerically with a

precise continuum model by the use of the SCB pro-

gram,54 and maximum and minimum curvatures

(MaxCuv, MinCuv) are calculated by rotating the nor-

mal plane from 0� to 180� with intervals of 5�.35

Local surfaces of ligand-binding sites

The local surface of LBS (patch) is defined as a set

of vertices on the surface of single or multiple chains

of a protein within 5 Å from any atoms of a ligand,

provided that the angle between a normal vector at

a vertex and a vector from the vertex to the nearest

ligand atom should be �90�. Tiny patches con-

structed of �20 vertices were removed, because such

patches are likely to match any local molecular

surfaces with similar EPots.

The similarity search method

A similarity search method to compare two surfaces

was developed using geometric hashing (GH) techni-

ques55–57 to quickly find two similar objects (a model

and a target) represented by a set of vertices. The

conventional GH method requires large computation

memory to store entries, each with a basis defined by

a pair of vertices, into a hash table (HT) indexed by

the coordinates of each of vertices on the transformed

model.55–57 However, too much memory space would

be required to store all of the entries of a large num-

ber of different patches into the HT all at once. Thus,

a pair of two patches is repeated compared, where

the matching is performed in the orthogonal coordi-

nate system of the original model object. A detailed

outline of the method is provided with a depiction of

the flow in Supporting Information Figure S1.

Definition of patch similarity
The number of matching vertices must be normal-

ized by the density of vertices on a patch, because of

different densities of vertices on patches. When com-

paring patchB to patchA and the density of patchB

(DB) is larger than that of patchA (DA), the number

of vertices on patchB (NB), and that of the matching

vertices (M) are normalized by DA/DB:

N0A 5 NA N0B 5 NB 3
DA

DB
M 5 M 3

DA

DB
:

On the contrary, if DB is smaller than DA, then

the number of vertices on patchA (NA) is normalized

by DB/DA.

N0A 5 NA 3
DB

DA
N0B 5 NB M05 M

Then, PatSim score between two patches is cal-

culated as:

PatSimðpatchA;patchBÞ ¼
M0

maxfN 0
A ;N

0
B g

:

In addition, the dissimilarity is defined as 1.0 –

PatSim(patchA, patchB).
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Selection of representative patches

To select representative patches, an all-against-all

comparison among patches was performed for each

ligand ID, and then a hierarchical clustering of

patches was performed using the R statistical pack-

age. The distance between two clusters was com-

puted using the group average method. In each

cluster, a representative patch was determined as a

patch with the minimum average mutual PatSim 5

minfS1;S2; . . . ;Sn21g, where n is the number of

patches in the same cluster and Si is the averaged

mutual PatSim for a patchi given by:

Si 5
1

n21

Xn21

j51;i6¼j

PatSimðxi; xjÞ:

Hierarchical clustering of the representative
patches

The representative patches were exhaustively com-

pared, and were hierarchically clustered using R.

Since the representatives of different ligand IDs are

different in terms of their characteristics, we

employed Ward’s method (minimum variance

method) to calculate the distance between two clus-

ters. It minimizes the total sum of squares of the

distance from each patch to the centroid of a cluster,

and it produces compact clusters with clear separa-

tions between them.

Assignment of SCOP codes to each patch

Protein structures are hierarchically classified into

class, fold, superfamily, and family in SCOP. In this

study, we only considered seven classes: (a) all-a, (b)

all-b, (c) a/b (parallel b sheet; b-a-b units), (d) a1b

(antiparallel b sheets; segregated a1b regions), (e)

multidomain, (f) membrane and cell surface proteins

and peptides, and (g) small proteins, except for (h)

coiled coil proteins, (i) low resolution protein struc-

tures, (j) peptides, or (k) designed proteins. A SCOP

parseable file (version 1.75) was used for the assign-

ment of a SCOP code(s) to each protein. For a patch

extracted from multiple chains, SCOP code for a

chain sharing the largest interface with a ligand

was used.

Assignment of functional keywords to each

patch
The UniProt function keywords (UFK)46 are tagged

with each of UniProt43 entries to describe specific or

more general properties of individual proteins.

These UFKs are hierarchically organized and classi-

fied into 10 different categories, but we only used

five categories: biological process, cellular compo-

nent, ligand, molecular function, and post-transla-

tion modification (PTM), and not coding sequence

diversity, developmental stage, disease, domain or

technical term.
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