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ABSTRACT The bacterial microbiome of human body sites, previously considered
sterile, remains highly controversial because it can be challenging to isolate signal
from noise when low-biomass samples are being analyzed. We tested the hypothesis
that stochastic sequencing noise, separable from reagent contamination, is gener-
ated during sequencing on the Illumina MiSeq platform when DNA input is below a
critical threshold. We first purified DNA from serial dilutions of Pseudomonas aerugi-
nosa and from negative controls using three DNA purification kits, quantified input
using droplet digital PCR, and then sequenced the 16S rRNA gene in four technical
replicates. This process identified reproducible contaminant signal that was separa-
ble from an irreproducible stochastic noise, which occurred as bacterial biomass of
samples decreased. This approach was then applied to authentic respiratory samples
from healthy individuals (n � 22) that ranged from high to ultralow bacterial bio-
mass. Using oral rinse, bronchoalveolar lavage (BAL) fluid, and exhaled breath con-
densate (EBC) samples and matched controls, we were able to demonstrate (i) that
stochastic noise dominates sequencing in real-world low-bacterial-biomass samples
that contain fewer than 104 copies of the 16S rRNA gene per sample, (ii) that critical
examination of the community composition of technical replicates can be used to
separate signal from noise, and (iii) that EBC is an irreproducible sampling modality
for sampling the microbiome of the lower airways. We anticipate that these results
combined with suggested methods for identifying and dealing with noisy communi-
ties will facilitate increased reproducibility while simultaneously permitting character-
ization of potentially important low-biomass communities.

IMPORTANCE DNA contamination from external sources (reagents, environment,
operator, etc.) has long been assumed to be the main cause of spurious signals that
appear under low-bacterial-biomass conditions. Here, we demonstrate that contami-
nation can be separated from another, random signal generated during low-
biomass-sample sequencing. This stochastic noise is not reproduced between techni-
cal replicates; however, results for any one replicate taken alone could look like a
microbial community different from the controls. Using this information, we investi-
gated respiratory samples from healthy humans and determined the narrow range
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of bacterial biomass where samples transition from producing reproducible micro-
bial sequences to ones dominated by noise. We present a rigorous approach to
studies involving low-bacterial-biomass samples to detect this source of noise and
provide a framework for deciding if a sample is likely to be dominated by noise. We
anticipate that this work will facilitate increased reproducibility in the characteriza-
tion of potentially important low-biomass communities.

KEYWORDS 16S rRNA gene, contamination, exhaled breath condensate, low
biomass, lung microbiome, sequencing noise, next-generation sequencing

The advent of next-generation sequencing sparked a keen interest in investigating
the microbial communities of sample types from locations or environments that

were previously considered sterile or too low in microbial biomass to characterize
accurately (1–9). Many of these investigations have fundamentally changed our defi-
nition of a sterile site and have demonstrated the large impact that low-bacterial-
biomass communities can have, for example, on a human host. However, these studies
also have raised critical issues and controversy due to irreproducible results (10–14).
The identification of DNA contamination from the laboratory and in reagents used for
DNA isolation and sequencing (15) helped greatly in trying to detangle spurious signal
that appeared out of nowhere. Nevertheless, results in studies of low-bacterial-biomass
samples that cannot be reproduced remain common, despite consideration of proper
quality control samples (10, 13, 14). Other studies have considered the effect of barcode
or index switching, whereby mistakes in reading the identifier for a sequencing group
cause the sequence to be attributed to a different group (16–18). Although this effect
has largely been studied on the Illumina HiSeq, the effect in amplicon sequencing does
not appear to be large (18). A very recent study identified well-to-well contamination
as a major contributor to variation; however, even after repeated assays using multiple
thermocyclers, handling robots, and separate locations, no consistency could be found
in the variation associated with any given library preparation method (18). This finding
suggests that another factor is also at play.

The goal of this study was to test the hypothesis that a stochastic sequencing noise
is generated during sequencing on the MiSeq platform—and, likely, other platforms
sharing that sequencing design—when sequencing input is below a critical threshold.
Stochastic sequencing noise can lead to erroneous and irreproducible conclusions
when interpreted as authentic sequences within a given sample. We tested this
hypothesis using both laboratory-generated serial dilutions of DNA extracted from
Pseudomonas aeruginosa strain PAO1 and authentic respiratory samples collected from
healthy human subjects.

For the purposes of this study, we define the “signal” of the sequencer as classifiable
sequences shared between technical replicates and “noise” as sequences that can be
classified but which lack consistency between technical replicates. In contrast, “con-
tamination,” such as reagent contamination, is defined as a signal shared between
replicates that is also present in experimental controls. Thus, contamination can be
detected only with the appropriate controls. It is also worth noting, however, that even
in cases where controls fail to amplify, the consistency, or lack thereof, between sample
replicates still provides critical information as to the balance of signal and noise within
the sample.

RESULTS
Identifying sequencing noise beyond lab and reagent contamination. We be-

gan by modeling how different types of contamination effects could be visualized using
the similarity of different kinds of replicates (Fig. 1A). Figure 1A presents an idealized
model of contamination effects on a single sample purified using 3 separate DNA
isolation kits and 3 technical replicates for each of those kits. Contamination within
each kit is assumed to be 100% different from contamination in all other kits. The
distribution of a hypothetical similarity score is plotted along the x axis for similarity
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FIG 1 Serial dilutions of P. aeruginosa DNA purified using three separate DNA isolation kits and sequenced in quadruplicate: effects of low biomass on results.
(A) An idealized model of contamination effects on a single sample purified using 3 separate DNA isolation kits and 3 technical replicates for each of those kits.
Contamination within each kit is assumed to be 100% different from that of reagents in all other kits. The distribution of a hypothetical similarity score is plotted
along the x axis for similarity between technical replicates (in red) and between kits (in blue). Where overlap occurs, the curves appear purple. The first column

(Continued on next page)

Stochastic Effects on Low-Biomass Gene Sequencing ®

May/June 2020 Volume 11 Issue 3 e00258-20 mbio.asm.org 3

https://mbio.asm.org


between technical replicates (in red) and between kits (in blue). Where overlap occurs,
the curves appear purple. The first column depicts the condition of high concentrations
of DNA, the second column depicts low concentrations of DNA where kit or reagent
contamination is dominant, and the third column depicts low concentrations of DNA
where random noise dominates. The critical takeaway from this modeling is that all
specific forms of DNA contamination should result in technical replicates looking highly
similar. We tested this by sequencing the 16S rRNA gene from serial dilutions of DNA
isolated from a pure bacterial culture of a single bacterial strain, in this case, Pseu-
domonas aeruginosa PAO1. DNA was isolated using three separate DNA isolation kits,
and each dilution was sequenced using four technical replicates. Consistent with
previous observations, as the concentration of input DNA decreased, the bulk of the
community membership was composed of reads belonging to operational taxonomic
units (OTUs) unrelated to P. aeruginosa and thus spurious (Fig. 1B). For example, at a
dilution of 1:100,000, only 28.65% � 4.23% (mean � standard error of the mean [SEM])
of reads comprised the OTU corresponding to PAO1. To assess the consistency of such
noninput sequencing signals, we compared the Bray-Curtis distances for each dilution
between isolation kits (i.e., interreplicate distances) and within technical replicates (i.e.,
intrareplicate). We plotted the results for each dilution set as a density distribution
estimate of the intra- and interreplicate Bray-Curtis values (Fig. 1C). Again, in the model
where contamination (in this case, kit contamination) is the major driver of sequencing
noise, the two peaks should stay together at high concentrations but separate with
dilution. Additionally, intrareplicate distance should stay low (technical replicates
should look similar). As expected, the distribution of the interreplicate distances (in
blue) increased, centering on higher values (i.e., the kits became more dissimilar from
each other) as the DNA was diluted. However, contrary to expectation, the intrarepli-
cate distances (in red) also increased as the DNA was diluted and overlapped the
interreplicate distances. This finding shows that the replicates from a single kit do not
look like themselves, indicating a stochastic source of variation.

Reagent contamination is well documented but was not observed in our initial
experiments, so we next tested reagents from seven separate DNA isolation kits by
carrying out the DNA isolation process on reagents alone. These controls were se-
quenced in triplicate, the resulting OTUs were plotted as a heat map (Fig. 1D), and the
intrareplicate Bray-Curtis distances were determined (Fig. 1E). Two of the seven controls
demonstrated low intrareplicate Bray-Curtis distances and communities consistent with
reagent contamination; however, the remaining five controls demonstrated diverse
communities that had little or no similarity between technical replicates. Collectively,
these data demonstrate that sequencing of dilute samples or reagents can result in a
nonreplicable, stochastic, positive signal (sequencing noise) even in the absence of
detectable DNA contamination within the control reagents.

Effect of sequencing noise on samples ranging from high to low bacterial
biomass. We next examined a group of clinical samples from healthy human volun-
teers (Table 1) to determine how sequencing noise might affect result interpretation.
Respiratory samples were chosen because they span the range from high to ultralow
bacterial biomass. To that end, we analyzed samples from the following sources: oral
rinse, posterior nasopharyngeal swab, bronchoalveolar lavage (BAL) fluid from right (R)
and left (L) lungs, a sample containing an equal mix of RBAL and LBAL (CBAL), and an
exhaled breath condensate (EBC) sample. EBC is of considerable interest because, as a
noninvasive sample, it could greatly expand the type of microbiological questions that

FIG 1 Legend (Continued)
depicts the condition of high concentrations of DNA, the second column depicts low concentrations of DNA where kit or reagent contamination is dominant,
and the third column depicts low concentrations of DNA where random noise dominates. (B) Heat map of the top 100 OTUs (horizontal axis) broken down by
dilution (vertical axis) and grouped using a complete linkage clustering. Note emergence of increasing numbers and diversity of low-abundance reads with
increasing dilution. (C) Kernel density estimates for the intrareplicate (within-kit) and interreplicate (between-kit) Bray-Curtis distance for each dilution series.
(D) Heat map showing the individual results from reagent controls with technical replicates (n � 3/sample). Samples are grouped using a complete linkage
clustering. The DNA isolation kit is indicated by the color displayed to the left of the heatmap. (E) Graph depicting the interreplicate Bray-Curtis from technical
replicates of reagent controls; bars are colored by kit as in panel D.
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could be addressed in epidemiological studies if it accurately reflects lower airway
microbial communities. We matched each sample type to the negative controls to
which it was best suited.

We extracted DNA from both samples and controls (including experimental controls
[e.g., sterile saline passed through the bronchoscope before bronchoscopy] and isola-
tion controls [e.g., purified DNA from DNA isolation reagents]) as described in Materials
and Methods, and from this we amplified the V4 region of the bacterial 16S rRNA gene
in triplicate using a dual-barcoding strategy and following a low-biomass protocol (19).
Finally, we sequenced each sample using an Illumina MiSeq instrument.

First, we examined whether biological samples were different from their respective
controls. In each of these comparisons, the samples were found by permutational
multivariate analysis of variance (MANOVA) (adonis) to contain significantly different
communities than the controls (oral rinse versus saline, P � 0.001; nasal swab versus
control swabs, P � 0.001; right BAL fluid versus scope prewash, P � 0.001; left BAL fluid
versus scope prewash, P � 0.001; CBAL fluid versus scope prewash, P � 0.001; EBC
versus EBC control, P � 0.003). In the model where the only sources of signal were
either genuine or contamination, such results suggest that the signal in every instance
should be considered a real community. However, when the similarity or dissimilarity
of technical replicates (as measured by intrareplicate Bray-Curtis distance) was exam-
ined, it became clear that the communities in certain sample types (e.g., oral) were
more reproducible than others (e.g., BAL fluid) and that some (e.g., EBC) were as
irreproducible as reagent controls (Fig. 2A). This finding suggested a relationship
between the number of 16S rRNA gene copies in each sample (Fig. 2B) and reproduc-
ibility. When this was explicitly tested (Fig. 2C), it became clear that not only was there
a definite relationship between bacterial biomass and sample reproducibility but also
that one can predict whether a sample will need technical replication to separate signal
from noise. We found that there exists a very narrow range (103 to 104 16S rRNA gene
copies per sample) within which samples went from being reproducible between
technical replicates to instead being irreproducible and dominated by noise. The
majority of control samples fell within or below this range (Fig. 2B).

Finally, we applied what we had learned to the question of whether EBC can be used
as an accurate replacement for BAL fluid in determination of the lung microbiota. The

TABLE 1 Demographics and clinical data of human research participants

Sex Age (yrs) Race Pack-yrs
Smoking
status

Vol (liters)
(% predicted)a

FEV1/FVCFEV1 FVC

Female 25 White 0 Never 3.37 (96) 3.84 (95) 0.88
Male 68 White 0 Never 4.96 (109) 6.20 (114) 0.80
Female 61 White 0 Never 2.36 (89) 2.55 (75) 0.93
Female 73 White 0 Never 1.94 (93) 2.21 (84) 0.88
Female 59 White 0 Never 2.24 (94) 2.54 (98) 0.88
Male 22 White 0 Never 4.62 (100) 5.92 (106) 0.78
Female 24 Black 0 Never 2.72 (82) 2.98 (82) 0.91
Male 53 White 0 Never 3.95 (111) 4.17 (94) 0.95
Female 55 Black 20 Former 2.21 (82) 2.82 (84) 0.78
Female 55 Black 20 Former 2.30 (91) 2.51 (91) 0.92
Female 71 White 21 Former 1.72 (85) 1.97 (79) 0.88
Male 58 White 48 Former 3.30 (98) 4.16 (98) 0.79
Male 43 White 22.5 Current 4.41 (119) 5.34 (116) 0.83
Female 59 White 10.5 Current 2.59 (81) 3.00 (86) 0.86
Male 58 White 28.5 Current 3.50 (89) 4.59 (95) 0.76
Male 53 White 10.5 Current 3.02 (83) 3.46 (77) 0.87
Male 38 White 33 Current 4.74 (108) 5.63 (106) 0.84
Male 63 White 35 Current 3.12 (88) 3.83 (87) 0.81
Male 67 Black 25 Current 2.28 (63) 3.56 (80) 0.64
Female 59 White 20 Current 1.38 (53) 2.00 (60) 0.69
aFEV1, forced expiratory volume in 1s; FVC, forced vital capacity; Pack-yrs, number of packs smoked per day
times number of years smoked.
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FIG 2 Relationship between the number of 16S rRNA gene copies in a sample and the reproducibility
of the result. (A) Intrareplicate Bray-Curtis distance by sample type. Relationship between the number of
bacterial 16S rRNA gene copies in a sample and the intrareplicate Bray-Curtis distance between replicates
of respiratory specimens and their individual controls. (B) Mean (� SEM) number of 16S rRNA gene copies
per sample by sample type. (C) Concentration of the number of bacterial 16S rRNA gene copies in a
sample plotted against the intrareplicate Bray-Curtis distance between replicates of respiratory speci-
mens and their individual controls. Each value is the mean � SEM.
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combined BAL fluid (CBAL) and the EBC were separable from their controls (Fig. 3A and
B); traditionally, this result would suffice to consider each to have a detectable micro-
biome that could be compared. However, as has been shown, the intrareplicate
distances of technical replicates suggest that noise can play a large role in these
samples. To visualize the effect of this noise on the communities in question, we
plotted each replicate set against the other two for both CBAL and EBC (Fig. 3C and D).
A sample composed of all specific signal and no noise would be expected to have a
perfect correlation between all OTUs detected within each technical replicate (i.e., a
diagonal line across a 3D box of the 3 replicates); in contrast, a sample with only noise
would have no correlation (i.e., data distributed along the axes of the 3D box).
Examination of the CBAL sample (Fig. 3C) shows that, while noise is present, a
consistently reproducible signal exists across all the CBAL samples. The same cannot be
said for the EBC samples, as very few points appear off the axes (Fig. 3D). In this
situation, the standard method of taking the mean of the abundance of community
members would be an inaccurate representation of the community due to the pre-
ponderance of outliers. A more accurate method to assess the reproducible portion of
the community across multiple samples is to take the mean of replicate medians, which
deemphasizes the stochastic noise between samples.

We applied this approach to the EBC and CBAL samples and plotted the results
according to the average rank abundance of the CBAL samples (Fig. 3E). The EBC
samples both lacked consistent community structure and did not resemble the CBAL
samples (Fig. 3E, top). In contrast, across all CBAL samples, we reproducibly observed
30 to 40% of the BAL fluid community to be made up of Prevotella spp. and Veillonella
spp., with smaller but real abundances of other community members (Fig. 3E, bottom).
This is an important and validating finding, as Prevotella spp. and Veillonella spp. have
been found to be dominant community members in most lung microbiome studies.
Neither sample set appeared to be significantly affected by reagent contamination
(Fig. 3E, insets).

DISCUSSION

Collectively, our data analyzing both a defined bacterial community and real human
clinical samples demonstrate that (i) stochastic noise occurs in real-world samples of
low bacterial biomass; (ii) below a total of 104 copies of 16S rRNA gene in a sample (as
determined by droplet digital PCR), one needs to worry about noise dominating real
sequences; (iii) critical examination of the composition of technical replicates can be
used to separate signal from noise; and (iv) EBC is not a satisfactory sample for sampling
lower respiratory bacterial microbiota from healthy individuals using the sequencing
method that we tested.

These data extend the now-foundational study by Salter and colleagues (15), which
demonstrated that when low-biomass samples are being sequenced, failure to se-
quence relevant controls simultaneously can cause even the most carefully designed
study to be skewed by DNA contamination within reagents. The current study dem-
onstrates that stochastic sequencing noise is an additional critical element to consider
when low-biomass samples are being sequenced, as it can produce results that can be
easily mistaken for real signal. We show that quantifying 16S rRNA gene copy number
before sequencing can determine which samples will be most susceptible to being
dominated by noise. To that end, we recommend that any sample containing �105 16S
rRNA gene copies/sample be treated as likely to be significantly affected by noise.
Furthermore, because sequencing of technical replicates allows one to set up a
necessary baseline (20), replicate sequencing of vulnerable samples can efficiently allow
one to differentiate real signal from noise and can aid in detecting contaminants.

Replicate sequencing also introduces an element of precision into an analysis that
frequently possesses no true negative controls. Sequencing techniques cannot prove
that a sample for microbiome analysis is negative (i.e., contains absolutely no microbial
DNA). However, one can say within precision of x number of replicates (e.g., three) that
no consistent signal was found. Using this approach, which must obviously balance
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FIG 3 Comparison of the representation of the lung microbiome in EBC versus CBAL. (A) Principal component analysis (PCA) graph depicting CBAL
samples (red) and scope prewash controls (blue). (B) PCA graph depicting EBC (red) and EBC controls (blue). (C) 3D scatterplot of CBAL sample OTU
abundances, where each replicate is plotted on a separate axis. Common signals between each replicate should appear along the diagonal of the 3D box.

(Continued on next page)
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degree of precision versus cost, we concluded that EBC is a poor sample for 16S rRNA
gene assessment. We base this conclusion not on an assertion that it was negative or
that it did not differ from its controls but on the fact that within the number of
replicates that we ran on each sample, we were unable to find a consistent signal. This
approach should be applied to other low-biomass sample types that remain contro-
versial, such as peripheral blood and placenta (21).

Our data suggest that the origin of this stochastic noise is related to the sequencer
itself, most likely due to underloading of the flow cell and very low cluster densities.
While future studies will be needed to uncover the specific problems within the system,
it is not hard to imagine a situation where the weak signal produced from very low
cluster densities could result in an increase in the sensitivity (gain) of the detectors,
causing an increase in detector noise and cross talk between channels. Likely added to
these problems is the sum of many sample-side low-frequency events, such as PCR
error (22), index switching (17), and chimera formation (22), each of which likely is
magnified in the absence of a strong signal. Indeed, while this study employed
state-of-the-art methods for error reduction for sample processing, it seems very likely
that the error associated with the above-mentioned factors is different, and likely
higher, under low-biomass conditions (23). However, we do not believe that differences
in these sources of error alone can explain the extent of the irreproducible differences
seen in the low-biomass context. Changes in the overall error rate could be monitored
by following replicate dilutions of a mock community, but this cannot separate the
factors contributing to the errors. Changes in the frequency of index switching could
potentially be monitored by using a combination of sample replication using standard
dual indexing barcodes compared to the unique dual index barcodes (17). A recent
study identified well-to-well contamination as a likely contributor to the unexpected
sequencing results (18); however, the extent of the effect varied greatly depending on
library preparation method, run, and location, so it is unlikely that well-to-well crossover
would be the only noncontamination cause of sequencing noise. Regardless of the
cause, the methods for identifying and dealing with noise described here should
improve reproducibility. An interesting corollary to the idea that the noise is
associated with the sequencer is that running the same samples on a sequencing
platform based on a different underlying technology, such as Oxford Nanopore
Technologies MinION, would result in a completely different behavior from se-
quencing controls and low-biomass amplicons. In summary, low-biomass sequenc-
ing experiments push the lower limits of sequencers’ capacity to detect signal
accurately, so it should be unsurprising that they exceed the threshold of noise that
exists in every detection system.

Conclusions. We have identified a stochastic sequencing noise which occurs in
low-biomass samples and which is experimentally separable from reagent contamina-
tion. Additionally, we identified the range of bacterial DNA concentrations beyond
which technical replicates, although expensive, are likely to aid in separating signal
from noise and hence improve confidence in results. Finally, we tested these methods
on respiratory samples and used our knowledge of sequencing noise to inform our
decision that EBC is a poor sample to assess the lung microbiota.

MATERIALS AND METHODS
Pseudomonas aeruginosa DNA dilutions. We obtained cells for isolation of bacterial DNA by growing

P. aeruginosa strain PAO1 in a 125-ml disposable plastic Erlenmeyer flask containing 20 ml LB broth, which
was agitated overnight on an orbital shaker at 125 rpm in a 37°C incubator. Three 1-ml aliquots, collected in
2.0-ml dolphin-nose microcentrifuge tubes, were spun down in a microcentrifuge at a relative centrifugal

FIG 3 Legend (Continued)
Drop lines anchor the points to a position in the x-y plane, whereas color reflects higher abundances along the z axis. (D) 3D scatterplot of EBC sample
OTU abundances, where each replicate is plotted on a separate axis. Drop lines anchor the points to a position in the x-y plane, whereas color reflects
higher abundances along the z axis. (E) Rank abundance plots of the means of replicate medians of EBC (top) compared to CBAL fluid (bottom). Plots are
ordered according to the mean abundances of the CBAL samples. Insets are the sample controls (EBC control and scope prewash control, respectively)
ordered by mean abundances of CBAL samples. Bars show means of replicate medians � SEM and are colored by the phylum of the OTU.
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force (rcf) of 18,000 at 4°C for 30 min, after which the supernatant was discarded. Each tube was then
subjected to DNA extraction using a separate DNeasy kit from Qiagen (MD, USA) according to manufacturer
protocols with minor modifications (19) and with the addition, after resuspension of the bacterial pellet in lysis
buffer, of a 30-s bead-beating step (using garnet beads [Qiagen, MD, USA]). Once DNA was obtained (referred
to as neat), it underwent five serial dilutions (1:10 each) in kit elution buffer. For sequencing, each of the
samples from each of the dilutions was sequenced in quadruplicate.

Clinical samples and controls. We recruited 20 healthy volunteers to provide EBC, oral wash,
posterior nasopharyngeal swab, and BAL fluid samples for microbial analysis. Participants had a mean
age of 53 � 15 years, were 50% female, were 20% black and 80% white, and were all of non-Hispanic
ethnicity (Table 1). They were a mixture of persons who had never smoked, former smokers, and current
smokers. With the exception of two participants with undiagnosed moderate airflow obstruction, they
were without evidence of lung disease, and none was taking any inhaled medications. Prior to
bronchoscopy, all participants underwent a complete history and physical examination by a pulmonolo-
gist, spirometry, chest imaging, prospective collection of medication history, and complete blood count
with differential, coagulation studies, and chemistry panel.

On the morning of the bronchoscopy visit, with the participants having taken nothing by mouth for
at least 8 h, EBC samples were obtained using the RTube collection system from Respiratory Research,
Inc. (Charlottesville, NC), according to the manufacturer’s instructions. Consistent with American Thoracic
Society recommendations (24), participants wore a nose clip and were coached to breath naturally
without hyperventilation for approximately 20 min through a one-way valve into a cooled chamber that
condenses and collects up to 2 ml of expired vapors, aerosols, and moisture.

Next, before any other procedures, participants provided an oral rinse specimen, as described
previously (25). They then underwent bronchoscopy under moderate conscious sedation, using an orally
inserted fiber-optic bronchoscope. We performed bilateral BAL in the right middle lobe and lingula,
followed by collection of a posterior nasopharyngeal swab, as described in detail elsewhere (2, 25, 26),
but omitting protected specimen brushing. We also created a sample called combined BAL (CBAL) fluid
from an equal mix of left-lung and right-lung BAL fluid samples. We collected control samples specific
to the experimental samples wherever possible: sterile saline for the oral washes, sterile saline passed as
a prewash through the bronchoscope for the BAL fluid specimens, unused swabs for nasal swabs, and
EBC control samples obtained by passing 1 ml of sterile double-distilled water over a fresh RTube and
collecting the water. Isolation controls were generated by carrying out the DNA isolation procedure
without the addition of any sample.

DNA isolation. All liquid samples were processed as described previously (19). Briefly, we aliquoted
samples into dolphin-nose Eppendorf tubes and spun them at an rcf of 18,000 at 4°C in a microcentrifuge
for 30 min to pellet the cells (bacterial and host). We then extracted DNA from the pellet using the
Qiagen DNeasy kits with the addition of bead beating. Brushes or swabs were placed directly in the bead
beating tubes, and we carried out the remaining steps of DNA isolation according to manufacturer
protocols with minor modifications (19). DNA extraction controls were used for DNA contamination
within extraction reagents. In addition to extraction controls that related to the kits used for DNA
isolation for the clinical samples, extraction controls were generated from seven total separate DNA
isolation kits to examine reagent contamination across multiple lots.

Library preparation and sequencing. We prepared DNA libraries by amplifying the V4 region of the
bacterial 16S rRNA gene using a low-bacterial-biomass protocol as described previously (19) with a
dual-indexing strategy (27). Sequencing was performed on a MiSeq instrument (Illumina, San Diego, CA)
at the Microbial Systems Molecular Biology Laboratory at the University of Michigan. Samples were
sequenced in three runs: one comprised the dilution replicates and extraction control experiments
(Fig. 1), and the other two runs were composed of the clinical samples. Where physically possible, all
samples and replicates from an individual were run on the same plate.

Bacterial load quantification. Bacterial DNA was quantified using a QX200 Droplet digital PCR
system (Bio-Rad, Hercules, CA). Quantitation was performed as described previously (28).

Sequence processing and analysis. Fastq files were obtained, and the sequences were processed
using the open source software mothur v.1.36 according to the MiSeq SOP minor alterations. We used
the SILVA bacterial database for alignment and binned operational taxonomic units (OTUs) at 97%
similarity. We generated taxonomies using the RDP taxonomy. After generation of the .shared file and the
.cons.taxonomy file, these files were imported into R for final analysis. The R packages that we used for
analysis relied heavily upon base-R, vegan (29), ComplexHeatmap (30), ggplot2 (31), dplyr (32), tidyr (33),
mvabund (34), and RColorBrewer (35). Additionally, we used Prism 8 (GraphPad Software, San Diego, CA)
to generate figures. Final figures were assembled in Photoshop CS5 (Adobe Inc.). Analysis of the controls
(Fig. 1C and Fig. S1 to S9 in the supplemental material) indicated that three OTUs were likely contam-
inants. These OTUs were removed from all clinical samples to eliminate elements that could artificially
make samples look more similar to one another. To ensure that removal of the OTUs did not remove all
viable counts from a sample, the count totals before and after removal were compared; an average of
roughly 90% (�19,000 reads/sample) of the reads were retained. It should be noted that how to deal
with backgrounds is a complex issue given the compositional nature of microbiome data and should be
evaluated with care.

Data availability. Sequences have been deposited in the SRA under accession numbers
PRJNA549253 and PRJNA552077. Code and other files related to the project can be found at https://
github.com/Tetrakis/low-biomass-noise.
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