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Dosage effect is one of the commonmechanisms of somatic copy
number alteration in thedevelopmentof colorectal cancer, yet the
roles of dosage-sensitive genes (DSGs) in colorectal cancer (CRC)
remain to be characterized more deeply. In this study, we devel-
opedafive-steppipeline to identifyDSGs andanalyzed their char-
acterization in CRC. Results showed that our pipeline performed
better than existing methods, and the result was significantly
overlapped between solid tumor and cell line. We also found
that the top five DSGs (PSMF1, RAF1, PTPRA, MKRN2, and
ELP3) were associated with the progression of CRC. By analyzing
the characterization,DSGswere enriched indriver genes and they
drove sub-pathways of CRC. In addition, immune-related DSGs
are associated with CRC progression. Our results also showed
that the CRC samples affected by high microsatellites have fewer
DSGs, but a higher overlapwithDSGs inmicrosatellite low insta-
bility and microsatellite stable samples. In addition, we applied
DSGs to identify potential drug targets, with the results showing
that 22 amplified DSGs were more sensitive to four drugs. In
conclusion, DSGs play an important role in CRC, and our pipe-
line is effective to identify them.

INTRODUCTION
Colorectal cancer (CRC) is the third leading cause of cancer-associated
deaths in the world.1 Studies have shown that somatic copy number
alteration (SCNA) is one of the most common structural variations in
CRC.2,3 SCNA is defined as the phenomenon of amplifying or deleting
genome fragments, which widely exist in the human cancer genome,
and it is also usually considered to be the driver event and development
of CRC.4 Existing studies have shown that SCNA affects development
and other functions,5 and different levels of SCNAmay have adverse ef-
fects on cancers.6,7 Thus, SCNA could also be used as an important
prognostic marker for cancer.8,9 Taken together, the results of these
studies illustrated that SCNA plays an important role in CRC.

Dosage effect is one of the most important mechanisms10–12 by which
SCNA disrupts the gene function and causes an abnormal phenotype.
If the expression of a gene in the region of the SCNA increases with
the SCNA value, and vice versa, it could be defined as a dosage-sen-
sitive gene (DSG).

It is well known that gene expression is regulated by transcription fac-
tors, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and
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other regulatory elements,13 which are not always upregulated with
the increase in copy number. The dosage sensitivity of the copy num-
ber is an important complementary mechanism for gene transcrip-
tion regulation. Therefore, the identification of DSGs is highly impor-
tant in CRC studies.

Recent studies have discovered DSGs in CRC. Komor et al.14 reported
that POFUT1, RPRD1B, and EIF6 were observed by DNA copy num-
ber-driven gene-dosage effect in high-risk CRC, and POFUT1 was
considered as a candidate driver of CRC progression. The computing
method has been developed to identify DSGs. According to the defini-
tion of DSGs, linear regressionmethods have been widely used.15,16 Sa-
mur et al.17 developed a method that computed a qualitative dosage ef-
fect scoring. In addition, Yan et al.18 developed a pipeline by combining
the rank relationship of the copy number among genes and the linear
relationship between SCNA and gene expression. The core idea of these
methods was still a linear relationship. In an opinion, Veitia et al.19

pointed out that the relationship between the gene expression and
copy number showed a non-linear behavior. However, we still knew lit-
tle about which non-linear function or curve could describe this non-
linear relationship. Therefore, an effective pipeline to represent this
relationship needed to be proposed and proven to be effective.

Based on the importance of SCNA in CRC and the insufficient iden-
tifying method of DSGs, we developed an effective method called
PDSG to identify DSGs in CRC.
RESULTS
Comparison with Existing Methods

Linear regression is one of the most commonly used pipelines for
identifying DSGs.15,16 In order to test whether the pipeline for iden-
tifying a DSG (PDSG) was superior to the linear regression pipeline,
we separately applied the two pipelines to calculate the dosage effect
score in CRC. The results showed that PDSG had a higher dosage ef-
fect score (Figure 1A) and a lower sum of squares of residuals
cal Development Vol. 18 September 2020 ª 2020 The Authors. 501
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Figure 1. Results of the Different DSG-Identifying

Methods

(A) The dosage effect score of PDSG and the linear model.

(B and C) The sum of squares of residuals of PDSG and the

linear model. (B) The overview of the sum of squares of

residuals, and (C) was a part of (B). (D) The dosage effect

score of PDSG, exponent, and S-curve. (E and F) The sum

of squares of residuals of PDSG, exponent model and S-

curve model. (E) Overview of the sum of squares of re-

siduals, and (F) was a part of (E).
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(Figures 1B and 1C). These findings indicated that PDSG was more
suitable than linear regression to describe the relationship between
SCNA and gene expression.

In order to test whether the performance of PDSG was better than
other non-linear models in identifying DSGs, we compared it with
the two modes of exponential transformation and S-curve transfor-
mation. The dosage effect scores of the two comparison models
were higher than PDSG (Figure 1D), but they had an abnormally
greater sum of squares of residuals (Figures 1E and 1F). By analyzing
fitting data, we found that the exponential function model trans-
formed the expression data into super-large data sets, which caused
the results to have a super-great sum of squares of residuals. Fitting
of the S-curve produces most data that closed to the 0 value and su-
per-elevation value, which may be due to the high value and low value
parts of the S-curve at the same time. This led to the results of having a
high sum of squares of residual as well. Compared with these
nonlinear models, PDSG was thus more reasonable and appropriate
for the relationship between SCNA and gene expression.

DSGs in CRC

We applied the PDSG to calculate the dosage effect score of each gene
in CRC from The Cancer Genome Atlas (TCGA). A total of 10,860
genes were identified, and the statistics of the dosage effect scores
of the genes are listed in Table S1. Then, we used PDSG to identify
DSGs from the cell line dataset. Using the thresholds 0.5, 0.6, 0.7,
and 0.8, we found that both results from solid tumor and the cell
line had a significant overlap with each other (Figure 2A; hyper-geo-
metric test, p < 0.01). Figure 2B showed the scores of the top five DSGs
(PSMF1, RAF1, PTPRA, MKRN2, and ELP3) in solid tumor and cell
502 Molecular Therapy: Methods & Clinical Development Vol. 18 September 2020
line data in which the average dosage effect score
was 0.76, significantly higher than that at
random (Figure 2C; disturbance experiment,
p < 0.05). These indicated that PDSG was robust
in identifying DSGs in CRC.

The results above showed that our PDSG was
better than other pipelines or methods in identi-
fying DSGs, and it was robust in different data-
sets. Because the number of CRC patients with
SCNA in TCGA is large enough and the number
of those in the Cancer Cell Line Encyclopedia
(CCLE) is not enough to analyze, we therefore analyzed the DSGs
from TCGA in following study instead of analyzing the common
genes between the results from TCGA and CCLE.

In order to investigate whether DSGs with a higher dosage effect score
affected the progress of CRC, we performed a literature review of the
top five DSGs. The results showed that all of them were directly or
indirectly related to CRC. The gene PSMF1 is an antagonistic regu-
lator of the proteasomal activity,20 while silencing Rpt4 reduced the
proteasomal activity in CRC.21 The gene RAF1 played a key role in
maintaining the transformation phenotype of CRC cells.22 Dephos-
phorylated RAF1 reduced the signal transduction, increased the inva-
sion and migration activity of CRC cells, and activated the epithelial-
mesenchymal transformation.23 MKRN2 was found to be signifi-
cantly upregulated in the CRC cell lines.24 Finally, ELP3 was downre-
gulated in the colorectal oxaliplatin-resistant cell lines.25 These facts
supported the suggestion that DSGs with higher dosage effect scores
played more important roles in CRC.

To further examine whether the DSGs with the highest dosage effect
score were associated with prognosis in CRC patients, we performed a
survival analysis (Figure 2D), which showed that the deletion of the
gene PSMF1 was significantly correlated with the disease-specific sur-
vival time in patients (log-rank test, p = 3.8e�2), and the deletion of
the genes RAF1 andMKRN2was significantly correlated with the pro-
gression-free interval in the patients (log-rank test, p = 3.85e�3 and
p = 1.96e�2, respectively). Using the independent data of CRC (GEO:
GSE75500), the Kaplan-Meier curves of the genes RAF and MKRN2
showed that the survival times in the samples of copy number dele-
tion also had the same trend with those in TCGA (Figure S1).



A

B

D

C

Figure 2. Overview of the DSGs in CRC

(A) Overlap of DSGs between solid tumor data from TCGA and cell line data fromCCLEwith the dosage-sensitive relationship thresholds of 0.5, 0.6, 0.7, and 0.8. (B) Dosage-

sensitive relationship scores in TCGA and CCLE. (C) Results of the disturbance experiment, indicating that the DSR of the top five genes is significantly higher than that in

random genes. (D) Kaplan-Meier curves of the five DGSs with top DSR.
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Although the significant p values of the genes PTRPA and ELP3 were
not lower than 0.05, the deletion of PTPRA and ELP3was significantly
correlated with the disease-specific survival time of the patients (log-
rank test, p = 8.44e�2 and p = 8.59e�2, respectively), indicating that
the copy number deletion of these two genes had a certain indicative
effect on the prognosis of the patients. These results indicated that the
DSGs with a higher dosage effect score had a closer relationship with
the prognosis of the patients.

Effect of Microsatellite Stability on DSGs

In order to further investigate the influence of microsatellite stability
(MSS) on DSGs, according to the provided microsatellite informa-
tion, CRC samples were divided into the following three categories:
MSS, microsatellite high instability (MSI-H), and microsatellite low
instability (MSI-L). The results (Figure 3A) showed that the propor-
tion of SCNAmutations in MSI-H samples is significantly lower than
that of MSS and MSI-L samples.
Molecular The
When comparing their dosage sensitivity scores, statistical analysis
(Figure 3B) showed no significant difference in dosage sensitivity
scores between MSI-L and MSS samples (Wilcoxon rank-sum test,
p = 136.90e�003). The sensitivity score of the genes in MSI-H sam-
ples was significantly lower than that of MSI-L and MSS samples
(Wilcoxon rank-sum test, p = 60.59e�102 and 244.15e�111).
When the filtered dosage sensitivity score is greater than 0.5, the re-
sults (Figure 3C) show that although the number of DSGs in MSI-
H is less than in MSS, the DSGs of MSI-H have a high overlap with
MSI-L and MSS (90.86% and 93.71%, respectively), indicating that
most of the DSGs inMSI-H samples also showed higher dosage sensi-
tivity in MSI-L andMSS samples. Functional analysis showed that the
overlap genes are mainly enriched in important biological functions
of cells, including non-coding RNA (ncRNA) processing, ribosome
biogenesis, rRNA metabolic process, ubiquitin ligase complex, endo-
somal sorting complexes required for transport (ESCRT) complex,
and nuclear envelope organization (Figure 3D).
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Figure 3. Microsatellite Analysis of CRC

(A) Proportion of SCNA samples from different microsatel-

lite states, of which MSI-H samples have a relatively low

alteration ratio. (B) Dose-dosage sensitivity score in

different microsatellite states, of which MSI-H samples

have a lower score. (C) Venn diagram of DSGs under

different microsatellite states. MSI-H has the least DSGs,

but it has a high overlap with MSS and MSI-L. (D) Function

enrichment of the overlap DSGs among MSS, MSI-H, and

MSI-L samples.
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DSGs Drive the Pathway of CRC

By mapping the DSGs with a higher dosage effect score (>0.5) to the
list of driver genes,26 30 genes were found, and they significantly over-
lapped with known driver genes (hyper-geometric test, p = 1.11e�2).
In order to investigate whether they affected or drove the pathway of
CRC, the DSGs with higher dosage effect score from TCGA and
CCLE were mapped to the CRC pathway in the Kyoto Encyclopedia
of Genes and Genomes (KEGG). The results showed that 20 and 11
DSGs in TCGA and CCLE were pathway-specific, respectively, and
the overlap of these two datasets consisted of 10 genes, also indicating
a higher consistency between the solid tumor and cell line.

In the CRC pathway, nearly every sub-pathway had at least more than
one DSG with a higher dosage effect score. The genes MAPK1,
MAP2K1, MAPK8, CASP9, CASP3, BAD, and BAX also existed in
more than one sub-pathway. Furthermore, the genes in sub-pathway
8 (EGFR, GRB2, SOS1, HRAS, MAP2K1, MAPK1, MTOR, and
RPS6KB1) and the genes in sub-pathway 4 (RALGDS, RALA,
RHOA, and MAPK8) (Figure 4) were all DSGs, indicating that
DSGs played an important role in the CRC pathway. In addition,
the star mark in the CRC pathway showed that six DSGs in sub-path-
ways 8 and 4 have been marked with “survival” in the KEGG CRC
pathway. To further examine whether the SCNA of these genes was
associated with patient survival, log-rank test analysis showed that
the deletion of MTOR, MAPK8, and ROHA and the amplification
of RALGDS are associated with a poor prognosis (Figure 4), while
the amplification of RPS6KB1 was associated with a better prognosis
(log-rank test, p = 1.6e�2). The results provided a complement to the
CRC pathway, and we inferred that the dosage sensitivity of these five
genes was a possible mechanism that influences the prognosis of pa-
tients, providing a new theoretical basis for our understanding of the
CRC pathway.
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Immuno-related DSGs Are Associated with

Prognosis

With the purpose of testing whether DSGs could
affect the immune response, we retrieved 39
immunosuppressive genes from the work of
Zhang et al.27 By mapping them to the DSGs
with a higher dosage effect score, five DSGs
were discovered, including CD47, SPATA2,
STAT3, VEGFA, and LGALS3.
Studies have shown that the deletion of CD47 by promoting angio-
genesis promotes tumor progression,28 and it inhibited the activation
of cell cycle inhibitors and activated he expression of its promoters,
which sped up the cell cycle process.29 As a result, we inferred that
the patients with the deletion of CD47 copy number would have a
poor prognosis. Consistent with what we inferred, the log-rank test
showed that the samples with CD47 copy number deletion had a
lower survival time than did wild-type samples (Figure 5; log-rank
test, p = 2.6e�2), and the same trend was found in the independent
dataset of GEO: GSE75500 in CRC (Figure S2).

Vascular endothelial growth factor A (VEGFA) is a member of the
PDGF/VEGF growth factor family. This growth factor plays a role
in angiogenesis and endothelial cell growth, and it can induce endo-
thelial cell proliferation, promote cell migration, inhibit apoptosis,
and induce vascular permeability, which are necessary for both phys-
iological and pathological angiogenesis. Silencing or downregulation
of VEGF promotes cell apoptosis.30,31 Thus, we inferred that the over-
expression of VEGFA inhibits apoptosis, that the amplification of
VEGFA could lead to the upregulation of its expression, and that
the patients with amplifiedVEGFAwould have a poor prognosis. Sur-
vival analysis revealed that the samples with VEGFA amplification
had a poor prognosis (Figure 5; log-rank test, p = 4.19e�2).

STAT3 is known to play a carcinogenic role in a variety of malignant
tumors, and the study of Grabner et al.32 has shown that STAT3
knockout could increase tumor growth, possibly due to the destruc-
tion of the immune function of STAT3 itself. Clinically, low expres-
sion of STAT3 was also associated with a poor prognosis. Based on
this fact, we inferred that the amplification of STAT3 might increase
its expression level and have an anti-tumor effect to some extent.
Prognostic analysis showed that the STAT3 copy number amplified



Figure 4. DSGs That Are Driver Genes of the CRC Pathway

(A) Mapping of DSGs in the CRC pathway from KEGG. The genes with a star mark represent DSGs, with one star mark representing the genes that were dosage-sensitive in

either the data in solid tumor or the data in the cell line, and two star marks representing the genes in both the solid tumor and the cell line. (B) Kaplan-Meier curves of five DGSs

in the CRC pathway from KEGG.
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samples had a relatively low risk of prognosis (disease-specific sur-
vival) compared with the normal copy number samples (Figure 5;
log-rank test, p = 3.66e�2), the same trend was found in the indepen-
Molecular The
dent dataset of GEO: GSE75500 in CRC (see Figure S2). These results
suggested that dosage-sensitive immunosuppressive genes affected
the progression of CRC.
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http://www.moleculartherapy.org


Figure 5. Kaplan-Meier Curves of

Immunosuppressive DSGs

Molecular Therapy: Methods & Clinical Development
DSGs in Drug-Target Discovery

We hypothesized that if a gene was the target of a drug, its overexpres-
sion should be more sensitive to the drug; thus, we focused on the
amplified DSGs. For each pair of potential drug targets, we identified
the genes that were amplified in at least 10 samples, whose half
maximal inhibitory concentration (IC50) was significantly lower
than that in the copy number of wild samples (Figure 6A). The
DSGs with a p value <0.05 would then be considered as the target
of the drug. At last, our work identified 22 pairs of drug targets in
the CRC cell line, and a total of four DSGs (BIRC5, CDK5, CDK4,
and HDAC3) and 22 drugs were found. By constructing the drug-
target network (Figure 6B), the gene BIRC5 had the highest 10 de-
grees, indicating that it could be the potential target of 10 drugs.

Previous research has shown that the drug IWP-2 inhibits the WNT
signal,33 and BIRC5 is one of the essential genes in the WNT signal.34

CDK5 is the potential target of I-BET-762, ulixertinib, SCH772984,
VX-11e, crizotinib, trametinib, and PD0325901. It was reported
that the extracellular signal-regulated kinase (ERK)1/2 inhibitor
SCH772984 abrogated the effects of transforming growth factor b1
(TGF-b1) on Cdk5 and Bax levels.35 CDK4 can be considered as the
target of AZD6738, GSK2578215A, tamoxifen, and LGK974. One
study on CDK4 and tamoxifen showed that in the cell culture, a selec-
tive CDK4/6 inhibitor was preferentially effective in estrogen recep-
tor-positive (ER+) diseases and apparently acted synergistically with
tamoxifen or trastuzumab,36 and another study reported that LEM4
overexpression renders ER+ breast cancer cells that are resistant to
tamoxifen by activating the cyclin D-CDK4/6 axis and ERa
signaling.37 These results indicated that the drug-sensitive DSGs
might be considered to be the potential target of drugs in CRC.

DISCUSSION
In this study, we constructed a new pipeline (PDSG) that can effec-
tively identify DSGs and then systematically analyzed the effects
and roles of DSGs in CRC. Compared with the existing methods,
PDSG had a better performance, and the DSGs had a high consistency
between solid tumors and cell lines. Additionally, the higher DSGs
showed a good prognostic value for CRC patients. Our analysis also
discovered that DSGs affected various aspects of CRC, such as acting
as driver genes in the pathways of CRC or immune suppressor genes,
in addition to their application in the drug-target relationship. Our
analysis also revealed that the DSGs in MSI-H samples also have
higher dosage sensitivity in MSS and MSI-L samples. Our work sug-
506 Molecular Therapy: Methods & Clinical Development Vol. 18 September 2020
gested that dosage sensitivity, which was a feature
of CNA in cancer genes, played an important role
in CRC, providing a new insight into CRC and a
new direction for cancer treatment.

Compared with the studies about dosage effect
in plant and mental retardation-related dis-
eases, only a few studies about DSGs in cancer were reported.
PDSG can relatively identify DSGs that are subject to linear and
non-linear relationships between SCNA and the gene expression
in an effective way. Our results revealed that there was indeed a
nonlinear relationship between SCNA and the gene expression,
which supplemented the previous work and provided a reference
to understand this relationship. One problem with the correlation
analysis using computational methods is that if one variable has a
small change and the other variable has a large one, they both tend
to have higher correlation scores, and this problem could make the
results of the correction analysis untrustworthy. In addition, we
performed differential analysis under different SCNA thresholds,
mainly to screen the genes for expression changes caused by small
changes in DNA SCNAs. In fact, our results also showed that our
strategy was effective and comprehensive. In conclusion, PDSG
has shown a good performance regarding both the pipeline design
and pipeline application and may provide a reference to study
DSGs in other cancers.

Our results show that the frequency of SCNA in MSI-H is lower than
that in MSI-L and MSS samples, which may also be a reason for hav-
ing fewer DSGs in MSI-H. The high overlap of DSGs in MSI-H sam-
ples with MSI-L and MSS samples suggests that the DSGs in MSI-H
can reflect the situation in most CRC samples to a certain extent,
which could help with clinical diagnosis.

The distribution analysis of DSGs in the CRC pathways showed that
DSGs affected nearly every sub-pathway of CRC, indicating that the
copy number amplification or deletion has an important effect on
the CRC pathways. Once DSGs were amplified or deleted, the corre-
sponding pathways produced a cascade reaction. Our study provided
a foundation to further reveal the role of DSGs in cancer pathways
and a new analytical direction. The drug-target analysis of DSGs sug-
gested that the copy number amplified DSGs are less resistant to
several drugs, although it was not known whether this reduction in
resistance was caused by the dosage sensitivity alone, and it should
be further investigated, but the results provided a new way for the pre-
cise treatment of cancer.

At present, the research about CRC has shown that SCNA has
an effect on expression, but it was not clear whether this dosage
effect could be observed in other cancers. There are some differ-
ences in the CNA of different cancers38, as well as in the
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Figure 6. Application of DSGs in Drug-Target Discovery in CRC

(A) Drug-target network. The target was the amplified DSGs, and when the target was more sensitive in amplified samples than in normal samples, an edge was added to

connect the drug and the target. (B) Differential analysis of ln(IC50) between amplified samples and normal samples in CRC.
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transcriptional regulation mechanism between genes. Therefore,
more work needs to be carried out on the identification and
analysis of cancer DSGs.

In summary, this study provided a good pipeline for effectively min-
ing CRC genes that were linearly and non-linearly affected by the
copy number, and systematically revealed the possible functions of
CRC DSGs and their effects on CRC.

MATERIALS AND METHODS
Dataset Collection and Processing

We retrieved the level-3 RNA sequencing (RNA-seq) dataset
(fragments per kilobase of transcript per million mapped reads
[FPKM]) of mRNA, clinical information, and DNA copy
number dataset of the Genome-Wide Human SNP Array 6.0
Molecular The
platform of CRC from TCGA (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga). SCNAs
were calculated by the Genomic Identification of Significant Tar-
gets in Cancer39 (GISTIC 2.0). The genes with FPKM equal to
0 in more than 80% of the samples were filtered. Finally, we
got a total of 448 CRC samples and 15,172 protein-coding genes.
The cell line data of CRC, including the FPKM values of RNA-
seq and CNA in the gene level, were downloaded from the
CCLE (https://www.broadinstitute.org/ccle/home), and a total of
53 samples were collected. The genome variation profiling
(including 114 CRC samples) and the survival information in
GEO: GSE7550040 were downloaded from Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo). The platform is
Agilent-022522 SurePrint G3 comparative genomic hybridization
(CGH) array 4�180K. The circular binary segmentation
rapy: Methods & Clinical Development Vol. 18 September 2020 507
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algorithm identified genomic regions with abnormal copy num-
ber with DNACopy.41
Five Steps for Identification of DSGs

To identify the somatic copy number DSGs in CRC, we performed a
five-step analysis based on the definition of DSGs:

Step 1: For each genei (Gi) with a given SCNA value x (x > 0) as the
threshold, the samples of CRC were divided into the following
three groups: Gi1, copy number of amplification samples (SCNA
> x); Gi2, copy number of deletion samples (x > SCNA > �x);
and Gi3 copy number of wild samples (SCNA < �x). The samples
were marked with Sig(scna) as follows:

SigðscnaÞ =
8<
:

1 if scna > x
0 if x > scna > � x
�1 if scna < � x

;

where 1 represents amplification, 0 represents normal, and�1 repre-
sents deletion.

Step 2: Based on step 1, theWilcoxon rank-sum test was applied to
identify the differentially expressed genes between exp(Gi1) versus
exp(Gi3) and exp(Gi2) versus exp(Gi3). Since a little alteration of
the copy number may not cause significant changes in the expres-
sion, loose restrictions were implemented. Then, the genes were
marked with the formula as follows:

SigðexpÞ =
�
1 if fold change > 1 and p < 0:05
�1 if fold change < 1 and p < 0:05

;

where 1 represents upregulation and �1 represents downregulation.

Step 3: Identify the genes whose expression was consistent with its
copy number. As below, if the copy number of a gene is amplifi-
cation in Gi1 and the expression is upregulation, or if the copy
number of a gene is deletion in Gi2 and the expression is downre-
gulation, the gene is then considered to be the consistent between
the copy number and gene expression as follows:

Sigðscna� expÞ =
8<
:

1 if sigðscnaÞ= 1 and sigðexpÞ= 1
1 if sigðscnaÞ= � 1 and sigðexpÞ= � 1
0 others

where 1 represents that the expression is consistent with its copy
number.
508 Molecular Therapy: Methods & Clinical Development Vol. 18 Septe
Step 4: Compute stable consistent scores. The SCNA threshold x
was raised from 0.1 to 0.3 with 0.01 steps. The stable consistent
score was computed as follows:

Stable Consistent Score = X0:3
x = 0:1Sigðscnv� expÞ:

The gene with a Stable_Consistent_Score = 1 was considered to be sta-
ble in Gi1 and Gi2.

Step 5: Compute dosage-sensitive scores. If a gene is copy number
dosage-sensitive, it would be regulated by positive feedback. Thus,
we hypothesized that the expression of one gene will have a linear
or exponential change increase with the increase of SCNA. For the
exponential change model, EXP f rSCNA, which is equal to lo-
g(EXP) f SCNA. The samples with rSCNAr > 0.1 were extracted
to calculate the dosage-sensitive score, and the genes with p < 0.01
and Dosage_Sensitive_Score > 0.5 were considered to be DSGs.

Dosage Sensitive Score = maxðRlinear;RnonlinearÞ;
where

Rlinear =

Pn
i= 1

�
EXPi � EXP

��
SCNAi � SCNA

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1

ðEXPi�EXP

�2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i= 1
ðSCNAi�SCNA

�2
s and

Rnonlinear =

Pn
i= 1

�
logðEXPiÞ � logðEXPÞ

��
SCNAi � SCNA

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1

ðlogðEXPiÞ � logðEXPÞ
�2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i= 1

ðSCNAi�SCNA

�2
s

Result Evaluation

In order to evaluate the performance of PDSG, we compared it with
the linear regression pipeline that has been applied to identify DSGs
in most studies, the S-curve pipeline, and the exponential transforma-
tion of the FPKM pipeline. The R value and sum of squares of resid-
uals were calculated to evaluate the results. Moreover, the cell line da-
taset from CCLE was applied to evaluate the robustness of PDSG.
Perturbation Analysis

The perturbation analysis was performed to test whether the DSGs
(top five DSGs in solid tumor) from the cell line have a higher dosage
effect score than do the random five genes from the cell line tumor.
Ten thousand perturbations were performed. In each perturbation,
five genes from the cell line were randomly extracted, the average
mber 2020
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of the dosage effect score of these five genes was calculated, and then
the perturbation p value was calculated as follows:

Perturbation� p=
1

10000

X10000
i= 1

avgðPiÞ> x;

where x represents the average of dosage effect scores of the top five
genes in cells, and avg(Pi) represents the average of dosage effect score
in the ith perturbation.
Prognosis Analysis

The progression-free interval time and disease-specific survival event
data were obtained from the study of Liu et al.42 The log-rank test and
the Kaplan-Meier survival curves were used to assess the differences
in survival time between Gi1versus Gi3 and Gi2 versus Gi3.
Construction of Drug-Target Network

IC50 values of CRC cell lines were retrieved from the Genomics of
Drug Sensitivity in Cancer43 (GDSC) database. The genes whose
number of samples (amplified samples or wild samples) was less
than 10 were filtered. For each gene-drug pair, the Wilcoxon rank-
sum test was applied to calculate the significant difference of IC50 be-
tween the amplified and wild samples, and the gene-drug pair with a p
value <0.05 and whose IC50 value of amplified samples was less than
that in wild samples was considered to be a potential drug target.
Then, the drug-target network was constructed using Cytoscape soft-
ware,44 where the nodes represent the drugs or DSGs and every edge
represents a relationship between a drug and the corresponding sen-
sitive DSGs.
Other Datasets

Sixty-one driver genes of CRC were retrieved from DriverDB v3.0
(http://driverdb.tms.cmu.edu.tw/), the CRC pathway map, and gene
lists were obtained from KEGG (https://www.kegg.jp/) and 39 immu-
nosuppressive genes were collected from the study by Zhang et al.27

Gene function enrichment was performed using the ClusterProfiler45

package of R language.
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