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Abstract
Investigating animal energy expenditure across space and time may provide more detailed

insight into how animals interact with their environment. This insight should improve our

understanding of how changes in the environment affect animal energy budgets and is par-

ticularly relevant for animals living near or within human altered environments where habitat

change can occur rapidly. We modeled fisher (Pekania pennanti) energy expenditure within

their home ranges and investigated the potential environmental and spatial drivers of the

predicted spatial patterns. As a proxy for energy expenditure we used overall dynamic body

acceleration (ODBA) that we quantified from tri-axial accelerometer data during the active

phases of 12 individuals. We used a generalized additive model (GAM) to investigate the

spatial distribution of ODBA by associating the acceleration data to the animals' GPS-

recorded locations. We related the spatial patterns of ODBA to the utilization distributions

and habitat suitability estimates across individuals. The ODBA of fishers appears highly

structured in space and was related to individual utilization distribution and habitat suitability

estimates. However, we were not able to predict ODBA using the environmental data we

selected. Our results suggest an unexpected complexity in the space use of animals that

was only captured partially by re-location data-based concepts of home range and habitat

suitability. We suggest future studies recognize the limits of ODBA that arise from the fact

that acceleration is often collected at much finer spatio-temporal scales than the environ-

mental data and that ODBA lacks a behavioral correspondence. Overcoming these limits

would improve the interpretation of energy expenditure in relation to the environment.

Introduction
Habitat change, and ultimately loss, is an ongoing process and the main threat to biodiversity
globally [1]. Habitat changes affect animals at an individual level [2,3]. Studies on different
mammal species have shown, for example, that individuals living in more fragmented habitats
experienced greater physiological stress, and showed differences in behavior and in home
range size, when compared to those living in a less fragmented habitat [4–6]. Changes in the
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environment, may force animals to adjust their movement behavior. This, in turn, can strongly
affect their energy expenditure [7].

An improved understanding of animal energy expenditure would allow researchers to
describe how individual space use patterns are affected by changes within the environment. In
general, animals should strive to minimize energy expenditure. Studies on pallid sturgeons
(Scaphirhynchus albus) [8], savannah elephants (Loxodonta africana) [9] and humans [10] for
example show that, when calculating the energetic cost of moving through the landscape in
relation to a specific environmental variable (drag for pallid sturgeons, and slope for savannah
elephants and humans), the selected pathways corresponded to the route that required the
least energy expenditure. Although these studies focused on specific behaviors and considered
only one environmental variable, they consistently reveal spatially influenced variation in ener-
getic costs of the behavior in question.

Accelerometers provide biologists with a unique opportunity to collect detailed information
on the activities of animals, yielding information on their behavior and indirectly, energy
expenditure. From the data collected by the accelerometers, the overall dynamic body accelera-
tion (ODBA) can be calculated as a proxy for individual energy expenditure [11]. ODBA is
based on motion, does not contain any behavioral information per se, and is strongly correlated
with metabolic costs [12,13]. These data, if associated with GPS locations, allow researchers to
estimate the spatial distribution of energy expenditure producing a more comprehensive view
of the energy landscape from the perspective of the animal [14,15]. Up to now, several studies
have taken advantage of the combination of GPS with acceleration data and ODBA to get a bet-
ter understanding of how animals optimize energetically costly behaviors. For example, ODBA
was used to understand how green turtles (Chelonia mydas) [16], imperial shag (Phalacrocorax
atriceps) [17] and imperial cormorants (Phalacrocorax atriceps) [14] optimize their energy
expenditure during foraging dives. Amelineau et al. [18] investigated how northern gannets
(Morus bassanus) optimize their foraging events under different wind conditions. Williams
et al. [13] used GPS and acceleration data to reveal how pumas (Puma concolor) optimize their
energy expenditure during hunting events. These studies all aimed to understand how different
species optimize their feeding strategy, in terms of energy expenditure, given the environment
they were exposed to, by adjusting their behavior.

Understanding where animals spend their energy in space, without focusing on one specific
behavior or environmental characteristic, might provide information on how the animal is
interacting, in a more generic way, with the environment it encounters. Therefore, we tested
the feasibility of reconstruction of the energy landscape of free-ranging animals along a gradi-
ent of urbanization. We used ODBA and GPS-recorded location data from 12 fishers (Pekania
pennanti), a medium-sized forest-dependent carnivore, to investigate the spatial allocation of
energy when the animals were active. We expected that (1) animals spend energy non-ran-
domly in space, which at a landscape level is related to (2) their utilization distribution, i.e.,
their time spent in a given area. As utilization distributions capture the amount of time spent
in a given area, which in turn is at least partly related to how quick animals move through
space, we hypothesized that animals spend comparably less energy in the core areas of their uti-
lization distributions. The non-random distribution of energy expenditure hypothesized to
correlate with utilization distribution is ultimately mediated through non-random use of the
environment, hence (3) we also expected a relationship between energy expenditure and envi-
ronmental characteristics. Given the expected negative relationship between time spent in an
area, expressed in the utilization distribution probability, and the energy expenditure mediated
through environmental factors, we therefore also (4) hypothesized that the amount of energy
expended in an area and that area’s habitat suitability should correlate. Finally, we expected
that (5) resources as well as the distribution of utilization distribution core areas should have a
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patchier distribution with increasing urbanization and affect the movement behavior and
energy expenditure of the fishers. Higher proportions of urban area within an animals home
range should translate into a more heterogeneous spatial pattern of energy expenditure. We
expect this as some activities could be restricted to particular patches that are spatially more
restricted than in an area with a more homogeneous landscape. By combining the acceleration
data with spatial information, we aim to directly translate habitat properties as assessed by
remote sensing, such as resource composition or availability, into energetic costs for naturally
behaving animals and thus obtain better insight into the animals' interaction with its
environment.

Material and Methods

Study area and tracking data
Twelve fishers were tracked near Albany (New York, USA) during 2009–2011 (Fig 1, Table 1).
Nine of these individuals were tracked in suburban forest patches. This 350 km2 area is com-
posed of residential and commercial land interspersed with forest patches. It is relatively flat
(< 100 m change in elevation) with a road density of 4.77 km/km2 [19] and a human popula-
tion density of 438 persons/km2 [20]. The remaining three individuals were tracked in a nearby
area (Grafton Lakes State Park, 9.5 km2), a mostly contiguous forest containing recreation trails
and a few gravel roads (see [21] for details). Capture and handling protocols are described in
LaPoint et al. [21].

Fishers were fitted with tracking collars equipped with GPS and tri-axial accelerometers (E-
obs GmbH; Grünwald, Germany). The collars recorded a GPS-location every 10 minutes for
five individuals and every 15 minutes for one individual. The GPS collars of the remaining six

Fig 1. Tracks of the individuals included in this study.

doi:10.1371/journal.pone.0145732.g001
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individuals, were programmed with a dynamic sampling, taking GPS fixes every two minutes
when the animal was highly active (e.g., running), every 10 minutes at moderate activity, and
every 60 minutes during low activity (e.g., resting) (S1 Table) [22]. We regularized the location
data for the individuals with dynamic sampling to compensate for different sampling schedules
and to obtain an unbiased quantification of activity levels. To do this we created locations with
the same coordinates every 10 minutes during inactive periods. Similarly, we subsampled the
locations by a minimum of 10 minutes when the fisher had been active and the collar collected
locations every two minutes. The accelerometer data were recorded at 18.74Hz in a 3.5-second
burst every 3 minutes, obtaining for every burst 54 accelerometer measurements. We associ-
ated each acceleration burst to the location closest in time (median time gap between the accel-
eration burst and the GPS fix was 1.2 seconds and the maximum time gap was 60 seconds).

ODBA calculation
To transform the raw accelerometer data into m/s2, we applied the equation provided by the
manufacturer of the collars:

ai ¼ ðni � ni;zerogÞ � ci � g

where ai is the acceleration of axis i in m/s2; i is the axis x, y or z; ni is one digital sample of raw
data for axis i; ni,zerog is the raw value for zero acceleration for axis i; ci is the slope for axis i and
g is the magnitude of observed gravitational acceleration caused by the earth (9.81 m/s2). The
default value for the slope for accelerometers configured with high sensitivity was 0.001, and
for those configured with low sensitivity was 0.00269 as indicated by the manufacturer. The
default value for zero acceleration was 2048.

We quantified the mean ODBA per burst as in Wilson et al. [11], using the following equa-
tion:

ODBAj ¼
Pn

i¼1ðjxi � �xj þ jyi � �yj þ jzi � �z jÞ
n

Here, ODBA is calculated for burst j. A burst consists of n samples in each of the three axes (x,

Table 1. General information of the tracked individuals.

Number of GPS

% of home range Deployment duration in fixes

Individuals Sex with urban area days (time period tracked) used in analysis

F01 m 0.3 71 (17.03.– 29.05.2011) 3714

F02 m 3.5 24 (04.– 29.12.2009) 708

F03 f 4.0 28 (13.08.– 14.09.2009) 443

F04 m 13.3 49 (09.02.– 02.04.2010) 2669

F05 f 15.6 18 (16.12.2010–05.01.2011) 913

F06 f 16.5 16 (21.01.– 08.02.2011) 423

F07 m 27.9 18 (23.12.2010–12.01.2011) 684

F08 f 35.7 19 (11.02.– 04.03.2011) 765

F09 m 36.3 20 (11.02.– 05.03.2009) 655

F10 m 43.0 22 (19.01–12.02.2011) 737

F11 m 49.9 10 (08.– 18.03.2011) 617

F12 m 50.9 24 (10.02.– 08.03.2011) 1253

doi:10.1371/journal.pone.0145732.t001
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y and z). xi represents i
th component and �x the mean of all n samples of the x-axis of burst j

(same for axis y and z). Due to the different sensitivity settings of the accelerometers (S1
Table), we had to standardize the ODBA values for cross comparability between individuals.
We standardized the ODBA to range between 0 and 1 within each individual as follows:

ODBA0
i ¼

ODBAi �minðODBAÞ
maxðODBAÞ �minðODBAÞ

Landscape data
Land cover data was obtained from the National Land Cover Database 2011 [23] at 30 m reso-
lution. We visually compared the land cover map to the Google Earth satellite images closest in
time to the tracking periods of each individual, to account for potential land cover changes that
may have occurred since the creation of the land cover data set. We reclassified the original
land cover types (see [23,24]) into developed low, developed high, and the natural land use cat-
egories deciduous forest, evergreen forest, mixed forest, shrub, grassland, crop, woody wetland,
herbaceous wetland, barren, and open water. For each 30 m grid cell of the land cover map, we
also calculated the distance to the forest edge and estimated the proportion of urban area and
landscape heterogeneity within a 240 m radius circle (S2 Table). We chose this radius as possi-
ble distance of perception based on our experience in the field while approaching these individ-
uals for data downloads, where we would observe them move away from us when the distances
were less than 240 m. We also included the distance to roads from each grid cell [25]. We quan-
tified the proportion of urban area within each individual's home range (i.e., the 95% of the uti-
lization distribution; see details in Statistical analyses below). As urban areas we included those
areas that were classified as developed in the land cover map in addition to roads (S2 Table).

Statistical analysis
As the tracked fishers were highly nocturnal, we identified resting bouts as time periods with
low activity levels lasting for more than 4 hours during the day, indicated by low variability in
the accelerometer measures [21] and excluded them from our analyses. We also excluded rest-
ing periods that met these criteria but extended into the night. Additionally, we excluded the
first 48 hours of data collection after collaring to avoid possible effects of capture and handling.
Thus, for all subsequent analyses (energy landscape models, utilization distribution, and habi-
tat suitability models) we used only the active data set and, where applicable, regularized loca-
tion data.

To model ODBA as a function of space and time for each individual, we used generalized
additive models (GAM) [26], since we were expecting potentially complex and non-linear spa-
tio-temporal patterns. We fitted the spatial position as an explanatory thin plate regression
spline smooth term consisting of the latitude and longitude (of where each burst was collected)
to the cubic root of each single ODBA burst. The cubic root transformed the residuals of the
model to meet the Gaussian distribution assumption. We set the number of knots, the k value
of the smooth term, to 100. For all GAMs we allowed the model to add an extra penalty to each
term added and thus, as part of the model fitting, allow to remove terms completely from the
model. The distribution family was chosen to be Gaussian and the smooth terms were esti-
mated based on the restricted maximum likelihood, “REML”. To incorporate the temporal pat-
tern in energy expenditure we included the time of the day at which each burst was collected in
seconds as a cyclic penalized cubic regression spline smooth term. For this smooth term we set
k to 10. The residuals were checked for Gaussian normal distribution and for the absence of
auto-correlation to meet the assumptions of the GAM. The models were calculated with the R
packagemgcv [26].
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We estimated the proportion of time spent within the different areas of an individual’s
home range, the individual utilization distribution (UD), using the dynamic Brownian bridge
movement model [27] with the R packagemove [28]. To test whether the predicted energy
landscape was correlated with the utilization distribution, we modeled ODBA as a function of
spatial position, time and UD for all individuals using a generalized additive mixed model
(GAMM) [26]. We extracted the UD value for each location where each ODBA burst was col-
lected and included it as an explanatory variable together with longitude and latitude and time
of day as smooth terms as in the previous GAMs. We included individuals as a random factor.

To evaluate the influence of the environment on the spatial distribution of energy expendi-
ture, we added land cover as a categorical variable, distance to forest edge, landscape heteroge-
neity, proportion of urban area and distance to roads, all as continuous values, to the previous
purely spatio-temporal explicit models, and searched for a minimum adequate model for each
individual separately. We used Akaike's Information Criterion corrected for small sample sizes
(AICc) to rank the models of each individual, selecting models with a delta AICc value lower
than 4 (S3 Table), as these are the models that have considerably greater empirical support
[29]. We used weighted model averaging on this subset of best models and calculated a predic-
tion of the energy landscape for each individual. The AICc, the weighted model averaging and
the prediction were calculated with the R packageMuMIn [30].

We calculated habitat suitability using a step selection function [31,32]. This function com-
pares the environmental attributes of an observed step (based on two consecutive GPS loca-
tions) with a number of random steps that have the same starting point. We generated the
random steps from a multivariate normal distribution, using the function rmvnorm of the R
packagemvtnorm [33], maintaining the variance/covariance structure of speed and turning
angle of the empirical track of each individual. We used 5 random steps per observed step, con-
verting speed to step length by multiplying the random speed by the time between fixes of the
corresponding observed step. To analyze the habitat preferences, we compared the environ-
mental characteristics of the end points of each observed step with its corresponding random
steps, by means of a conditional logistic regression model using themclogit function of the R
packagemclogit [34]. The environmental variables included in the model were land cover, dis-
tance to forest edge, landscape heterogeneity, proportion of urban area and distance to roads
(S2 Table). As the likelihood of realizing a specific option is a function of step length and rela-
tive turning angle, we also included these two measurements as variables in the model. We
built one model per individual, based on 75% of the observed locations, and calculated the pre-
dicted habitat suitability. For the predictions, we kept distance and relative turning angle con-
stant, selecting a random pair of values from the previously mentioned multivariate normal
distribution. We used the previously excluded 25% of the observed locations to assess the per-
formance of the model predictions by comparing them with random points selected form the
obtained maps (for details see S1 Appendix). To test whether the predicted energy landscape
was correlated with the habitat suitability, we modeled ODBA as a function of spatial position,
time and habitat suitability for all individuals using a GAMM.We extracted the habitat suit-
ability value for each location where each ODBA burst was collected and included it as an
explanatory variable together with longitude and latitude and time of day as smooth terms as
in the previous GAMs. We included individual as a random factor.

As a measure of heterogeneity in the predicted energy landscape, we used the obtained
adjusted R2 of the spatio-temporal models. As spatio-temporal non-randomness increases, the
spatial and temporal explanatory variables in the GAMs can capture more of the pattern.
Therefore the adjusted R2 of the models would increase with increasing non-randomness in
the distribution of ODBA, i.e. increasing heterogeneity in the energy landscape. To investigate
whether urbanization and energy expenditure were correlated we calculated the Pearson's
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correlation coefficient between the adjusted R2 of the spatio-temporal GAMs and the degree of
urbanization each individual experienced. We used the adjusted R2 as an unbiased estimator
which only increases when the addition of explanatory variables improves R2 more than
expected by chance taking into account the number of additional variables and in case of the
smooth terms the number of knots used in the additive models [35]. We also directly tested
whether urbanization resulted in more heterogeneity in predicted energy expenditure in the
landscape by calculating the spatial variance of the predicted values from the spatio-temporal
GAMs, and correlated the predicted values with the degree of urbanization.

In addition, we identified the areas with the most extreme predicted ODBA values. We did
this by identifying the hot spots of the lowest (ODBA valleys) and highest (ODBA peaks)
energy expenditure for each individual. We defined them as the areas with the lowest 5% and
highest 5% of predicted ODBA values respectively. We compared the environmental composi-
tion and the time spent in the ODBA valleys versus peaks. For each hot spot type we calculated
its area (m2), extracted the time spent in it from the UD, and its environmental composition.
To compare the time spent between hot spots, we built a linear model where the spent time
was the response variable and the type of hot spot, area and individuals were the explanatory
variables. As the amount of time spent in a hot spot will depend on its size, we included area in
the model and individuals to account for potential differences between them. To compare the
environmental composition of the two types of hot spots, we applied a compositional analysis
using the function adonis from the R package vegan [36]. The environmental variables includ-
ing land cover, distance to forest edge, landscape heterogeneity, proportion of urban area and
distance to roads (S2 Table) were the response variable, and type of hot spot and area were the
explanatory variables. We included individuals as strata and set the number of permutations to
999.

To investigate if other movement-related behaviors changed along the urbanization gradi-
ent, we calculated the number of active bouts per day, the duration of these active bouts and
the cumulative distance traveled per day for each individual. We defined “day” as the period of
time from sunset to sunset (of the following day). We calculated the bouts of activity from the
acceleration data, being each bout a continuous period where the animal was active. Then, we
correlated each of these three measurements with the degree of urbanization. We conducted all
analysis with R 3.1.0 [37].

Results
Our analysis revealed a non-random spatial structure of energy expenditure (Fig 2, S1 Fig).
The mean ± SD value of adjusted R2 for the models only including the longitude and latitude
was 0.35 ± 0.09 (Table 2). For most individuals the time of day did not have a large effect on
the distribution of energy, as the adjusted R2 of the spatio-temporal models increased only
marginally (mean ± SD = 0.37 ± 0.08, Table 2).

The time spent in an area (UD, S2 Fig) had a significant negative influence (estimate ± SE =
-20.05 ± 0.5, t-value = -40.03, p<0.001, DF = 13627, adjusted R2 = 0.10) on the energy
expenditure. This result was supported by the analyses of the time spent in ODBA valleys ver-
sus peaks, where we found that fishers spent 0.015 ± 0.002 (estimate ± SE, t-value = 7.26,
p<0.001, F13,360 = 9.0, Fig 3) times more time in ODBA valleys than in peaks.

The mean ± SD adjusted R2 across models after inclusion of environmental variables and
subsequent model selection was 0.37 ± 0.08 (Table 2), showing only small increases compared
to the first model. Distance to forest edge, percentage of urban area, and distance to roads were
retained in the models of all 12 individuals. The remaining environmental variables were
retained in variable combinations for each individual (Table 3). The importance, size effect,
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Fig 2. Predicted energy landscape for individual F12. The prediction is made from the averaged set of best models including spatial position, time of day
and environmental variables. The area of the map corresponds to the home range of this individual (95%UD).

doi:10.1371/journal.pone.0145732.g002

Table 2. Generalized additive models (GAM) results, of the model including only spatial position, the model including the spatial position and time
of day, and the model including also the environmental variables.

Individuals Adj. R2 of spatial
model

Adj. R2 of spatio—
temporal model

Adj. R2 of spatio—temporal and
environment model

Variance of the predicted values of the
spatio—temporal model

F01 0.23 0.26 0.26 0.05

F02 0.47 0.47 0.47 0.77

F03 0.41 0.43 0.43 0.01

F04 0.26 0.31 0.32 0.05

F05 0.38 0.40 0.42 0.06

F06 0.26 0.30 0.30 0.01

F07 0.33 0.35 0.36 0.12

F08 0.46 0.46 0.46 0.07

F09 0.42 0.44 0.44 0.08

F10 0.23 0.25 0.25 0.04

F11 0.34 0.36 0.37 0.03

F12 0.38 0.38 0.40 0.10

doi:10.1371/journal.pone.0145732.t002
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and sign of the environmental variables varied across individuals (Table 3), yet did not show a
consistent pattern related to the urbanization gradient.

The habitat suitability models performed well (S3 Fig). The mean ± SD habitat suitability of
the observed locations across individuals was 0.51 ± 0.27 and significantly higher than the aver-
age of 0.28 ± 0.26 from the randomly selected points (S1 Appendix for details). We found a
negative influence of the habitat suitability (estimate ± SE = -0.12 ± 0.01, t-value = -16.2,
p<0.001, DF = 13627, adjusted R2 = 0.05) on the energy expenditure. These results were sup-
ported by the differences we found between the ODBA valley and peaks in environmental com-
position (F1,371 = 11.97, p<0.001).

The individual fishers had variable proportions of urban area within their home ranges,
resulting in a gradient that spanned from 0.3 to 51% (Table 1). Contrary to our expectations,
however, the heterogeneity in the energy landscape was not related to the urbanization gradi-
ent. The correlation between the adjusted R² of the models and the percentage of urban area in
the home range was very low (r = -0.006, DF = 10, p = 0.98). In addition, the differences in the
variance of the predicted values of the energy landscape between individuals (Table 2) were not
correlated with the percentage of urban area in the home range (r = -0.28, DF = 10, p = 0.38).

Fig 3. Comparison of time/m2 spent in ODBA valleys and ODBA peaks across all individuals. The y-axis represents the proportion of time spent in
each hot spot divided by its area. n is the total number of each type of hot spot.

doi:10.1371/journal.pone.0145732.g003
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Individual variation in total daily distance traveled, and the duration and number of activity
bouts per day was high. We found a low, but positive relationship between the total distance
traveled (slope ± SE = 0.033 ± 0.012, t-value = 2.828, DF = 291, p<0.01) and the degree of
urbanization (Fig 4). We also found a low, but significant, relationship between the degree of
urbanization and the number of active bouts per day (slope ± SE = 0.012 ± 0.004, t-
value = 2.791, DF = 343, p<0.01) and the duration of these active bouts (slope ± SE =
-0.651 ± 0.162, t-value = -4.009, DF = 1341, p<0.001, Fig 4).

Discussion
The fishers we studied spent energy in a spatially structured manner during their active period,
that did not depend on the time of day. It seems that fishers tended to spend the same amount
of energy in a given area independent of the time of the day, which points to some environ-
mental structuring of energy use. However, our environmental variables, including natural and
human related variables, could not explain energy expenditure all too well. As we expected, the
amount of time spent in a given area was negatively related with how much energy they spent
there. Following this expectation we found that the time spent in the ODBA valleys was signifi-
cantly longer than in the ODBA peaks. This is intuitive, as an animal moving fast and therefore
spending high amounts of energy will implicitly spend less time in that same area. Although
the relationship between utilization distribution and energy expenditure was significant, the
model only explained a small proportion of the variance in the data.

According to our expectation, composition of the environment should influence activity
and therefore shape individual energetic landscapes [38]. However, we were unable to identify
the environmental characteristics that defined individual energy landscapes. Nevertheless, we
did find a relation between habitat suitability and energy expenditure across all individuals.
They spent less energy in areas with higher habitat suitability. We also found that the environ-
mental composition of the ODBA valleys and peaks was significantly different. Although the
habitat suitability could only explain a very small part of the variance in energy expenditure
across individuals, these results indicate that the environment did influence how much energy

Table 3. Contribution of the environmental variables included in the GAMs.

Environmental variables Number of models in which present Size effect range

Distance to the forest edge 12 -0.1825–0.0263

Proportion of urban area 12 -0.0807–0.0220

Distance to roads 12 -0.4607–0.0935

Landscape heterogeneity 11 -0.1694–0.1871

Land cover * 5

Developed low -0.2838–0.3695

Deciduous forest -0.4166–0.8625

Coniferous forest -0.5265–0.1197

Mixed forest -0.3887–0.4793

Shrub -0.0162–0.1270

Crop -0.3362–0.2367

Woody wetland -0.3952–1.0853

Herbaceous wetland -0.0126 (only present in one model)

Grassland 0.0027 (only present in one model)

* Land cover is included as a factor in the model, all land cover types are compared to the land cover type

“Developed high”

doi:10.1371/journal.pone.0145732.t003
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these fishers were spending in a given place. Fishers are forest specialists [39] and our simple
classification based on remote sensing seems not to incorporate the heterogeneity of forest
environments. Smaller scale variation in forest composition and micro-climate likely have
important impacts on the behavior of fishers [40], but these could not be measured in this
study. Accelerometer-derived data might provide more insight into how animals respond to

Fig 4. Activity measurements per individual along the urbanization gradient. (A) Cumulative distance
traveled per day (mean±SD). (B) Number of active bouts per day (mean±SD). (C) Duration of active bouts
(mean±SD).

doi:10.1371/journal.pone.0145732.g004
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these subtle nuances, yet there is a large mismatch in the scales at which acceleration data
and environmental data are typically collected. If the changes in behavior occur at very fine
temporal and spatial scales, the available remotely-sensed environmental data may be insuffi-
cient to allow us to detect them.

Contrary to our prediction, neither the total amount of explained variance in the observed
energy expenditure, nor the total amount of predicted variance in the energy landscape were
explained by the amount of urbanization. We found high inter-individual variation in activity
measurements such as duration and number of daily bouts of activity, as well as the cumulative
distance traveled per day. Although these measurements were only weakly correlated with the
degree of urbanization, individuals with more urban area in their home ranges seem to have
slightly shorter activity bouts that are then compensated by a higher number of bouts per day.
There also seems to be a slight increase in total distance traveled per day as the percentage of
urban area within the home range increased. Despite these results hinting towards some effect
of the urbanization on the activity budget, this was not reflected in differences of spatial distri-
bution of energy expenditure. Overall, our results indicate that, if present, the effect of urbani-
zation on the energy landscape are subtle. Either fishers were not as negatively affected by
urbanization as one might expect or the effects were not reflected appropriately by ODBA.

One limitation of using ODBA is that it lacks a behavioral context. Although specific behav-
iors have been identified from tri-axial accelerometers [41–44], doing so remains challenging,
in particular teasing apart distinct behaviors that may have similar acceleration characteristics
(e.g., hunting or escaping). For a more complete view of the energetic landscape we would need
a full cost-benefit comparison, requiring more information, ideally from identified behaviors
with known energetic costs.

The survival of animals largely depends on the balance between energy acquisition and
expenditure [45]. Understanding where, when, and how much energy animals spend, is key to
understanding the interactions of species and individuals with their environment. Our work
revealed a spatial structure of energy expenditure and suggests that close examination of envi-
ronmental details are necessary to understand how the landscape structures energy expendi-
ture. Future efforts should strive to identify the additional factors that underlie the non-
random structure that we observed. This may require new data at spatial and temporal resolu-
tions that more clearly match the perspectives of the study animals. Disentangling the causal
relationships from which the patterns we observed emerged will improve our understanding of
how environmental changes affect animal energy expenditure and behavior, potentially aiding
efforts to mitigate the causes and consequences of habitat alteration.
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S1 Appendix. Habitat suitability model performance assessment.
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S1 Fig. Predicted energy landscape for all individuals. The prediction is made from the aver-
aged set of best models, per individual, including spatial position, time of day and environmen-
tal variables. The areas of the maps correspond to the home ranges of the individuals (95%
UD).
(TIF)

S2 Fig. Utilization distribution (UD) of each individual. The color scale represents the rela-
tive proportion of time spent in each cell. The areas of the maps correspond to the home ranges
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