
children

Article

Machine Learning-Based Automatic Classification of Video
Recorded Neonatal Manipulations and Associated
Physiological Parameters: A Feasibility Study

Harpreet Singh 1,* , Satoshi Kusuda 2 , Ryan M. McAdams 3, Shubham Gupta 1, Jayant Kalra 1, Ravneet Kaur 1,
Ritu Das 1 , Saket Anand 4, Ashish Kumar Pandey 5, Su Jin Cho 6 , Satish Saluja 7, Justin J. Boutilier 8 ,
Suchi Saria 9, Jonathan Palma 10, Avneet Kaur 11, Gautam Yadav 12 and Yao Sun 13

����������
�������

Citation: Singh, H.; Kusuda, S.;

McAdams, R.M.; Gupta, S.; Kalra, J.;

Kaur, R.; Das, R.; Anand, S.; Pandey,

A.K; Cho, S.J.; et al. Machine

Learning-Based Automatic

Classification of Video Recorded

Neonatal Manipulations and

Associated Physiological Parameters:

A Feasibility Study. Children 2021, 8, 1.

https://dx.doi.org/10.3390/

children8010001

Received: 18 November 2020

Accepted: 18 December 2020

Published: 22 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Child Health Imprints (CHIL) Pte. Ltd., Singapore 048545, Singapore;
shubham@childhealthimprints.com (S.G.); iamjayantkalra@gmail.com (J.K.);
ravneet@childhealthimprints.com (R.K.); ritu@childhealthimprints.com (R.D.)

2 Department of Pediatrics, Kyorin University, Tokyo 181-8612, Japan; kusuda-satoshi@umin.ac.jp
3 Department of Pediatrics, University of Wisconsin School of Medicine and Public Health,

Madison, WI 53726, USA; mcadams@pediatrics.wisc.edu
4 Department of Computer Science and Engineering, Indraprastha Institute of Information Technology,

New Delhi 110020, India; anands@iiitd.ac.in
5 Department of Mathematics, Indraprastha Institute of Information Technology, New Delhi 110020, India;

ashish.pandey@iiitd.ac.in
6 College of Medicine, Ewha Womans University Seoul, Seoul 03760, Korea; sujin-cho@ewha.ac.kr
7 Department of Neonatology, Sir Ganga Ram Hospital, New Delhi 110060, India; satishsaluja@gmail.com
8 Department of Industrial and Systems Engineering, College of Engineering, University of Wisconsin,

Madison, WI 53706, USA; jboutilier@wisc.edu
9 Machine Learning and Healthcare Lab, Johns Hopkins University, 3400 N. Charles St,

Baltimore, MD 21218, USA; ssaria@bayesianhealth.com
10 Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; JPalma@stanfordchildrens.org
11 Department of Neonatology, Apollo Cradle Hospitals, New Delhi 110015, India; avneet.raveen@gmail.com
12 Department of Pediatrics, Kalawati Hospital, Rewari 123401, India; gautam2880@gmail.com
13 Division of Neonatology, University of California, San Francisco, CA 92521, USA; Yao.Sun@ucsf.edu
* Correspondence: harpreet@childhealthimprints.com; Tel.: +65-91-9910861112

Abstract: Our objective in this study was to determine if machine learning (ML) can automati-
cally recognize neonatal manipulations, along with associated changes in physiological parameters.
A retrospective observational study was carried out in two Neonatal Intensive Care Units (NICUs)
between December 2019 to April 2020. Both the video and physiological data (heart rate (HR) and
oxygen saturation (SpO2)) were captured during NICU hospitalization. The proposed classification
of neonatal manipulations was achieved by a deep learning system consisting of an Inception-v3 con-
volutional neural network (CNN), followed by transfer learning layers of Long Short-Term Memory
(LSTM). Physiological signals prior to manipulations (baseline) were compared to during and after
manipulations. The validation of the system was done using the leave-one-out strategy with input of
8 s of video exhibiting manipulation activity. Ten neonates were video recorded during an average
length of stay of 24.5 days. Each neonate had an average of 528 manipulations during their NICU
hospitalization, with the average duration of performing these manipulations varying from 28.9 s for
patting, 45.5 s for a diaper change, and 108.9 s for tube feeding. The accuracy of the system was 95%
for training and 85% for the validation dataset. In neonates <32 weeks’ gestation, diaper changes
were associated with significant changes in HR and SpO2, and, for neonates ≥32 weeks’ gestation,
patting and tube feeding were associated with significant changes in HR. The presented system can
classify and document the manipulations with high accuracy. Moreover, the study suggests that
manipulations impact physiological parameters.

Keywords: CNN; electronic medical records; IoT; LSTM; machine learning; neonatal intensive care
units; physiological deviations; physiological parameters; streaming server; video monitoring
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1. Introduction

Worldwide, of the 150 million annual births, 15 million are preterm neonates [1].
Advances in neonatal care have improved clinical outcomes [2–4]. Digitization of Neonatal
Intensive Care Unit (NICU) workflow using the electronic medical record (EMR) and medi-
cal device physiological data has enhanced integration and data utilization in analyzable
format. [5]. In theory, automated data entry and monitoring reduce the clinical staff’s
manual workload and allow more time to focus on patient care [6]. Improved NICU digital
infrastructure has resulted in the generation of multi-modal temporal databases, such as
Medical Information Mart for Intensive Care (MIMIC), which encapsulate the integrated
“big data” of the ICU environment [7,8].

Retrospective studies have demonstrated the relationship of physiological signal
variations with the onset of diseases [9–11]. A loss of heart rate variability (HRV) in the
early hours after birth is associated with high morbidity in newborns [12]; Heart Rate
Onservation (HeRO) monitoring has demonstrated subtle irregularities in HRV as an
early indicator of disease [13]. Furthermore, studies have compared physiological sig-
nals immediately before, during, and after performing procedures/manipulations on
neonates [14–16]. These manipulations include invasive procedures, such as intubation,
peripheral intravenous line insertion, and common non-invasive handling, of neonates
for care, such as patting, diaper change, and feeding. Physiological parameter changes,
like HR and SpO2, are established assessment indicators of how well these manipulations
were performed [15].

During the NICU stay, a neonate undergoes an average of 768 handling manipulations
and 1341 invasive procedures, with manipulations accounting for 2 h and 26 min over
24 h [17]. Variation in physiological parameters during manipulations and procedures
may be associated with negative health consequences. The fast-paced, stressful NICU
environment may adversely impact how manipulations are performed, which may not be
captured in procedure documentation in an EMR [18]. Recent studies have attempted to
capture neonatal video streams by positioning a camera on the top of the neonate’s crib to
overcome manual documentation limitations [19–21]. Along with the video streams, phys-
iological data related to these manipulations can be simultaneously captured. Common
non-invasive manipulations performed on neonates during NICU hospitalizations include
patting, diaper change, and feeding. The decrease in SpO2 and bradycardia (less than
80 beats per minute) have been demonstrated before, during, and after diaper changes [21].
Neonatal comforting behaviors, such as patting, rubbing, holding, and stroking behavior,
by nurses have also been studied using videotape analysis and were found to be irregu-
lar and associated with prolonged periods of neonatal distress [22]. Similar videotaped
studies have found a lack of cue or infant-driven feeding methods used in neonates in the
NICU [23,24].

Currently available public integrated ICU databases, like MIMIC, do not store video
data of neonatal manipulation behaviors and synchronized physiological data. Appendix A,
Table A1 outlines a detailed literature review of studies using video data along with phys-
iological signal variations. There is a need to acquire continuous collated video data
of manipulations and associated physiological parameters over the entire NICU stay to
better assess how manipulations impact neonatal care outcomes. This data acquisition
approach needs to address two essential design requirements. The first requirement is the
millisecond resolution-based synchronization of captured video frames with physiological
data captured from medical devices, which will enable an analysis of manipulation results
related to medical events, such as apnea, desaturation, and bradycardia. The second key
requirement is to automate data on salient features of manipulation into a patient’s EMR.
Decreasing documentation demands using automatic monitoring and data-tagging may
promote better nursing workflow and well-being.

This study describes the acquisition and synchronization of video and physiological
data in the NICU environment. We then present a machine learning (ML)-based automated
tagging framework for three common neonatal manipulations: patting, diaper change,
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and tube feeding. Lastly, we demonstrate the value of synchronized video and physiologi-
cal data by describing variations in physiological parameters associated with the identified
manipulations.

2. Materials and Methods

This section describes the methodology of acquiring, synchronizing, and analyzing
neonatal NICU data captured with respect to manipulations.

2.1. Setting and Study Sample

Digital data were collected from a sample of neonates admitted to two NICUs over
a three-month (April 2020–June 2020) duration. The study sites included 22 urban beds
urban and 17 rural beds; both were level III NICUs in India. The urban NICU is staffed by
three neonatologists with a doctorate in neonatal sciences, three residents, and 20 nurses.
The rural NICU is staffed by three neonatologists with a doctorate in neonatal sciences,
four residents, and 18 nurses. The Institutional Review Board of both NICUs approved the
study with a waiver of informed consent. All electronic health records were de-identified
(in accordance with Health Insurance Portability and Accountability Act (HIPAA)), and all
the research was performed according to relevant guidelines. Prior to the study, written
consent to the video monitoring and physiological data acquisition were obtained from the
parents of eligible neonates at both study sites. All the data were stored in the de-identified
form in the protected health information environment as per the HIPAA compliance.
Hemodynamically stable neonates who stayed in the NICU for more than 24 h and did not
have assisted ventilation were eligible. Neonates with congenital anomalies or on palliative
care were excluded.

2.2. Data Collection

A sample of 10 neonates was recruited for this study. De-identified individual patient
admission-to-discharge data were electronically recorded using the iNICU platform [25].
This study was purely observational, and at no point in time were clinical decisions or
interventions affected by study data results. The data were entered on bedside tablets
through an iPad Pro (12.9 inches, IInd generation) using a Chrome browser, and data
were stored in the Postgres SQL database. The clinical diagnoses of each neonate were
determined by consulting neonatologists using the International Classification Diseases
(ICD) ninth revision during daily rounds (morning, afternoon, and evening) performed at
the patient bedside.

2.3. Video Acquisition of Manipulation

During the study, the physiological data of neonates were collected using the NEO
device [26]. The NEO system was improved with an additional camera module, and the
size was further reduced (Appendix B, section B: NEO TINY system). Figure 1 shows the
setup in a typical NICU setting. The wall mount was installed at the same height as the
baby warmer’s top to minimize interference in the routine NICU workflow (Appendix B,
Figure A1). The installed wall mount could be adjusted as per the discretion of onsite
clinicians. The ‘Logitech C920′ Universal Serial Bus (USB) camera was installed facing the
neonate. All the units’ beds were handled in the same way, and all the beds were equipped
with cameras. The camera videos had a resolution of 1280 × 720 pixels and were recorded
at 30 frames per second.

Videos recording was continuous for most neonate’s NICU stay, but the parents or clin-
ical staff could switch off the recording while the neonate was removed from the bed, such
as during weight measurement and kangaroo care or breastfeeding, for privacy reasons.
Thus, intermittent video data segments of each neonate were available for further analysis.
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Figure 1. NEO TINY system (NTS) client module in typical Neonatal Intensive Care Unit (NICU)
settings (box with yellow-colored border highlight the NTS client, and red-colored boxes highlight
other devices).

2.4. Physiological Parameters of Manipulation

Along with live video recording, real-time physiological data were simultaneously
captured from the patient monitors (Appendix B: section D). All the monitors did not
have the ability to record respiratory rate (RR); hence, this parameter was not used in the
analysis. Heart rate (HR) and oxygen saturation (SpO2) were continuously recorded before,
during, and after the manipulations.

2.5. Selection of Manipulations to Be Studied

Video data were annotated manually with clinicians’ help, and a spreadsheet was
maintained for ground truth labels of the manipulations. The overall system architecture is
presented in the flow diagram shown in Figure 2. Appendix B describes the (A) hardware,
data acquisition, and synchronization of video and physiological data and (B) software
specifications. Appendix C describes the clinical staff interface to show an annotated video
frame with physiological signals, missing data in the NICU environment, and data security.
For the current feasibility study, we chose commonly used non-invasive manipulations (i)
patting, (ii) diaper change, and (iii) tube feeding (definitions Table 1). The interventions
were selected post hoc.
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Table 1. Visual features of manipulations.

Manipulation: Characteristics Ref

Patting:

Definition: This is a comforting manipulation where the flat surface of the palmer surface of the
caregiver’s hand was brought into contact with a surface of the neonate’s body singly or
repetitively. The intensity and rate were variable in different episodes of patting.

[22]Spatial features: Nurse’s hand, neonate’s body boundaries
Temporal features:
Frequency: On-demand
Duration: 33 s

Diaper Change:

Definition: This manipulation involves changing the diaper and cleaning the diaper area for skin
hygiene.

[27,28]Spatial features: Two nurse’s hands, diaper, and skin contrast
Temporal features:
Frequency: 4 h
Duration: 3 min

Tube Feeding:

Definition: This manipulation utilizes a soft tube placed through the nose (nasogastric) or mouth
(orogastric) placed into the stomach. The feeding is provided through a tube into the stomach
until the baby can take food by mouth.

[29]Spatial features: Nurse’s hand, milk, syringe attached to the feeding tube (with or
without plunger)
Temporal features:
Frequency: 2 h
Duration: 10–30 min

2.6. Input Data, Training, and Validation Data Set

Examples of video captured patting, diaper change and tube feeding manipulations
are shown in Figure 3. Acquired video sequences were down-sampled at 15 frames per
second (fps) to reduce redundant computations, and images were resized from the origi-
nal 1280 × 720 pixels to a color image of 720 × 480 pixels. Manipulations were initially
divided based on category and neonatal identifier. Based on the discussions with the
clinical team, it was hypothesized that 8 s of video data for any neonatal manipulation
were sufficient to distinguish between the different types. Therefore, for each manipula-
tion, data were processed at 8-s intervals amounting to 120 frames total. After that, the
video clip corresponding to manipulation was extracted manually and then considered a
training sequence. Following this, the next video sequence was extracted by sliding the
cursor programmatically by 1 s to build the next 8 s subset. Although only the first 8 s
were used for classifying the type of manipulation, all the frames were used for activity
recognition. This process was repeated for the entire duration of the captured video of
each manipulation. Appendix C explains how the clinical team visualized the video and
physiological data.
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Figure 3. Images of manipulation: (i) patting, (ii) diaper change, and (iii) tube feeding, the region of
interest marked with a yellow border.

2.7. Classification of Manipulation Using Convolutional Neural Network (CNN)

The image classification technique has matured to a stage where facial recognition
has become part of all consumer phones. An industrial set of algorithms trained on the
large existing dataset is now available, which can be used to detect different images as per
specific business domain requirements. In the current study (Figure 4), an existing pre-
trained Inception-v3 CNN model [30] was used with prior ImageNet weights for colored
Red Green Blue (RGB) images. The CNN-based models were then further improved with
the concept of transfer learning [31], wherein the output of pre-trained models (such as
InceptionV3) is trained for a specific task at hand. In our study, the task was to recognize
the neonatal manipulations, and, currently, there are no established neonatal databases for
neonatal procedures. We conducted the transfer learning process by providing training on
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our annotated images marked as (i) patting, (ii) diaper change, and (iii) tube feeding. This
step improves the accuracy of the manipulation-tagging model.
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Long Short Term Memory (LSTM) network.

The performance of the InceptionV3 CNN model with the transfer learning layer was
also visualized by the t-Distributed Stochastic Neighbor Embedding (t-SNE) plot [31,32],
which take perplexity as a user-specified input parameter. Perplexity corresponds to the
effective number of neighbors considered for obtaining the embeddings and was shown to
be robust over the range of 5–50 [33]. We picked the perplexity value of 35 to visualize the
best segregation of neonatal manipulation. The individual image frames of videos were
resized to 226 × 226 pixels as per Inception-v3 specifications.

2.8. Activity Recognition Combining CNN Output with LSTM

From a computer vision perspective, a neonatal manipulation, such as diaper change,
is a collection of image frames collected over time encapsulating the activity (manipula-
tions). Therefore, we further wrap up the pre-trained CNN model into a time series layer to
bring the concept of manipulation (sequence of images). The output of the Time-distributed
CNN model generates an output of the 2048-dimensional feature vector. This vector con-
veys information about constituent objects, such as the neonate, the clinical staff, diapers,
syringe, and plunger, and their spatial attributes and how they correlate during the ma-
nipulations. It is not feasible to visualize these vectors in a human-readable format in the
current deep learning landscape.

The CNN models are very accurate in classifying images, but other branches of
machine learning, such as deep learning (e.g., Long Short Term Memory; LSTM), have
also progressed to identify the activities. After training of the combined CNN and LSTM,
the system can automatically classify the neonatal manipulations.

We extracted the weights of the CNN (InceptionV3) model to extract features of the
images and combine them with LSTM layers to perform activity recognition. The sequential
2048 feature vector, an output of the InceptionV3 model representing activity in a manip-
ulation, was input to the LSTM model. The LSTM layers were followed by additional
dense layers and followed by a three-layer softmax layer. An early stopping criterion with
the patience of 8 was employed. This monitors the validation loss and stops the training
when the loss deteriorates for eight successive epochs. The model was implemented in
Keras [34] and TensorFlow [35] and used the ‘categorical cross-entropy’ loss function and
‘adam’ optimizer. The EarlyStopping callback was used to stop training on the epoch when
the accuracy metric has stopped improving [36].

2.9. Variation in Physiological Signals Associated with Manipulation

The variations in physiological parameters during manipulations were compared
with those of baseline (defined as 5 min before the manipulation) and post-manipulation
(defined as 5 min after the manipulation).



Children 2021, 8, 1 8 of 25

2.10. Performance Metrics

We measured the performance of the CNN/LSTM model in the classification of
neonatal manipulations using Positive Predictive Value (PPV) (Equation (1)), Sensitivity
(Equation (2)), and F-measure (Equation (3)), which are defined as:

PPV =
TP

TP + FP
(1)

Sensitivity =
TP

TP + FN
(2)

F−measure =
2× (PPV× Sensitivity)

PPV + Sensitivity
(3)

where TP, FP, and FN are true positive (TP: manipulation patting, diaper change, and tube
feeding detected correctly), false positive (FP: when the system detects a manipulation
when there is none), and false negative (FN: when there is manipulation that the system
does not detect). For data with normal distribution, a two-sided paired t-test with a
significance level <0.05 was used to compare physiological parameters during and after
manipulations. This was based on our assumption that the physiological values may
increase or decrease during and after manipulations in comparison to the baseline data.

2.11. Overall Activity Detection Model Evaluation

The model evaluation was done using leave-one-out cross-validation (LOOCV) utiliz-
ing PPV and sensitivity metrics. In the NICUs involved in the current study, nurses did
not document routine care activities, such as diaper change and patting, in the EMR
system. The comparison of tube feeding records between documented nursing records
and automated tube feeding notes highlights the additional temporal data captured by
machine learning-based automated classification system. The tube feeding duration and
time duration from the last tube feeding were not captured in current EMR records.

Based on the visual investigation of data with the clinical team, spatial and temporal
features in manipulations were documented (Table 1) to understand the classification task.

3. Results

The results of the feasibility study conducted to verify the designs of automated
tagging of manipulation are below.

3.1. Baseline Data

Ten neonates admitted to NICU were enrolled from December 2019 to April 2020.
The baseline characteristics of study subjects are displayed in Table 2. The mean gestational
age was 34.7 weeks (range, 26 weeks to 40 weeks), and the mean birth weight of study
subjects was 1893.8 g (range, 800 g to 3231 g).

Table 2. Baseline characteristics of the sample (enrolled subjects, n = 10).

Id Sex Gestational
Age

Birth
Weight (g)

Age Interval for
Recording (Days) Clinical Diagnoses

1 Male 26+0 1005 24–25 RDS, Apnea, Prematurity
2 Male 27+1 800 76–90 Prematurity
3 Male 29+4 1372 37–44 Prematurity, RDS, Apnea Sepsis
4 Male 35+2 1400 8–10 NNH
5 Male 36+0 2400 3–5 RDS, NNH
6 Male 36+6 1430 4–8 Prematurity, NNH
7 Male 36+6 3231 5–6 RDS
8 Male 39+2 2600 7–8 RDS, Seizure
9 Male 39+4 2000 5–6 Sepsis, RDS, Apnea
10 Male 40+0 2700 3–7 RDS, NNH

RDS: Respiratory Distress Syndrome, NNH: Neonatal Hyperbilirubinemia.
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3.2. Distribution of Manipulations

Table 3 shows the average duration of a patting, diaper change, and tube feeding.
A total of 64 diaper changes (average duration, 45.5 s), 108 tube feedings (average duration,
108.9 s), and 167 patting’s (average duration, 28.9 s) were recorded and utilized for analysis.

Table 3. Frequency and duration of manipulations recorded.

Manipulation # Frequency
* Average
Duration
(Seconds)

Minimum
Duration
(Seconds)

Maximum
Duration
(Seconds)

Patting 167 28.9 (12.4) 12 56
Tube Feeding 108 108.9 (55.3) 25 300

Diaper Change 64 45.5 (18.8) 17 92
# Frequency across the length of stay in NICU, * Mean (Standard Deviation).

3.3. CNN Based Classification of Manipulations

The 2048 features generated from manipulation images were plotted using t-SNE
visualization (a) without transfer learning, which means without the knowledge of the
current domain, and (b) with transfer learning. Without the transfer learning (Figure 5a),
the ImageNet based Inception-V3 pre-trained model cannot classify the neonatal manipu-
lations. However, after the transfer learning, except for a few outliers, the transfer-learning
based Inception-V3 model can visualize the images of patting, diaper change, and tube
feeding successfully (Figure 5b).
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The accuracy of CNN-based model in classifying the manipulation frame/image is
displayed in Figure 6. The validation accuracy (red) was achieved after eight epochs.
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Figure 6. CNN-based model accuracy for classifying manipulation images.

3.4. LSTM Based Classification of Manipulation Videos

The validation of automatic video classification was done in clinical settings, and the
accuracy was 85% on the validation dataset. The comparison of NTS data with respect to
nurse documented procedures is shown in Table 4. The 2048 features from the Inception-V3
model were generated for all frames present in the duration of the manipulation video.

Table 4. NTS generated note of neonatal manipulations.

Patting

Nurse Not Captured in EMR

NTS
The patting was started at 14:05:08 on 17-08-2020 and
completed at 14:06:19 (duration: 71 s). This is
manipulation number 3, since 8 a.m.

Diaper Change

Nurse Not captured in EMR

NTS
The diaper change was started at 19:35:25 on 17-08-2020
and completed at 19:37:01 (duration: 96 s). This is
manipulation number 4 since 8 a.m.

Tube feed Entry

Nurse

Start Time: 17-08-2020 09:30 a.m.
Type: Tube Feed
Type of Milk: Preterm Formula
Quantity: 11 mL

NTS
The feeding was started at 09:30:09 on 17-08-2020 and
completed at 09:32:57 (duration: 168 s). This is
manipulation number 1 since 8 a.m.

The performance of the deep learning model obtained is presented in Table 5. The
model automatically annotates the manipulation of a given neonate. Figure 7 demon-
strates different manipulations that are classified by the CNN/ LSTM model during the
validation phase.
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Table 5. Performance of deep learning model.

PPV Sensitivity F-Measure Total Manipulations

Patting 0.86 1.00 0.92 167
Diaper Change 0.98 0.68 0.80 64
Tube feeding 1.00 0.87 0.93 108Children 2021, 8, x FOR PEER REVIEW 11 of 26 
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Figure 7. Automatic tagging of manipulation videos: The first frame identified as manipulation is
marked on the top left, and dotted lines show manipulation.

3.5. Physiological Signal Variations during Manipulations

Figure 8a–c show variations in physiological parameters during the patting, diaper
change, and tube feeding manipulations, respectively. There was an associated increase
in normalized heart rate between before and during the period for neonates <32 weeks’
gestation (shown blue color) for all the three manipulations.
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Table 6 shows the HR and SpO2 physiological variables for each of the three manipu-
lations. The significant changes (p < 0.05) are:

(I) For <32 weeks: (a) HR increased during diaper changes and decreased afterward,
(b) SpO2 increased during the diaper change.

(II) For ≥32 weeks: (a) HR increased during patting and decreased afterward, (b) the HR
decreased after tube feeding.

Table 6. Physiological parameters (HR and SpO2) before, during, and after manipulation.

<32 Weeks ≥32 Weeks

Manipulations Parameters Baseline * During * Post * p-Value $ p-Value # Baseline * During * Post * p-Value $ p-Value #

Patting
HR (BPM) 161.9 (10.19) 164.7

(13.7)
157.6
(24.9) 0.168 0.069 148.7 (13.9) 165.7

(30.7)
150.9
(8.2) 0.019 0.00

SpO2 (%) 92.7 (7.4) 93.0 (7.9) 89.7
(12.8) 0.43 0.087 94.7 (6.1) 92.5

(10.9)
93.5

(11.41) 0.21 0.34

Diaper Change
HR (BPM) 152.738 (31.4) 166.9

(14.4)
157.4
(23.2) 0.000 0.036 147.8 (12.02) 152.7

(15.8)
150.7
(9.5) 0.10 0.17

SpO2 (%) 88.9 (18.2) 94.02
(5.7)

89.4
(13.6) 0.000 0.07 94.7 (5.8) 94.9 (5.4) 93.9

(12.7) 0.44 0.36

Tube Feeding
HR (BPM) 163.1 (10.55) 164.28

(13.29)
162.2
(20.0) 0.26 0.22 150.5 (16.7) 147.6

(16.6)
153.3
(11.6) 0.17 0.003

SpO2 (%) 93.9 (6.4) 93.9 (4.9) 91.7 (9.9) 0.49 0.052 95.1 (4.9) 94.0 (8.0) 93.5 (7.6) 0.23 0.37

* Mean (Standard Deviation); HR: Heart rate, SpO2: Oxygen saturation, BPM: Beats per minute; $ Comparing baseline and during
manipulation parameters, # Comparing parameters during manipulation and post manipulation.

4. Discussion

The NICU environment is highly complex, with critically ill neonates who require mul-
tiple medical devices, such as patient monitors, ventilators, syringe pumps, and infusion
pumps. These many devices leave minimal working space for movement around the bed-
side. Therefore, a pocket-sized data aggregator, NTS, has been developed to capture valu-
able data with a small footprint; with its pocket-sized design (5.8 cm × 4.1 cm × 7.7 cm),
it is ideal for cluttered workspaces and roaming device workflows. For video monitoring,
the camera was wall-mounted above the neonate’s bed to avoid interfering with routine
workflow in the NICU. The NTS client device synchronizes the acquired medical device
and video data and sends it to the EMR platform. The platform displays the live video feed
of a neonate, along with all the acquired vital parameters data for clinical interpretation.

The framework presented in this study can enable automatic identification of manipu-
lation, generate corresponding EMR documentation of those manipulations, and measure
changes in physiological parameters. The study demonstrates a machine learning model
to classify three common neonatal care manipulations: (a) patting, (b) diaper change, and
(c) tube feeding. It is important to highlight that the transfer learning of classifying the
manipulations like tube feeding will strongly depend on local practices, such as syringe
use, the position of the end for the tube, and even the use of gloves (and their colors).
The authors anticipate that NICUs in a given geographical region or associated with similar
neonatal research networks can develop a unique dataset of images as per their practices.
This dataset can be readily used as ‘training’ module for the system for that group of
NICU units.

In this study, the model was able to classify the manipulations with 95% accuracy in
the training dataset (accompanying loss of 0.0026) and 85% in the validation dataset (with
accompanying loss of 0.0409). During the manipulations, the physiological parameters
were compared with those captured prior to the manipulation and after the manipulation,
in neonates <32 weeks’ gestation, diaper changes were associated with significant changes
in HR and SpO2 (perhaps due to crying with subsequently increased minute ventilation).
In comparison, for neonates ≥32 weeks’ gestation, patting and tube feeding was associated
with significant changes in HR. The health impact of these vital sign changes associated with
routine care practices is unclear. The ability to detect continuous changes in physiological
parameters associated with machine learning-driven monitoring of common neonatal
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manipulations in the NICU illustrates the capability of the NTS model, which could be
further used for further analysis of how neonatal manipulations and procedures impact
short- and long-term outcomes.

Most NICUs have strict light and sound control protocols, both in the larger NICU
environment and in the local environment of each neonate. In the current study, open incu-
bators were used with most of the neonates. The lights in the NICU were recommended to
be dim most of the time. We did not find any difference in the automatic classification of
manipulations in different light conditions. However, these finding needs to be confirmed
with a large sample size. In future studies, the feasibility of night vision mode in these
cameras needs to be explored in poor light conditions. Moreover, the advent of 3-D cam-
eras allows manipulation of specific data to be captured, which will also be explored in
future efforts. With the emergence of artificial intelligence, it is anticipated that continuous
monitoring and analysis will help avoid unnecessary manipulations that may cause a
negative neuro-sensorial stimulus to premature and sick neonates. If specific neonatal
manipulations and procedures are associated with worse outcomes, future research using
the NTS model could assess how modifying routine care practices to target vital sign ranges
could improve outcomes.

5. Limitations

While the presented study shows promise for future NICU neonatal monitoring
applications, certain limitations need to be considered. As a pilot study to assess the
feasibility of the system, only a small number of patients were recruited. Future studies
will need to assess potential differences regarding gender, different gestational age groups,
and other demographic parameters. A larger cohort of neonates will need to be recruited to
build a physiological database that will provide more balanced data for machine learning
models to simulate the NICU environment. The presented approach only utilized labeled
data of three manipulations for ten neonates. The recognition capabilities of the deep
learning model can be explored further by including the data of more manipulations and
more neonates. (e.g., some neonatal manipulations or procedures, such as heel prick, last
only a few seconds). In the current study, monitors did not capture per second data; hence
the study lacks the complete resolution of physiological data required for the detailed
analysis of brief manipulations or procedures. The study did not consider the medications
that neonates were receiving during their stay in the NICU; since sedatives and analgesics
can potentially affect the stress experienced by neonates [37] future studies should consider
individual patient drug dosages and half-lives.

6. Conclusions and Future Directions

The present study demonstrates a framework to help clinical staff evaluate changes
in physiological parameters associated with common care manipulations in the NICU.
Due to the limitations of human resources, close and constant observation of neonates
on a 24-h basis is a challenge. The current study model, which utilizes state-of-the-art
computer vision and analyzes physiological parameter variations, may be a useful adjunct
to assess neonates. Moreover, this framework will be extended to build video databases for
other neonatal manipulations and procedures, which can be used for (a) skill evaluation
of clinical staff and (b) improving the care documentation. Although the current results
showed the feasibility of the system, its efficiency still needs to be studied in the larger
NICU population across different sites. Another future direction is to include surrounding
contextual data, such as lighting conditions, ambient noise in the NICU, and the num-
ber of clinical staff around neonates, to study the overall effect on the neonates while
conducting manipulations.

Future studies will capture real-time physiological data from bedside monitors in
millisecond resolution synchronized with the video data. The millisecond data will
help study the impact of non-invasive and invasive manipulations (such as heel prick,
intubation, and extubation) in a more granular manner with associated clinical events
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apnea, bradycardia, and desaturations. Recent advances in the computer vision and deep
learning community have shown successful use of semi-supervised and unsupervised
domain adaptation techniques. These methods could be leveraged to reduce the data
labeling requirements further, while adapting the proposed system to new NICU units.
In addition, given reported racial disparities in neonatal care in the United States [38,39],
the NTS system could be used to study racial inequities in the NICU regarding average
time dedicated to care manipulations of neonates from different racial backgrounds to
provide quantifiable, informative data to healthcare providers.

7. Code Availability

The code that underpins the video analytics documentation is openly available.
A Jupyter Notebook containing the code used to generate the descriptive statistics and
tables included in this paper is available at: https://github.com/CHIResearch/IEEEVideo.
README.md file has all the script-related and other details.
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Appendix A

Table A1 provides a comparative overview table showing the key differences between
the different previously published methods and the proposed NEO TINY System. It com-
pares the previous works based on their focus on NICU population, live video data stream,
and synchronization of video and physiological data. Thereby, the table describes the
novelties of the current investigation.

https://github.com/CHIResearch/IEEEVideo
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Table A1. Comparison table of different studies.

Title
Study Done in

NICU
Population

Video
Data

Whether Physiological Data Was
Used in the Analysis

Synchronized
Video and

Physiological
Data

Ref

Monitoring infants by automatic video processing: A
unified approach to motion analysis Yes Yes No No Cattani et al.

[20]

Non-contact physiological monitoring of preterm infants
in the Neonatal Intensive Care Unit Yes Yes

No (vital signs were monitored
using video motion analysis of
neonates)

No Villaroel et al.
[40]

Automatic and continuous discomfort detection for
premature infants in a NICU using video-based motion
analysis

Yes Yes No No Sun et al. [41]

Multi-Channel Neural Network for Assessing Neonatal
Pain from Videos Yes Yes No No Salekin et al.

[42]

Automated pain assessment in neonates Yes Yes Yes (captured from devices using
character recognition) Yes Zamzmi et al.

[43]
Intelligent ICU for Autonomous Patient Monitoring
Using Pervasive Sensing and Deep Learning No Yes Yes Yes Davoudi et al.

[44]
Machine learning based automatic classification of video
recorded neonatal manipulations and associated
physiological parameters: A Feasibility Study

Yes Yes Yes Yes Presented
study

Appendix B

A. Wall Mount

The camera was placed on the wall mount that was installed at the same height as the
baby warmer’s top to minimize interference in the routine NICU workflow (Figure A1).
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The three divisions in wall mount were done to provide 360-degree rotation capability,
along with horizontal and vertical shift possibility, to place the camera’s field of view on
the neonate’s body.

B. NEO TINY System: Hardware Design

The NEO TINY system is a small form factor NEO device that can easily be set up
along with existing patient monitors, ventilators, and other biomedical devices connected
to a neonate in the NICU setting (Figure A2).
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Figure A2. Size comparison of a 3 × 3 Rubik’s cube and NEO TINY system client.

The NTS client module captures the video and physiological data of neonates. It col-
lects physiological data from medical devices, like bedside monitors and ventilators,
along with video data from USB-based cameras. Figure A3 shows the hardware image of
the NTS client with respect to its dimensions and various networking ports for integration.

Children 2021, 8, x FOR PEER REVIEW 18 of 26 
 

 

 
Figure A2. Size comparison of a 3 × 3 Rubik’s cube and NEO TINY system client. 

The NTS client module captures the video and physiological data of neonates. It col-
lects physiological data from medical devices, like bedside monitors and ventilators, along 
with video data from USB-based cameras. Figure A3 shows the hardware image of the 
NTS client with respect to its dimensions and various networking ports for integration. 

 
Figure A3. Physical image of NTS client. 

C. Hardware Specifications 

There is one RS232 interface that connects to the serial port of internal NanoPi NEO 
Core2 single-board computer (SBC) and enables them to communicate with medical de-
vices using the RS232 connector interface (Figure A4) mounted on the main Printed Cir-
cuit Board (PCB), and it is visible through the external top face of the NEO TINY device. 

Figure A3. Physical image of NTS client.

C. Hardware Specifications

There is one RS232 interface that connects to the serial port of internal NanoPi NEO
Core2 single-board computer (SBC) and enables them to communicate with medical devices
using the RS232 connector interface (Figure A4) mounted on the main Printed Circuit Board
(PCB), and it is visible through the external top face of the NEO TINY device.

There is an RJ45 connector that is mounted on the main PCB and is connected to
NanoPi NEO Core2 SBC’s RJ45 interface. A USB hub is also provided on the main PCB to
connect up to three USB port compatible devices. The front panel of the device has a Thin
Film Transistor (TFT) Liquid Crystal Display (LCD) screen indicating notifications and
alerts messages. NTS client can be powered using 5 V 2 A USB adaptor or battery backup
and can be switched on/off using slider switch. NTS client’s power supply involves step
upconverters and battery charging integrated circuit (IC) in order to ensure 5 V supply
throughout the device. The mainboard of the NTS client is populated with one micro
USB for charging and one micro USB for programming purposes. Table A2 provides the
hardware specification of NEO TINY.
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Figure A4. Schematic diagram of the NEO TINY system client depicting: (a) Main Board, (b) Power Supply, (c) Communi-
cation Ports.

Table A2. Specifications of NEO TINY.

Characteristics Details

Electrical

Input 5.0 V, 2 A DC Adaptor (AC 100–240 V, 50/60 Hz)
Embedded Battery LiPo 1 (DC 3.7 V, 1800 mAh)

Connectivity

Wired
RS232 × 1
RJ45 × 1

USB 2 2.0 × 3

Operating Conditions

Temperature −20 ◦C to 70 ◦C
Humidity 5% to 90% R.H. 3

Memory 1 GB DDR3
Storage eMMC: 8 GB

CPU Quad-core 64 bit based on Cortex A53 (4 × 1.5 GHz)
Display 1.8 inch color TFT LCD 4 display (128 × 160 pixel resolution)

Dimensions 77 mm × 58 mm × 41 mm
Weight 150 g

1: Lithium-ion polymer; 2: Universal serial bus; 3. Relative Humidity; 4: Thin-film transistor liquid crystal display.
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D. NTS: Software Specifications

NTS client software layer uses a Java version 1.8 based program to capture medical
device data using the Health Level Seven (HL7) protocol on a Debian operating system.
The acquisition of medical device data and associated biomedical protocols have been
previously described in detail [26]. The NTS client captures video stream data from a
Logitech USB camera with a built-in H.264 encoder using a Video4Linux version 2 (V4L2)
application programming interface (API) [45]. The on-camera H.264 encoding minimizes
the compute power on the NTS client device and ensures higher compression than other
encoders. The video stream is sent via Wi-Fi to the streaming engine server within the NICU
premises [46]. The transmission of video data occurs in two stages: (I) First, the avconv
command (a Unix command) to grab data from a USB camera and transmit the video stream
over USB to the NTS client over low latency based User Datagram Protocol (UDP) [47].
(II) In the second stage, the Secure Reliable Transport (SRT) protocol is used to transmit
the video stream from the NTS client to the server [48,49]. The NTS system has a latency
of 1–2 s and consumes up to 5 Mbps internet speed to display live video feeds with a
resolution of 1280 × 720 pixels.

E. Synchronization of Video and Physiological Data

The server layer referred to as the NTS Server receives both video streaming and
medical device data of the neonates. The live video is based on the Logitech camera clock,
whereas the physiological data from the cardio-respiratory monitors are based on the
equipment clock (Figure A5). The clock of the camera acquiring video data and bedside
monitor capturing the physiological data were manually configured in the same time zone
(UTC: Universal coordinated time) described in Table A3.

Video Data Capturing by NTS Client
Two system services are running on the NTS system, which are stream publish and

SRT wrapped. Explanation of system services is as follows:
The Stream Publish system service code snippet is shown below:

Box A1

Unit
Description = Stream Capturing
ConditionPathExists = |/usr/bin
After = network.target

Service
ExecStart = /usr/local/streampublish/streamPublish.sh

Restart = always
RestartSec = 5
StartLimitInterval = 0

Install
WantedBy = multi-user.target

This service will run a script called streamPublish.spresent in “/usr/local/streampublish”
directory. The snippet of streamPublish.sh script file.

Box A2

./capture -F -o -c0 | avconv -re -i - -vcodec libx264 -x264-params keyint = 30:scenecut = 0 -vcodec copy -f
mpegts udp://127.0.0.1:1000?pkt_size = 1316
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In the streamPublish.sh script, “capture” is an output build file of V4l2 API written in
C, which captures H.264 encoded stream at the resolution of 1280 × 720p @30FPS from the
camera. Then, the avconv command takes the captured stream from the capture file using
pipe and transmits it to localhost at port 1000 (127.0.0.1:1000) using UDP protocol.

This service runs a script called srtwrapped.sh. Here, also, if the srtwrapped.sh script
crashes due to some reason, the system service will try to restart the scrip automatically
after 5 s. The “srtWrapped” system service snippet is shown below.

Box A3

Unit
Description= Stream publishing to wowza streaming engine
ConditionPathExists = |/usr/bin
After = network.target

Service
ExecStart = /usr/local/srt/srtwrapped.sh

Restart = always
RestartSec = 5
StartLimitInterval = 0

Install
WantedBy = multi-user.target

The script snippet of srtwrapped.sh is shown below.

Box A4

/usr/local/srt/srt-live-transmit udp://127.0.0.1:1000 srt://[wowza server ip]:[port]

The srtwrapped.sh script sends the stream from localhost to wowza Server IP at a
designated port assigned to the NEO TINY using SRT protocol.

In the current study, GE B40®patient monitor (GE Healthcare, Milwaukee, WI, USA),
SureSigns®VM6 patient monitor (Philips Medical Systems, Inc., Cleveland, OH, USA),
and Philips Intellivue MP70 (Philips, Andover, MA, USA) were used. Both video and
physiological data, collected using NTS client, are updated with NTS client clock time.
The NTS client clock is synchronized with NTP (Network Time Protocol) at regular time
intervals.
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tried for offset calculations; 60-min video recordings were most optimum. The server
records the incoming video stream by splitting the recording every hour to manage the
offsets [50]. The current time of the NTS client is injected as meta-data into both video
and physiological data streams. Moreover, a scheduled Cron job runs every 30 min to
synchronize the NTS client’s clock with the NTP server (configurable using XML).

As both video and physiological signals are captured, the offset (difference) between
the two clocks increases based on hardware and processing capabilities. This offset in
milliseconds is depicted in Table A3. After 60 min, the time offset between the clocks
was around 549 milliseconds. To ensure the synchronization of video and monitor data,
the video clock was reset every 60 min by the offset time.

Table A3. Meta-data injection to ensure the video is treated as per clock of physiological signal, as
a sample.

Time Elapsed Time Time of Camera Time of Monitor Offset (ms)

10 min
Start time 17:16:58.250 17:16:58.205

51End time 17:26:58.135 17:26:58.269

30 min
Start time 17:39:36.253 17:39:36.290

27End time 18:09:36.211 18:09:36.221

60 min
Start time 18:10:46.308 18:10:46.877

549End time 19:10:46.217 19:10:46.237

Appendix C

A. Interface for Clinical Staff to Show Annotated Video Frame with Physiological Signals

The outputs of combined data are displayed to users using HTML5 based web-
application (Figure A6). The live video stream is displayed using Web Real-Time Commu-
nication (WebRTC) video player [51], and physiological trends are shown as highcharts
(a software library for charting written in JavaScript) [52].
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B. Missing Data in the NICU Environment

The NTS client-server architecture can be affected by various reasons, such as band-
width and network issues. The network and bandwidth can cause data reception delays
on the NTS server. The payload size of each client request in JSON (JavaScript Object Nota-
tion) format is one kilobyte, consisting of (a) medical device information, (b) patient data,
and (c) NTS client information. The small payload size allows the NTS client to perform
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in low bandwidth settings with a minimum internet requirement of 5 Mbps. However,
the acquired patient data are stored locally on the NTS client and is sent to a cloud-based
NTS server at regular intervals. NTS client has an on the device storage capacity of 8 GB of
data. The server also evaluates the transmission performance of all the NTS clients and
notifies the user of any data loss during a given timeframe. Since the device data capturing
resolution in the present study is set to 1 min, therefore for each patient, a total of 1440 data
points are received in 24 h.

During the patient’s NICU stay, physiological signal acquisition is affected by data
disconnection caused by sensors falling off or poor contact. The vital tracker displays the
total number of data points received for a given patient (Figure A7). In cases where the NTS
server does not receive physiological data for 5 min, then the patient’s placard flashes red,
and audio-visual alarms are generated to notify the onsite clinical staff (Figure A8). To con-
sider the quality of physiological signals affected by these external factors, the extreme
values, which were not associated with clinical events, were excluded from the analysis.
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Figure A8. Baby placard notifying the disconnection of sensor capturing physiological data (the red
icon is flashed continuously until the physiological data resumes).

C. Data Security

Data transmission frequencies vary among medical devices. Some devices, such as
cardio-respiratory monitors, continuously send data at a regular 60-s interval, whereas cer-
tain devices, such as blood gases, are used and transmit data intermittently. Depending on
a patient’s respiratory needs, continuous positive airway pressure devices or ventilators are
utilized and provide data at defined intervals (usually multiple values per minute). NTS en-
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ables data acquisition from various devices based on specific protocols, such as HL7 (Health
Level Seven) [53], ASCII (American Standard Code for Information Interchange), ASTM
(American Society for Testing and Materials) [54], binary, or proprietary. Moreover, in the
current study, the video camera sends the streaming feed at 30 fps. The data acquisition
module transmits the acquired video and medical device data at a per-minute resolution.

The medical environment is highly regulated, and the patient data needs to adhere to
HIPAA (Health Insurance Portability and Accountability Act). The data transmitted by
NTS clients are protected by HTTPS (Hypertext Transfer Protocol Secure) (256 bit) secure
encryption. Each NTS client is configured with an IP address and a server port to transmit
the data. The ports on NTS clients are enabled only based on connected medical devices.
Private keys are needed, protected by PKI (public key infrastructure) to enable remote
access protocols, like Secure Shell (SSH). Data stored on the different servers are protected
by roles and rights assigned to the users. The servers are facilitated with disaster recovery
mechanisms and are protected by firewalls. Each data node is kept on three different data
centers to provide replication in case one server crashes.
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