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Abstract: Atopic dermatitis (AD) is a refractory and relapsing skin disease with a complex and
multifactorial etiology. Various congenital malformations and environmental factors are thought to
be involved in the onset of the disease. The etiology of the disease has been investigated, with respect
to clinical skin symptoms and systemic immune response factors. A gut microbiome–mediated
connection between emotional disorders such as depression and anxiety, and dermatologic conditions
such as acne, based on the comorbidities of these two seemingly unrelated disorders, has long
been hypothesized. Many aspects of this gut–brain–skin integration theory have recently been
revalidated to identify treatment options for AD with the recent advances in metagenomic analysis
involving powerful sequencing techniques and bioinformatics that overcome the need for isolation
and cultivation of individual microbial strains from the skin or gut. Comparative analysis of microbial
clusters across the gut–skin axis can provide new information regarding AD research. Herein, we
provide a historical perspective on the modern investigation and clinical implications of gut–skin
connections in AD in terms of the integration between the two microbial clusters.
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1. Introduction

Atopic dermatitis (AD) is a skin disorder characterized by itching, scratching, inflam-
mation and lichenification; the symptoms usually reoccur after remission and exacerbate
over time. AD patients have a genetic predisposition to defective skin, which can increase
the risk of environmental allergens [1]. In recent years, many AD patients have shown to
have defects in epidermal cornification and skin barrier function due to abnormalities in
the filament-aggregating protein gene such as filaggrin. In addition to genetic factors, envi-
ronmental factors such as climate, air pollutants, diet, irritant exposure, and breastfeeding
are implicated in AD outbreaks [2]. These environmental factors change the skin epidermal
environment or disrupt the immune function, making patients vulnerable to AD. However,
the mechanism underlying the development of AD is complicated, and the AD outbreaks
cannot be attributed to any single genetic, immunological, or environmental factor. With
the development of culture-free techniques, researchers have shown that microbes, both
on the skin and in the gut, may influence the course of AD. Although antiseptic therapy
has been used since decades for treating AD, the traditional culture-based methods and
modern metagenomics have led to the development of targeted treatment of microbial
dysbiosis in the gut or skin as an integrated treatment plan for AD in the future. Hence,
researchers have attempted to determine what microbes in the skin and intestine are related
to AD and how they can be utilized to treat AD [3].
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The skin and associated immune system are primarily dominated by several skin
microbes. The dysfunction of the adaptive immune response and epidermal barrier which is
responsible for AD is closely related to the skin microbes. Previously, researchers attempted
to identify the causes of AD based on not only genetics and heredity but also the imbalance
of resident skin microbes or dominance of certain microbial clusters.

The importance of the gut microbiome has been highlighted during birth in humans,
as the immune system is exposed to various microbes and continues to develop since
the fetal stage up to 7-8 years; many researchers have focused on the causality of various
diseases related to intestinal immunity, rendering it inevitable to discuss the role of the gut
microbiome in AD [4,5]. However, understanding how the intestinal microbiome controls
the environment of the peripheral tissues such as the skin requires further research. It has
been suggested that the imbalance of the gut microbiome affected the systemic immune
system of the body and thus can exacerbate AD [3,6–9]. However, understanding the
immunological, metabolic, and neurological interactions between the gut microbiome and
skin is necessary to determine the exact mechanisms by which the gut microbiome causes
AD and how it is involved in aggravating AD symptoms. Such interactions between the gut
microbiome and other organs or tissues have long been investigated in the gut microbiome
of the fruit fly model [10,11].

The “gut–brain–skin axis” is a theory that suggests that the gut microbial environment
interacts with the brain and skin tissues, and plays an important role in the development of
related diseases: autism spectrum disorders, Parkinson’s disease and Alzheimer’s disease
in the brain, and psoriasis, psoriatic arthritis, Behcet’s disease and acne vulgaris in the
skin [12,13]. The gut microbiome was found to act as a bridge between the immune system
and the nervous system. In recent studies, in particular, this axis is used to describe the
correlation between gut microbial communities, emotional states, and systemic and skin
inflammation, and may be closely associated with the etiological mechanism between
psoriasis and depression [14]. Using clinical cases of psoriasis and its animal models,
important communication pathways have been identified along the axis associated with
the regulation of neurotransmitters in the microbiome [15]. It can be therefore expected
that a new strategy can be found to treat both psoriasis and depression based on the
gut-brain-skin axis.

The roles of the gut and skin microbiomes in AD development are somewhat similar.
The high diversity of the gut microbiome controls the immunity of the entire body, which
increases the number of regulatory T cells (Tregs), short-chain fatty acids (SCFAs), and
immune tolerance [4,16–19]. Conversely, the imbalance of the gut microbiome, reduced
microbial diversity, domination of toxic microorganisms, and the absence of specific mi-
croorganisms increase the susceptibility of children to frequent secondary skin infections
and immune-related diseases including AD [4,17,20]. Skin microbes also control local
and systemic immune systems by generating antimicrobial peptides, a complementary
system and the control of regulatory immune system, which can be induced to increase
interleukin (IL)-1, IL-17A, IL-2 and interferon (IFN)-γ from the cluster of differentiation
(CD)4+ forkhead box P3 (Foxp3)+ Tregs by stimulating the skin to increase the activity of
Treg cells through toll-like receptors (TLRs) [3,21,22]. This review focuses on the gut–skin
axis and attempts to understand how the gut and skin microbiomes interact with each other
in AD. Determining the mutual effects of the gut microbiome and skin immune response
in the causes of AD is important. Further to the attempt to simply transfer AD from the
skin to the intestine, the interaction will be considered to broaden our knowledge of AD
and human microbiome. These findings will be clinically important as they can change the
way in which AD patients have been treated conventionally by using local steroids, local
immunosuppressants (calcineurin antagonists) and anti-histamines. Furthermore, they can
introduce new therapeutic methods associated with the microbiomes of the gut and skin.
In this review, we summarize and interpret recent findings on the interaction of the gut
and skin microbiomes associated with AD pathology, highlighting the novel role of the
gut–skin axis for the management of AD.
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2. The Role of the Skin Microbiome in Atopic Dermatitis

The skin is the first barrier to the external environment and effectively shields against
bacterial infections [23]. The skin microbiota consists of up to 107 microorganisms per
square centimeter and mainly includes Propionibacterium, Streptococcus, Staphylococcus and
Corynebacterium [24,25]. The composition of the skin microbiota varies remarkably across
individuals in different environments. For example, Propionibacterium and Staphylococcus
are mainly found in oil-rich areas, Corynebacterium and Staphylococcus in moist areas and
β-Proteobacterium in dry areas [26–28]. Furthermore, the skin microbial ecosystem can
vary depending on the nutritional status, health condition, age and environment of an
individual.

The skin microbial ecosystem interacts with various tissues and the immune system
of the skin, and affects the health and functions of the body. Previous studies have shown
that contact with maternal or external microorganisms plays an important role in the
formation and maturation of immunity in infants [29,30]. In addition, the skin microbiome
plays an important role in maintaining the skin barrier. The skin microbiome not only
helps in the formation of mature keratinocytes in the stratum corneum, the outer layer of
the skin barrier, but also controls the immune system of the entire body [31]. Microbial
imbalances in the stratum corneum are known to cause skin allergies, psoriasis, acne and
skin aging [32]. Keratinocytes play a key role in the responses of the body to the changing
environment by controlling the production of hormones, neurotransmitters and cytokines.
Changes in the skin microbiome due to infection by pathogenic or harmful bacteria or
imbalance in the skin ecosystem can cause not only local skin problems but also other
inflammatory diseases such as food allergies [33]. Bacterial skin infections are attributed
to the invasion of bacteria through hair follicles or slightly damaged areas of the skin
resulting from scratches, holes, surgery, burns, sunburns, animal or insect bites, wounds
and conventional skin diseases.

Since 2000, researchers have been focusing on the genetic factors causing AD and the
relationship between the skin microbiome and AD. The skin microbiome seems to be one
of the main causes of AD as an unbalanced skin ecosystem microbiome deteriorates the
immune system as well as skin barriers. However, it is still unclear whether dysbiosis of
the skin microbiome is the cause of the onset of AD or one of the symptoms of AD. Many
other studies have shown low microbial diversity and abnormal microbial communities
in skin tissues during inflammatory reactions in AD, regardless of age [6,34–39]. Chronic
inflammation of the skin in AD patients led to reduced levels of Cutibacterium, Streptococcus,
Acinetobacter and Corynebacterium, and subsequent increase in the strains of Staphylococcus
aureus, which accounted for more than 90 % of the skin microbiome, of which more than
50–60 % were harmful [40–42]. In addition, the density of S. aureus is known to be closely
related to the severity of AD regardless of the affected skin area [40,43]. The prevalence of
AD among children is 20–30 %, whereas it is only 3 % in adults. This is because, in adults,
the matured skin microbiome can potentially inhibit the growth of S. aureus, contributing to
the age-related reduction in the incidence of AD. Interestingly, it was reported that certain
strains of S. aureus isolated from the anterior nares of AD patients were able to form biofilm
in vitro, which can be closely associated with the AD severity [43,44]. Chronic inflammation
of the skin in AD patients led to reduced levels of Corynebacterium in the adult skin that
theoretically contains genes involved in phosphoric metabolism that can reduce S. aureus
infection by increasing competition among bacterial species [45]. Small molecules such as
ribosomally synthesized and post-translationally modified peptides (RiPPs), glycolipids,
terpenoids, non-ribosomal peptides (NRPs), polyketides, porphyrins and citrate amides
are used by bacteria to interact with each other and their environment [46–49]. The genes
required to produce these small molecules colocalize in biosynthetic gene clusters (BGCs).
In the in vitro and mouse studies, adult skin microbes were found to secrete antibacterial
metabolites such as small-molecule products of cutimycin from BGCs, which has been
shown to inhibit the growth of S. aureus [50,51].
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Until recently, most studies on skin microbial relevance to AD focused on S. aureus
infection, with several studies showing that Staphylococcus epidermidis, a normal skin flora
in humans, can inhibit the growth of S. aureus [40,52]. Skin colonization with S. epidermidis
and Staphylococcus hominis reduced AD development in one-year-old children [26]. Some
strains of S. epidermidis have also been found to improve innate immunity and activate IL-17-
expressing CD8+ T cells to protect the skin from infection with pathogens [33]. S. epidermidis
accounts for more than 90 % of the Firmicutes phylum in an anaerobic environment [50,
53]. These bacteria have anti-inflammatory effects and help prevent the proliferation of
pathogenic bacteria such as S. aureus strains, thereby acting as a skin barrier [4]. They
also produce various bacteriocins—antibacterial peptides—to prevent the colonization and
proliferation of pathogenic bacteria and the subsequent production of proinflammatory
cytokines, and to strengthen the skin barrier to maintain skin homeostasis [54–56].

Skin barrier dysfunction caused by genetic mutations in the epidermal barrier-related
genes such as filaggrin, and a family history of allergies are closely associated with the
development of S. aureus colonization and AD [57]. A study on twins showed that a
combination of genetic and environmental factors affects the skin microbiome and thus
the function of the skin barrier [8,58]. Filaggrin is a filament-related protein that binds to
keratin fibers in epidermal cells and is essential for the regulation of epidermal integrity.
The skin of individual with a knockout mutation for the gene encoding filaggrin remains
remarkably dry, making them vulnerable to skin conditions such as AD (eczema) and
ichthyosis. The dysbiotic microbiome in the skin of AD patients promotes the generation of
toxic factors that contribute to the severity of symptoms: the virulence of S. aureus includes
α-toxin, which damages keratinocytes; δ-toxin, which stimulates mast cells; protein A,
which triggers inflammatory responses from keratinocytes; superantigens, which trigger B
cell expansion and cytokine release; and proinflammatory lipoproteins [59,60]. In addition,
S. aureus expresses phenol-soluble modulins (PSMs), a family of peptides regulated by the
accessory gene regulatory (agr) virulence system of S. aureus [61,62]. PSMs are encoded
at three different locations in the genome and are tightly regulated by quorum sensing
via the agr operon system. The PSMs produce two primary transcripts, i.e., RNAII and
RNAIII. RNAII is generated by agrBDCA, an operon encoding factor necessary for the
synthesis of autoinduction peptides (AIPs) and concentration-regulatory cascades. AIP, a
peptide pheromone, is translated from AgrD, whereas AgrB transports the AIP into the
extracellular space so that it can bind to the extracellular region of AgrC. AgrA and AgrC
form a two-factor signal transduction system that regulates downstream signaling events,
including RNAIII production that regulates viral factors, and includes an embedded hold
gene sequence that generates δ-toxin [63]. Moreover, δ-toxin induces a decrease in mast
cells of membrane-bound cytoplasmic granules containing histamine, IL-4 and IL-13, and
induces the release of molecules important for activating immunoglobulin (Ig)E production
in response to Th2-type skin inflammation [64,65]. These actions are accomplished by
activating congenital immune receptors in immune cells, such as TLRs [24]. Thus, the
development of the natural immune system of the skin can be attributed to the interaction
of humans and microbiomes, which is an important factor for controlling the homeostasis
of skin immunity [17].

The production of local immune substances influenced by microbes in the skin is not
limited to the skin, but also affects the immunity of the entire body [66]. Exposure to rural
environments with high levels of non-pathogenic bacteria, including Acinetobacter, is known
to suppress allergic reactions in humans [67]. Exposure to germs from mothers during
spontaneous delivery is also associated with a decrease in allergic reactions in children [33].
The administration of Acinetobacter lwoffii, isolated from rural areas in Germany, to pregnant
animals through the nose could prevent an asthmatic phenotype, a type of allergic reaction,
in offspring [68]. This effect is produced by type 1 T helper (Th1) cells in response to
changes in the expression levels of IFN genes induced by exposure to bacterial species
in the gut and brain. Injection of heat-treated A. lwofii into animal models was found to
have a protective effect on allergic reaction and lung inflammation owing to Th1 cells and
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their anti-inflammatory effects [69]. These findings provide clear evidence that microbiota
symbiosis in the skin can control the systemic immune response of the entire body.

3. The Role of the Gut Microbiome in Atopic Dermatitis

The gut microbiome is a microbial ecosystem in the intestine, and more than 90% of
all microorganisms in humans are found in the large intestine [16,70]. The gut microbial
community plays an essential role in the maturation of the human immune system, begin-
ning at the first month of life and affecting individual immune responses. The acquisition
of the gut microbiota begins at birth, after which it diversifies around six months after birth.
During the third year of life, stability of the gut microbiota is achieved via development
processes [17]. Metabolites and signal molecules such as RiPP, amino acid metabolites,
acids (short-chain), oligosaccharides, glycolipids, and NRP produced by the gut microbiota
can form a mucous layer in the gut and affect the systemic immune response of an indi-
vidual [46,71]. Several related studies have shown that microorganisms in the intestine
are related to chronic diseases ranging from gastrointestinal inflammatory and metabolic
conditions to neurological, cardiovascular, and respiratory illnesses [72]. In particular,
the brain–gut–microbiome axis theory suggests that the gut and brain are bidirectionally
connected via the neuroendocrine system including hypothalamic-pituitary-adrenal axis
and the vagus nerve, and closely interact with each other. A novel treatment strategy for
dementia by using gut microbiome has been investigated: fecal microbiota transplantation
(FMT) has been shown to have a positive effect on cognitive function in Alzheimer’s disease
via alterations in the levels of circulating cytokines [73,74]. Gut microbiome functions as the
first barrier to pathogenic microorganisms by adherence, producing substances that have
antimicrobial effects, and stimulating immune responses in the host [75,76]. In addition,
studies have been focusing on the gut microbiome as a future treatment therapy for AD,
rheumatoid arthritis, diabetes and obesity [77].

The pathology of AD primarily includes immune anomalies and skin barrier defects.
An imbalance in the gut microbiota is expected to play an important role in the etiological
mechanism of AD. Several cohort studies have suggested that aberrant gut microbiota
preceded the onset of AD, such as in infants with high fecal calprotectin levels (an antimi-
crobial protein used as a biomarker of intestinal inflammation) measured at 2 months of age
who had an increased risk of AD and asthma by 6 years of age [7,73,78,79]. Some cohort
studies have found that, in addition to small amounts of Bifidobacterium and Bacteroides and
high levels of Enterobacteriaceae, infants with AD lack overall biological α-diversity [80,81].

In infants with AD, fewer species of the genus Bacteroides and many species of the
genus Firmicutes were found. Certain species of Bacteroides genus, such as Bacteroides thetaio-
taomicron, have an anti-inflammatory nature, which can be essential for alleviating allergic
symptoms of AD as well as chronic inflammatory diseases including Crohn’s disease [82].
In addition, infants with AD, who as babies had skin tingling for 12 months, reported in-
creased levels of Clostridium in the third week of life and decreased levels of Bifidobacterium
in the bowel [80,81]. In other studies, infants with allergies were shown to carry a greater
population of Bifidobacterium adolescentis, whereas, in healthy infants, B. bifidum was the
dominant variant of the Bifidobacterium population [80]. In a preliminary large-scale cohort
study, infants with AD were shown to have more colonization by Clostridium difficile and
Escherichia coli than in infants without AD [83].

Conversely, studies have shown that infants with a high risk of allergic diseases
having a diversity of gut microbiome have a low risk of AD [72,84,85]. The reduction of
biodiversity in the gut microbiome and Bacteroides colonization in over one-month-old
infants are related to AD [86]. Like in the skin, the diversity or differences among species
in the diversity of the gut microbiome seem to be closely related to chronic skin diseases.

The immune system of the body and skin can be controlled via the gut microbiome
as follows. The differentiation of naïve T cells to other types of Th cells such as Th1, Th2,
Th17, or Foxp3+ Tregs depends remarkably on the condition of the gut microbiome. Tregs
prevent dysfunctional T cells from differentiating into Th cells and inhibit the inflammatory
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activities of immune cells such as mast cells, eosinophils and basophils. Th cells also inhibit
IgE production and induce IgG4 production [4,17]. Bifidobacterium, Lactobacillus, Clostridium,
Bacteroides, Streptococcus, and their metabolites such as propionic and butyric acids are
known for their ability to induce the polarization and expansion of Treg cells [87].

According to a recent study in Korea, significant dysbiosis (specifically an intraspecies
compositional change) of a subspecies of Faecalibacterium prausnitzii was found in the fecal
samples of patients with AD [9]. In addition, the simultaneous reduction of fecal SCFAs,
such as butyrate and propionate, which have been known to exhibit anti-inflammatory
effect and contribute to the maintenance of the integrity of epithelial barriers. Hence, a
leaky gut in AD patients facilitates skin inflammation by allowing toxins, poorly digested
foods, and gut microorganisms to penetrate the circulation of the body. When these
reach the target tissue, including the skin, a strong Th2 reaction may be induced, causing
further tissue damage [7,32,88]. SCFAs, such as acetate, propionate and butyrate, are the
fermented products of dietary fibers in the gut, and are known to play an important role in
determining the composition of the skin microbes, which are closely related to the skin’s
immune defense mechanism [19,89]. For example, Cutibacterium produces acetate and
propionate in the gut. Previous studies show that various skin conditions are known
for their anti-inflammatory actions mediated by G-protein-coupled receptor 43 and for
their contribution to epidermal barrier integrity. The anti-inflammatory activity is further
mediated by Treg cells and induced by transforming growth factor (TGF)-β and/or IL-10.
IL-10 exerts its inhibitory function by inducing TGF-β and other cytokines as well as
suppressive signaling molecules, including cytotoxic T-lymphocyte antigen (CTLA)-4 and
programmed death (PD)-1. In particular, propionic acid and its metabolized derivatives
inhibit the growth of methicillin-resistant S. aureus USA300, a virulent strain that first
emerged as community-associated methicillin-resistant S. aureus (MRSA) in the USA in
the late 1990s [32]. Conversely, cutaneous bacteria such as S. epidermidis and Cutibacterium
acnes (formerly Propionibacterium acnes) allow greater changes in SCFA production than
others [90]. These findings suggest that an interaction occurs between the gut microbes
and the skin.

4. Potential Pathways of the Gut–Skin Axis in Atopic Dermatitis
4.1. Mechanisms of How the Gut Microbiome Affects the Skin

Since dermatologists John H. Stokes and Donald M. Pillsbury first hypothesized that
changes in the gut microbes could lead to skin inflammation causing conditions such as
acne, several researches have supported the gut–brain–skin axis theory [1].

In patients with acne vulgaris, bacterial overgrowth in the small intestine was 10
times more common than in healthy controls [1]. Another study showed that patients
with acne were more responsive to bacterial strains isolated from their stool [91]. Unlike
control patients without skin disease, approximately 66 % of acne patients showed positive
reactivity to stool-isolated coliform bacteria [1]. These results suggest that toxins from the
gut microbes are a potential problem for patients with AD.

The gut–skin axis has been applied to not only simple skin diseases such as acne but
also various chronic skin diseases with common symptoms, including AD (eczema). Thus,
toxic substances from the gut microbiome affect and aggravate AD symptoms through par-
ticular pathways such as immunologic, metabolite and neuroendocrine pathway (Figure 1),
and the underlying mechanisms need to be studied.
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Figure 1. Several potential pathways of the gut–skin axis in atopic dermatitis (AD). In particular, numerous studies have
shown that toxins in the gut microbiome are a potential problem for AD patients. Intestinal microbes are known to influence
the skin through immunological, metabolic, and neuroendocrine pathways. The effect of the skin microbiome on the
intestinal immune system has been mainly investigated in the field of food allergies, which shows how skin microorganisms
affect the gut of AD patients. Recently, skin exposure to ultraviolet B (UVB) was shown to change the gut microbiome.

4.1.1. Immunologic Pathway

In terms of immunity toward S. aureus, the most common bacterial strain affecting
AD, a link was found between the gut and skin microbiotas. S. aureus is the most popular
pathogen in the skin of AD patients. In contrast, according to a recent birth cohort study,
colonization by the S. aureus strains played a role in the prevention of AD development in
infancy, as early exposure to gut microorganisms is important at birth [8]. The exposure
of the skin to S. aureus, similar to other cutaneous strains, facilitated the maturation of
an infant’s immune system. S. aureus species in the skin may deteriorate the already
established AD symptoms. However, before the occurrence of AD, the clustering of
symbiotic S. aureus strains on the mucous membrane could exert protective effects through
immunostimulation [8]. These studies support the possibility that the gut and skin are
connected through the control of the immune environment via microbiome.

Specific gut microbes and their metabolites, such as retinoic acid and polysaccharide
A from Bacteroides fragilis, Faecalibacterium prausnitzii, and bacterial species belonging to
Clostridium cluster IV and XI promote the accumulation of Tregs and lymphocytes that
stimulate anti-inflammatory reactions. Furthermore, some SCFAs, especially butyrate,
regulate both the activation and apoptosis of immune cells [32].

An experiment performed using probiotics, including Lactobacillus rhamnosus, also
verified the ameliorating effect of the gut microbiota on immunological skin irritation [32].
In that study, intestinal dysbiosis due to repeated water-avoiding stress was completely
eliminated when the mice were treated with probiotics after exposure to stress [32].
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4.1.2. Metabolite Pathway

Metabolites, including SCFAs, produced by gut microbes or those further supple-
mented by oral administration also explain the association between the gut and skin via
microbiome. SCFAs produced by gut microbes such as Akkermansia muciniphila play a key
role in the etiology and pathology of AD, which can explain its association with the skin im-
mune system. In mouse experiments, linoleic acid and 10-hydroxy-cis-12-octadecenoic acid
mitigated AD symptoms and controlled the gut microbiome [92]. Furthermore, three differ-
ent subgroups of neonatal gut microbiome (NGM1–3) and their metabolic products were
shown to function in early allergic sensitization [93]. Of the three subgroups, NGM3 was
related to multiple allergic sensitizations and was found to have a lower relative abundance
of Bifidobacterium, Akkermansia and Facalibacterium [8]. For example, 12,13-dihydroxy-9Z-
octadecenoic acid (12,13-DiHome), a metabolic product with an inflammatory effect on
immune control in vitro, was rich in NGM3. Furthermore, 12,13-DiHome was increased in
the protective layer of vernix caseosa, a white waxy coating found on newborn human skin.
These findings may support the existence of a metabolite pathway in the gut– skin axis [8].

4.1.3. Neuroendocrine Pathway

Like the skin, the lining of the gastrointestinal tract is also exposed to external envi-
ronmental factors such as food and microorganisms. One of the main functions of the skin
and gut is to inhibit the entry of any harmful pathogens, and the microbes on both organs
can help eliminate these pathogens via immune function, and hence, establishing the stable
microbiomes of both the organs and maintaining the proper balance is important for being
healthy. Moreover, both microbiomes can affect each other through neuroendocrine signal-
ing. This effect can occur via two routes: direct and indirect [8]. Tryptophan produced by
intestinal microbes causing skin itching in AD patients is an example of direct signaling.
In contrast, γ-aminobutyric acid produced by Lactobacillus and Bifidobacterium in the gut
suppresses skin itching [8,94].

Through indirect channels, intestinal microbes regulate the concentration of cytokines
such as IL-10 and IFN-γ in the bloodstream, which can lead to abnormal changes in brain
function, resulting in anxiety and stress [8]. Cortisol, a representative stress hormone in
humans, can alter the gut epithelium permeability and barrier function by changing the
composition of the gut microbiota [95]. Cortisol can also change the levels of circulating
neuroendocrine molecules such as tryptamine, trimethylamine and serotonin, thereby
improving skin barrier and immune function [49].

In addition to these pathways, new evidence suggests that the gut microbiome and
their metabolites affect skin microbes directly by being transferred to the skin. In the
case of intestinal wall disorder, intestinal microbial metabolites access the bloodstream,
accumulate in the skin, and can directly disrupt skin homeostasis [32].

4.2. Mechanisms of How the Skin Microbiome Affects the Gut

The extent to which skin microbes affect the immune system of the intestine has
been investigated in the field of food allergy. Food allergy and the etiopathology of AD
are closely related, in that atopic constitution is an important risk factor for food allergy
outbreaks [96]. Thus, how the skin microbes affect the gut condition of AD patients can be
determined. Exposure to food allergens through the skin barrier bypasses oral immunity.
Thus, when the intestines are exposed to food allergens, prior experience of sensitization
with the same allergens through the skin pathway leads to greater and effective food allergy-
related skin symptoms such as itching. Epithelial sensitivity in damaged skin barriers is
associated with the accumulation of thymic stromal lymphopoietin-induced basophils and
dendritic cells that trigger antigen-induced food allergies. How skin exposure to microbes
affects the immune sensitization and tolerance of the gut, similar to skin exposure to food
allergens, is not yet known; further research is needed to determine whether this is related
to the gut microbiome [32].
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In the intestinal microbiota, bacteria prevail, and up to 100 species per individual
are found; in contrast, skin microbes are dominated by fungi, viruses and rare bacteria,
with about 40 species per individual [7]. Gut microbiomes are mostly acquired around
six months after birth, and they undergo development until the age of two to six years.
In contrast, skin microbes are acquired during infancy, but their colonization occurs once
again during adolescence [7]. The manner in which the gut and skin microbiomes affect the
development of AD is considerably similar. It involves induction of an immune response
and inflammation and production of metabolites that are involved in damage to the skin
barrier [7].

Although the manner in which the skin and gut microbiomes are involved in human
immunity is similar, there are some differences. Intestinal microbes control the development
of lymphatic structures related to the gut and play the most important role in activating
congenital immunity. They can directly guide the gene regulatory network connectivity and
control its function, stability and microbial-colonization resistance [97]. Skin microbes also
control congenital immunity by generating antimicrobial peptides such as cathelicidin and
β-defensin, by increasing the activity of the complement system, balancing the immune
system between effective protection and damaging protection, and by controlling the
level of IL-1 involved in the initiation and amplification of immune response. It also
controls adaptive immunity by increasing IL-17A and IFN-fi from skin T cells and by
controlling regulatory immunity, which eliminates exogenous pathogens. Colonization
resistance of host microbiota occurs through bacteriocin, a serine protease; PSMs; SCFAs
by Cutibacterium sp.; and porphyrin production by S. epidermidis. Thus, the collapse of the
epidermal skin barrier by S. aureus colonization needs to be prevented in AD patients [7].
Although the exact mechanism by which this can be achieved is not yet known, injecting
various skin-protective bacterial strains, including S. epidermidis, into AD patients might be
an effective strategy.

A recent study showed that skin exposure to external elements can also affect the gut
microbiome. Exposing the skin to narrow-band ultraviolet B (NB-UVB) increased serum vi-
tamin D levels, leading to changes in the composition of the gut microbiome [98]. Although
individuals taking vitamin D supplements did not show changes in gut bacterial composi-
tion, exposure to NB-UVB in participants without vitamin D supplementation increased the
abundance of the species of the families Lachnospiracheae, Rikenellaceae, Desulfobacteraceae,
Clostridiales vadinBB60 group, Clostridia Family XIII, Coriobacteriaceae, Marinifilaceae, and
Ruminococcaceae [98]. This study showed that external elements could also affect the gut
microbiome (Figure 1), and further studies are warranted to confirm this.

5. Perspective of Microbiome-Based Therapy for Atopic Dermatitis
5.1. Gut Microbiome-Targeted Therapies
5.1.1. Probiotics

Most orally administered probiotics pass through the gastrointestinal tract that is
generally hostile to survive, and is released after about a week while interacting with
the gastrointestinal mucous membranes in which more than 70 % of immune cells are
located [99]. Depending on the strains of probiotics, IL-12, IL-18 and tumor necrosis
factor (TNF)-α can be generated to induce immune-stimulated signals or to stimulate the
expression of anti-inflammatory cytokines such as IL-10 and TGF-β to generate immunity
tolerance signals [100].

The combination of L. rhamnosus 19070-2 and L. reuteri DSM 122460 was used to
manage AD, which had more pronounced effects in patients with positive skin terminal
examination responses and increased IgE levels [101]. In a 12-week-long randomized,
double-blind and placebo-controlled study performed in children aged one and twelve
years, the use of L. plantarum CJLP133 strain reduced IFN-γ, eosinophil and IL-4 levels,
and thus the AD scores such as SCORAD (SCORing Atopic Dermatitis) [102]. In another
randomized, double-blind and placebo-controlled study, four months after the use of
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L. paracasei, L. fermentum, and their combination was discontinued in children, the SCORAD
score of the group receiving probiotics was lower than that of the placebo group [103].

In addition, when rats were supplemented with Lactobacillus brevis SBC8803, the
color of the cutaneous arterial sympathetic nerve became pale, and blood flow to the skin
increased. This was probably because of the increased serotonin emission from intestinal
cells and subsequent activation of parasympathetic neural pathways [32]. This effect was
also reproduced in a human clinical study [32]. After L. brevis SBC8803 oral supplements
were administered for 12 weeks to human subjects, the transepidermal water loss, an
indicator of skin barrier function, decreased. In AD, skin barrier function is very important,
and administration of oral probiotic supplements could help improve this function and
thus improve AD symptoms [32].

Dysbiosis in the gut microbiome caused gluten sensitivity and low serum levels of
vitamin D [104]. According to the skin–gut axis mentioned above, dysbiosis in the gut
microbiome can cause AD; therefore, adjusting the blood levels of gluten or vitamin D can
also be a treatment strategy for AD. Certain probiotics can hydrolyze gluten polypeptides,
whereas others can increase the vitamin D level or further activate the expression of the
vitamin D receptor [104,105].

The causes of AD and its resulting characteristics differ across individuals. Therefore,
a uniform prescription of probiotics may have adverse effects or little efficacy. Thus,
individual patients need to be analyzed to identify the cause and phenomenon of AD, and
appropriate probiotics need to be prescribed (Figure 2).
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5.1.2. Pre- or Postbiotics

Recently, treatment of AD has involved not only probiotics but also postbiotics, the
metabolites of probiotics, or prebiotics, the food of probiotics (Figure 2). The mechanism by
which probiotics improve the symptoms of AD is by enhancing the production of SCFAs
such as acetate, propionate and butyrate. SCFAs have anti-inflammatory effects, reduce the
generation of toxic fermentation products, improve the Th1/Th2 ratio, increase the number
of lymphocytes and/or leucocytes in the gut-associated lymphoid tissues, and increase
intestinal IgA secretion [106]. A study found that prebiotic oligosaccharide mixtures added
to infant diets before the first year of life reduced the average AD incidence by 44% [107].

Previous studies have shown that postbiotics suppress cell inflammation. Postbiotics
are metabolites from intestinal bacteria; hence, they can function through the metabolite
pathway from the gut to the skin, as mentioned previously [108,109]. LactoSporin®, an
extracellular metabolite purified from Bacillus coagulans MTCC 5856 fermented broth (Inter-
national Nomenclature Cosmetic Ingredient name, Bacillus ferment filtrate extract), was
experimented as a postbiotic for the treatment of acne vulgaris. The potential mechanism
of LactoSporin® as an antimicrobial agent is through pH drop, microbial biofilm inhibition,
and the draining of ions from the targeted cells [110]. As LactoSporin® was used to treat
acne vulgaris, it can also be used to treat AD. However, since the study was conducted
in vitro, the exact mechanism underlying the effect of postbiotics and how they affect
the systemic immune system of AD patients, especially that of the intestines, are not yet
known. Postbiotic compounds of Lactobacillus were shown to have immune-modulating
activities by increasing the number of Th1-related cytokines and decreasing Th2-related
cytokines [111].

5.1.3. Fecal Microbiota Transplantation

According to recent studies, Fecal Microbiota Transplantation (FMT) has become a
popular means of intestinal microbiological control [112]. FMT refers to the transplantation
of functional bacteria from the feces of healthy donors into the patient’s gastrointestinal
tract to restore the balance of intestinal microorganisms and treat diseases related to gut
microbial disorders. Previous studies show that various skin conditions appear to be
potentially affected by the gut microbiome. In addition to hair loss and psoriasis, changes
in acne and eczema in FMT recipients were observed [113–117]. There is also a recent study
close to what we want to know, a cohort study involving a chart review of all patients who
received FMT from January 2013 to December 2019 in a single academic medical center.
However, it is not only an atopy-specific study but retrospectively limited to assessing
whether the reported disease is affected or caused by the extended interval between FMT
and dermatological visits. Therefore, further clinical trials and prospective studies are
required to determine whether FMT is effective in AD patients. Of course, there is an
ongoing clinical trial on the efficacy of FMT in adults with moderate-to-severe AD [118].

5.1.4. Phage Therapy

Phage therapy refers to the treatment of certain bacterial infections by using bacte-
riophages that infect and kill the host bacteria. The advantage of using bacteriophages
is that their host specificity; therefore, they do not have a significant impact on normal
microbiomes of animals and plants. However, since phage therapy has not yet been clin-
ically used for the treatment of AD although its safety is already fully guaranteed, and
this review will only address this as a future possibility. As a member of the human gut
microbiome, phages have recently been shown to be involved in human immune function
through interactions with the intestinal microbiome [119].

Some studies have used phage therapy in a mice model of liver diseases because the in-
ternal microbiomes contain many Enterococcus faecalis that produce toxins
(cytolysin) [120,121]. The findings of these studies might form the basis for using phage
therapy to address the problems with the intestinal residence of harmful bacteria or the
dysbiosis of the gut microbiome.
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However, this therapy is associated with many uncertainties and limitations because
whether the gut microbiome is the exact cause of AD is not yet known. All gut microbiome-
based therapies have adverse effects and limitations. Overcoming these limitations in this
field seems to be the greatest challenge in the future.

5.2. Skin Microbiome-Targeted Therapies
5.2.1. Probiotics

The skin rash in AD patients is mainly due to the decrease in bacterial diversity
because of the large volume of S. aureus; the standard treatments for AD usually improve
skin symptoms by increasing bacterial diversity (Figure 2). Current treatments include local
antibiotics (ointment), systemic antibiotics, and corticosteroids. The overuse of antibiotics
can affect the natural skin microbiome as well as gut microbiome. If antibiotic overuse
results in the generation and spread of drug-resistant bacteria, these bacteria can have a
significant harmful impact on human health. This phenomenon can be especially fatal in
subjects with an undeveloped immune system, such as newborns. Therefore, if antibiotics
are needed for such vulnerable subjects, probiotics such as Lactobacilli along with prebiotics
need to be administered together instead of the administration of antibiotics alone. In
addition, bathing habits involving the excessive use of surfactants can deteriorate the
balance of the skin microbiota.

Many researchers have attempted to identify the specific population of microbes that
adversely affect AD and developed therapeutic methods to remove such populations.
However, most of them suggested the use of probiotics to treat AD symptoms associated
with gut microbiome dysbiosis [122,123]. For example, a probiotic strain, Lactobacillus
johnsonii, showed significant improvement in skin symptoms of AD patients, which was
attributed to the acidic metabolites of Lactobacilli that lower pH levels [122]. Lactobacilli
are transmitted from the mother to the newborn; considering that these strains generally
have a positive effect on the child’s immune system, their use for the treatment of AD is
expected to have better outcomes [122].

Several studies have found significant improvement in specific skin conditions of
subjects who take oral probiotics to change the gut microbiome rather than the skin
microbiome. For example, L. rhamnosus GG reduces the sensitivity of AD patients with
IgE-sensitive responses [43]. The growth of S. aureus can also be controlled by using
S. epidermis, a commensal skin bacterium [124]. Several studies have shown that prebiotics
such as glucomannan can prevent the proliferation of pathogenic bacteria and their spread
in the skin, which can also help improve acne lesions and skin allergies. In addition,
taking Lactobacillus alone can positively affect the skin (like skin microbes in the nasal
barrier) [125,126].

Microorganisms from the feces can be extracted and transplanted into the skin. In
animal models of human AD, microorganisms extracted from human feces were trans-
planted to strengthen the skin barrier and immune function [98]. Vitreoscilla filiformis, a
non-pathogenic bacterium, was applied to skincare cosmetics to improve the skin microbial
environment and function as well as to reduce the frequency of atopic eczema [39].

5.2.2. Immunotherapy

Epicutaneous immunotherapy (EPIT) has been used not directly in AD but in the
treatment of food allergies. EPIT is a new experimental method for transmitting low
concentrations of food allergy-causing antigens through the healthy skin and inducing
intrinsic resistance in patients with allergies [127]. In a mouse experiment, EPIT induced
Tregs involved in the immune tolerance to milk allergy and promoted resistance to skin
allergic reactions produced by peanuts and house dust mites [128]. Similarly, specific
immunotherapy (SIT) was shown to have a significant positive effect on AD. SIT also
showed significant efficacy in the long-term treatment of patients with severe AD [42].
As mentioned above, how relevant skin microbes are related to the etiopathology of AD
as they are to food allergy is not yet known. Further studies are needed to determine
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whether the immune function of AD patients can be enhanced through stimulation by low
concentrations of allergens.

6. Beyond the Bacterial Microbiome: Mycobiome and Virome in Atopic Dermatitis

The difference in skin fungal communities, “mycobiome” between patients with AD
and healthy individuals was analyzed by using polymerase chain reaction (PCR). Malassezia
globosa and Malassezia restricta were prevalent in all samples across both study groups, and
some Malassezia species, including Malassezia sloofiae and Malassezia dermatis, had features of
AD [129]. Additionally, there were significant differences in the virome composition of AD
patients. While herpes simplex virus (HSV) showed similar relative abundance in both AD
patients and healthy individuals, human papillomavirus (HPV) and bacteriophages were
significantly increased in the skin of AD patients [130]. The reason why some mycobiome
and virome are prevalent especially in the skin of AD is not known yet. However, it is sure
that if the treatment of AD focusing on microbiota is not sufficient, we should consider
mycobiome and virome as new supporting factors in the therapy.

7. Conclusions

Although interaction between the gut and skin microbiomes in AD have not been
clearly demonstrated yet, several studies have implied that both microbiomes communicate
directly or indirectly within the gut–skin axis, influencing the overall environment of the
intestine and skin where they are located. The immunological, metabolic, and endocrine
effects of the gut microbiome on the gut–skin axis have been revealed in detail. The
oral administration of probiotics or manipulation of the microbiota itself can help in the
treatment of AD. It is inferred that the skin microbiome can immunologically affect the
gut microbiome through several studies, but still the influence of skin microbes on the gut
microbiome and the underlying mechanism are not fully known yet. We could just identify
the role of the skin microbes in food allergies related to AD pathology. This allowed us to
assume that the skin microbiome plays a major role in the ‘gut–skin axis’ until now, despite
the increasing importance of gut microbiome toward various organs. Furthermore, future
studies need to focus on how intestinal and skin microbial management methods involving
the use of probiotics, pre- or postbiotics, immunotherapy, phage therapy, and FMT work
against AD compared to conventional treatments.
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Abbreviations

AD atopic dermatitis
SCFA short-chain fatty acids
Treg regulatory T cell
IL interleukin
IFN interferon
CD cluster of differentiation
Foxp3 forkhead box P3
TLR Toll-like receptor
AIP autoinduction peptide
RiPP ribosomally synthesized and post-translationally modified peptide
NRP non-ribosomal peptide
BGC biosynthetic gene cluster
PSM phenol-soluble modulin
Th1 type 1 T helper
FMT fecal microbiota transplant
TGF transforming growth factor
CTLA cytotoxic T-lymphocyte antigen
PD programmed death
PCR polymerase chain reaction
MRSA methicillin-resistant Staphylococcus aureus
NGM neonatal gut microbiota
DiHome dihydroxy-9Z-octadecenoic acid
NB-UVB narrow-band ultraviolet B
EPIT epicutaneous immunotherapy
SIT specific immunotherapy
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